Scuttle Flies: the Phoridae Scuttle Flies: the Phoridae

Total Page:16

File Type:pdf, Size:1020Kb

Scuttle Flies: the Phoridae Scuttle Flies: the Phoridae SCUTTLE FLIES: THE PHORIDAE SCUTTLE FLIES: THE PHORIDAE R. H. L. Disney Field Studies Council Research Fellow, Cambridge University, UK Phorids are the least studied of all the large families ofDiptera (Naumov,1985) il t1lJ SPRINGER-SCIENCE+BUSINESS MEDIA. B.V. Flrst edltlOn 1994 © 1994 R H L Disney Originally published by Chapman & Hall in 1994 Typeset In 10/11 Bembo by Type Study, Scarborough ISBN 978-94-010-4562-9 ISBN 978-94-011-1288-8 (eBook) DOI 10.1007/978-94-011-1288-8 Apart from any falr deallng for the purposes of research or pnvate study, or cntlCIsm or reVlew, as permltted under the UK Copynght Deslgns and Patents Act, 1988, thls pubhcatlOn may not be reproduced, stored, or transmltted, In any form or by any means, wlthout the pnor permlSSlOn In wntlng of the pubhshers, or In the case of reprographlc reproductlOn only In accordance wlth the terms ofthe hcences Issues by the Copynght L1censlng Agcncy In the UK, or In accordance wlth the terms ofhcences Issued by the appropnate ReproductlOn RIghts OrgamzatlOn outslde the UK Enqumes concermng reproductlOn outslde the terms stated here should be sent to the pubhshers at the London address pnnted on thls page The pubhsher makes no representatlOn, express or Imphed, wlth regard to the accuracy of the InformatlOn contalned In thls book and cannot accept any legal responslblhty or hab!llty for any errors or omlSSlOns that may be made A catalogue record for thls book IS avallable from the Bnush Llbrary Llbrary ofCongress Catalog Card Number 94-70254 ce Pnnted on aCld-free text paper, manufactured In accordance wlth ANSII NISO Z39 48-1992 (Permanencc ofPaper) Contents Colour plate appears between pages 20 and 21 Foreword IX Preface X 1. Introduction 1 1.1 Introduction 1 1.2 Historical perspective 2 1.3 What are scuttle flies? 4 1.4 Why study phoridae? 9 1.5 A brief history of phoridology 9 2. Eggs 13 2.1 Introduction 13 2.2 Fecundity, batch size and clutch size 14 2.3 Development 18 2.4 Egg maturation 18 2.5 Oviposition 20 3. Larvae 25 3.1 Introduction 25 3.2 Feeders on dead or decaying organic matter (saprophage species) 32 3.3 Fungus-feeding/fungus-breeding larvae 45 3.4 Plant-feeding/plant-breeding larvae 57 3.5 Predator, parasitoid and parasitic larvae 61 3.6 Miscellaneous rearing records 91 3.7 Enemies 92 4. Pupae 94 4.1 Introduction 94 4.2 Pupation 99 4.3 Overwintering 99 4.4 Enemies 99 5. Development 103 5.1 Introduction 103 5.2 Number oflarval instars 103 CONTENTS 5.3 Development times 104 5.4 Pupariation and pupation 108 5.5 Adult development 108 5.6 Alleged protandrous hermaphroditism and parthenogenesis 109 5.7 Sex determination 110 5.8 Sex ratios 112 5.9 Diapause 112 5.10 Effects of crowding 112 5.11 Polymorphism 112 6. Adults 116 6.1 Introduction 116 6.2 Flower visiting 121 6.3 Feeding 132 6.4 Special associations 140 6.5 Courtship and mating 154 6.6 Longevity 160 6.7 Phoresy by mites on scuttle flies 162 6.8 Enemies 165 7. Ecology 170 7.1 Introduction 170 7.2 The phorid faunas of different habitats 170 7.3 The dearth oflarvae in soil extractions 182 7.4 Habitat preferences 182 7.5 Special microhabitats and resources 183 7.6 Diurnal patterns 188 7.7 Phenology 189 7.8 Cold-adapted adults 196 7.9 Niche separation and competition 196 7.10 Dispersal 197 7.11 Agricultural and medical significance 199 7.12 Conservation evaluation using Phoridae 202 8. Identification 203 8.1 Introduction 203 8.2 Keys to genera 211 8.3 Guide to literature for species identification 265 8.4 Fossil Phoridae 294 8.5 The current debate on phorid classification 296 9. Methods 380 9.1 Introduction 380 9.2 Collecting and sampling 380 9.3 Rearing 384 9.4 Culturing in the laboratory 385 9.5 Marking flies for population studies 385 VI CONTENTS 9.6 Control of pest species 385 9.7 Slide mounting Phoridae 386 References 389 Author index 439 Phoridae index 447 Index ojother organisms 458 Subject index 464 Vll Advance in the knowledge of the natural history of a group of insects is dependent upon taxonomic knowledge. The following have served phori­ dology well with their taxonomic expertise, both by publication and by identifying specimens for others. The importance of the latter service is too often taken for granted. Theodor Becker 1840-1928 John Henry Wood 1841-1914 William Lundbeck 1863-1941 Filippo Silvestri 1873-1949 John Russell Malloch 1875-1963 Hermann Schmitz 1878-1960 Charles Thomas Brues 1879-1955 Thomas Borgmeier 1892-1975 Charles Norman Colyer 1908-1970 V111 Foreword Today the topic of 'biodiversity' is a matter of general interest; national leaders refer to it in international meetings, such as the one at Rio de Janeiro. However, the assessment of biodiversity depends on detailed work of a careful and often unglamourous type. We are very uncertain as to the actual biodiversity of the Earth. All biologists will accept that many species are undescribed, a majority will agree that we know considerably less than half the living species. Ifwe are really to understand our 'house', our 'oikos' that gives us the name of the now popular science of ecology, we must be able to do more than put names on the organisms that share our Earth, we must know about their biology, their life style - their bionomics. Insects constitute more than half the known species of living organisms and probably a greater proportion of the unknown ones. Entomologists therefore face a formidable task. Fortunately there are those rare persons who devote themselves to a particular group and over their lifetime gain a real understanding of its species and their biology. Henry Disney is one such person and we are extraordinarily fortunate that after 20 years of study he has provided us with this overview of his chosen group, it is an assemblage of the 'world knowledge' on the Phoridae. We will all hope that it will not be another couple of decades before he provides a second oeuvre. The magnitude of the task he has achieved, as well as that ahead, can be appreciated when it is recognized that there may be five times as many species ofscuttle fly as birds in the world. The family evolved a long time ago, at least 80 million years; scuttle flies coexisted with the dinosaurs and were undoubtedly a diverse group when the first hominoids appeared around 10 million years ago. This long evolutionary history expresses itself in the wide diversity of habit and form described in this volume. Although in the 230 years since a phorid was first described many entomologists have made contributions to our knowledge of the members of the family, it has been relatively neglected until Dr Disney turned his attention to it. This comprehensive account of existing knowledge, so much of which is due to the author, should encourage others to join in the study of this widespread and abundant, yet hitherto obscure, group. Professor Sir Richard Southwood FRS Oxford February, 1994 Preface I am well aware that I have probably overlooked important observations published in unexpected places. I should welcome references to any such omissions which readers may encounter. Some omissions have been deliberate, where I have doubts about their correctness or the identity of the species involved. In some of the latter cases, however, I have cited the observations but indicated the doubts. In many cases those who refer to a work cited will find the species referred to by a subsequently discarded synonym or an identification of the species which has been subsequently revised. These changes are covered by the catalogues cited in section 1.5 or the literature recommended for the genus (8.3). I have only rarely burdened the text by the citation of synonyms. I remain particularly aware that I have probably not done justice to the ecological literature. I would especially welcome notification of interesting quantified data I have overlooked. A glance at the bibliography will quickly reveal that observations on Phoridae have been published in some decidedly obscure journals. Indeed some references cited in the literature defeated the library services of the United Kingdom. Some articles could not be traced, and in some cases the journal cited was not listed in any of the standard reference works. A late aunt, Sheila Disney, encouraged my interest in natural history when I was a boy, and her legacy enabled me to buy my dream compound microscope. Without this good microscope I would never have been in a position to tackle the taxonomy of such small insects as the scuttle flies. With it I have been able to produce many detailed descriptions and the hundreds of drawings used to illustrate both these and the identification keys I have published. While a less sophisticated microscope is adequate for the identification of phorids, one needs a superior instrument to produce detailed drawings and descriptions. I thank Professor G. Horn FRS and Dr K. A. Joysey for facilities in the Cambridge University Department of Zoology and the Zoology Museum. The writing of this book was made possible by funding from the Isaac Newton Trust (Trinity College, Cambridge) and the Harold Hyam Wingate Foundation (London). I am most grateful for this support. I am also very grateful to Dr Jeff Barnes (Biological Survey, Cultural Education Center, Albany, New York) for his constructive comments on early drafts of most chapters, and to Dr Sally Corbet (Department of Zoology, University of Cambridge) for casting her critical eye over a PREFACE complete draft.
Recommended publications
  • Diptera, Phoridae)
    A peer-reviewed open-access journal ZooKeys A512: new 89–108 species (2015) group in Megaselia, the lucifrons group, with description of a new species... 89 doi: 10.3897/zookeys.512.9494 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species group in Megaselia, the lucifrons group, with description of a new species (Diptera, Phoridae) Sibylle Häggqvist1,2, Sven Olof Ulefors3, Fredrik Ronquist4 1 Swedish Museum of Natural History, Department of Zoology, Box 50007, SE-10405 Stockholm, Sweden 2 Stockholm University, Department of Zoology, Svante Arrhenius väg 18A, SE-10691 Stockholm, Sweden 3 Färgerivägen 9, 38044 Alsterbro, Sweden 4 Swedish Museum of Natural History, Department of Bioinfor- matics and Genetics, Box 50007, SE-10405 Stockholm, Sweden Corresponding author: Sibylle Häggqvist ([email protected]) Academic editor: Martin Hauser | Received 2 March 2015 | Accepted 24 June 2015 | Published 6 July 2015 http://zoobank.org/7F66197C-6E1E-4E0E-BD9D-7DED9922D9FF Citation: Häggqvist S, Ulefors SO, Ronquist F (2015) A new species group in Megaselia, the lucifrons group, with description of a new species (Diptera, Phoridae). ZooKeys 512: 89–108. doi: 10.3897/zookeys.512.9494 Abstract With 1,400 described species, Megaselia is one of the most species-rich genera in the animal kingdom, and at the same time one of the least studied. An important obstacle to taxonomic progress is the lack of knowledge concerning the phylogenetic structure within the genus. Classification of Megaselia at the level of subgenus is incomplete although Schmitz addressed several groups of species in a series of monographs published from 1956 to 1981.
    [Show full text]
  • Development of a Forensically Important Fly, Megaselia Scalaris
    Jurnal Sains Kesihatan Malaysia 10 (2) 2012: 49-52 Komunikasi Pendek/Short Communication Development of a Forensically Important Fly, Megaselia scalaris (Loew) (Diptera: Phoridae) on Cow’s Liver and Various Agar-based Diets (Perkembangan Lalat Berkepentingan Forensik, Megaselia scalaris (Loew) (Diptera: Phoridae) Pada Hati Lembu dan Pelbagai Diet Berasaskan Agar) RAJA MUHAMMAD ZUHA, SUPRIYANI MUSTAMIN, BALKHIS BASHURI, NAZNI WASI AHMAD & BAHARUDIN OMAR ABSTRACT In forensic entomology practice, it is more common to use raw animal tissue to breed dipteran larvae and it often brings unpleasant odour in the laboratory. Few studies suggested the use of synthetic diets, mainly agar-based media, as alternatives to animal tissue but it is rarely being practiced in forensic entomology laboratory. The present study observed the growth of a forensically important fly, Megaselia scalaris (Loew) on raw cow’s liver, nutrient agar, casein agar and cow’s liver agar. A total of 100 M. scalaris eggs were transferred each into the different media and placed in an incubator at 30°C in a continuous dark condition. Data on length and developmental period were collected by randomly sampling three of the largest larvae from each rearing media, twice a day at 0900 and 1500 hours until pupariation. M. scalaris larvae reared on raw cow’s liver recorded the highest mean length (4.23 ± 1.96 mm) followed by cow’s liver agar (3.79 ± 1.62 mm), casein agar (3.14 ± 1.16 mm) and nutrient agar (3.09 ± 1.11 mm). Larval length in raw liver and liver agar were significantly different from those in nutrient and casein agar (p < 0.05).
    [Show full text]
  • INSECTS of MICRONESIA Diptera: Phoridae
    INSECTS OF MICRONESIA Diptera: Phoridae By ERWIN M. BEYER BONN, STIFTSGASSE 8, WEST GERMANY INTRODUCTION G. E. Bohart was the first to report on phorids of Micronesia. In his study on the Phoridae of Guam [1947, U. S. Nat. Mus., Proc. 96 (3205): 397-416, figs. 33-48] he dealt with five genera and 11 species; one genus (Para­ fannia Bohart) and nine species were described as new. C. N. Colyer [1957, Hawaiian Ent. Soc., Proc. 16 (2) : 232] synonymized Parafannia Bohart with Gymnoptera Lioy. In our recent study on the Phoridae of Hawaii (Insects of Hawaii 11, 1964) D. E. Hardy and I recognize M egaselia stuntzi Bohart as a synonym of M. setaria (Malloch). In this present study, Pulici­ phora nigriventris Bohart is shown to be a synonym of P. pulex Dahl. Bohart's descriptions of his new species are inadequate and not always based upon the most reliable characters; the illustrations are sometimes inac­ curate. I am unable, therefore, to include Chonocephalus species in this study. In the Micronesian material before me, three members of this genus are rep­ resented; none of these can, however, be identified as any of Bohart's species. M egaselia setifemur Bohart, which also needs redescription, is not repre­ sented in this material. At present, seven genera, two subgenera, and 24 named species of Phori­ dae, including the two species of ChonocephalusJ are known to occur in Micro­ nesia. Ten species are new to science, one tribe (Beckerinini) and five species are recorded for the first time in Micronesia. When considering the Micronesian phorid genera, it is evident that only genera of worldwide distribution are represented.
    [Show full text]
  • Universidade Federal De Juiz De Fora Pós-Graduação Em Ciências Biológicas Mestrado Em Comportamento E Biologia Animal
    Universidade Federal de Juiz de Fora Pós-Graduação em Ciências Biológicas Mestrado em Comportamento e Biologia Animal Monalisa de Paula Rocha BIOLOGIA E ECOLOGIA COMPORTAMENTAL DA VESPA SOCIAL Polybia platycephala (RICHARDS, 1978) (HYMENOPTERA: VESPIDAE, EPIPONINI) Juiz de Fora 2011 Monalisa de Paula Rocha BIOLOGIA E ECOLOGIA COMPORTAMENTAL DA VESPA SOCIAL Polybia platycephala (RICHARDS, 1978) (HYMENOPTERA: VESPIDAE, EPIPONINI) Dissertação apresentada ao Instituto de Ciências Biológicas, da Universidade Federal de Juiz de Fora, como parte dos requisitos para obtenção do Título de Mestre em Ciências Biológicas (Área de concentração em Comportamento e Biologia Animal). Orientador: Prof. Dr. Kleber Del-Claro Co-Orientador: Prof. Dr. Fábio Prezoto Juiz de Fora 2011 Monalisa de Paula Rocha BIOLOGIA E ECOLOGIA COMPORTAMENTAL DA VESPA SOCIAL Polybia platycephala (RICHARDS, 1978) (HYMENOPTERA, VESPIDAE, EPIPONINI) Dissertação apresentada ao Instituto de Ciências Biológicas, da Universidade Federal Juiz de Fora, como parte dos requisitos para obtenção do Título de Mestre em Ciências Biológicas (Área de concentração em Comportamento e Biologia Animal). Aprovada em 28 de fevereiro de 2011. BANCA EXAMINADORA ___________________________________________________ Prof. Dr. Fernando Antônio Frieiro Costa Centro Universitário de Lavras (UNILAVRAS) ___________________________________________________ Profa. Dra. Sthefane D'ávila Universidade Federal de Juiz de Fora (UFJF) ___________________________________________________ Prof. Dr. Fábio Prezoto Universidade Federal de Juiz de Fora (UFJF) À minha amada família, Rodrigo e queridos amigos. AGRADECIMENTOS Gostaria de agradecer primeiramente á Deus, por iluminar sempre os meus caminhos. Ao meu orientador Dr. Kleber Del Claro por aceitar orientar esta dissertação. Ao meu co-orientador Dr. Fábio Prezoto pela oportunidade para a realização deste trabalho e pelos ensinamentos transmitidos. Agradeço ao Rodrigo Oliveira Costa por todo apoio no trabalho de campo, e principalmente pelo amor, carinho e paciência durante este período.
    [Show full text]
  • Biology and Morphometry of Megaselia Halterata, an Important Insect Pest of Mushrooms
    Bulletin of Insectology 65 (1): 1-8, 2012 ISSN 1721-8861 Biology and morphometry of Megaselia halterata, an important insect pest of mushrooms 1 2 3 Mariusz LEWANDOWSKI , Marcin KOZAK , Agnieszka SZNYK-BASAŁYGA 1Department of Applied Entomology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland 2Department of Quantitative Methods in Economy, Faculty of Economics University of Information Technology and Management in Rzeszow, Rzeszow, Poland 3Department of Zoology, Chair of Biology of the Animal Enviroment, Warsaw University of Life Sciences - SGGW, Warsaw, Poland Abstract This paper aims to provide insights into knowledge on morphology, biology and development of Megaselia halterata (Wood), one of the most common insect pests of mushroom houses. We focus on such traits as body length and weight and width of pseu- docephalon, and show how these traits differ in subsequent development stages as well as across time. The development time of a generation, from egg to adult, lasted 16-19 days at 24 °C; for larval stage this time lasted 12-14 days. Mean weight of particular stages ranged from 0.003 mg for eggs up to 0.492 mg for pupae, while mean length from 0.35 mm for eggs to 2.73 mm for 3rd instar larvae. During larval development, mean body weight increased about 48 times and mean body length three times. Measurements of pseudocephalon of larvae showed that between the successive instars it increased approxi- mately 1.4 times. Using the statistical technique inverse prediction, we develop formulae for estimation of larvae development time based on mean body weight and length of larvae found in a sample taken from a mushroom house, on which basis one can decide whether the infection occurred in the mushroom house or during compost production.
    [Show full text]
  • Cob Flies, Megaselia Spp. (Diptera: Phoridae), in Sweet Corn1 David Owens, Gregg S
    ENY-754 Cob Flies, Megaselia spp. (Diptera: Phoridae), in Sweet Corn1 David Owens, Gregg S. Nuessly, Robert Beiriger, and Nicholas Larsen2 Introduction the silk fly Euxesta stigmatias (Diptera: Ulidiidae). Larvae of both E. stigmatias and M. seticauda were reported as being Phorid flies (Diptera), also known as humpback flies or relatively unaffected by DDT spray residues, leading to the scuttle flies for their appearance and behavior, are an recommendation to treat adults (Walter and Wene 1951). extremely diverse group of flies that are saprophagous (feed on decaying organic matter), parasitic, or phytophagous In Florida, a Megaselia spp., possibly M. seticauda, has (feed on plants). Within the Phoridae family, the genus sporadically been found over the last 8 years in sweet and Megaselia is also extremely diverse, with more than 1400 field corn ears that were not protected by insecticides and described species, many very similar in appearance. The were grown during the late spring dry and summer rainy name “cob fly” was given to a Megaselia spp. that attacked seasons. In early April 2016, ears of early-silking sweet corn corn in Texas (Walter and Wene 1951). To date, only one in a variety trial at the UF/IFAS Everglades Research and described species (Megaselia seticauda Malloch) has been Education Center in Belle Glade, FL, were heavily damaged observed to damage sweet corn. This species was originally by phorid larvae. The field had low silk fly populations identified as the ubiquitous saprophagous fly Megaselia and was treated only once when all ears had begun silking scalaris, but was later correctly identified as M.
    [Show full text]
  • Effects of Temperature and Tissue Type on the Development of Megaselia Scalaris (Diptera: Phoridae)
    Journal of Medical Entomology Advance Access published March 29, 2016 Journal of Medical Entomology, 2016, 1–7 doi: 10.1093/jme/tjw019 Development, Life History Research article Effects of Temperature and Tissue Type on the Development of Megaselia scalaris (Diptera: Phoridae) Joshua K. Thomas,1,2 Michelle R. Sanford,3 Michael Longnecker,4 and Jeffery K. Tomberlin1 1Department of Entomology, Texas A&M University, College Station, TX 77843 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], 3Harris County Institute for Forensic Science, Houston, TX 77030 ([email protected]) and 4Department of Statistics, 77843 Texas A&M University, College Station, TX ([email protected]) Received 5 January 2016; Accepted 18 February 2016 Downloaded from Abstract The scuttle fly, Megaselia scalaris (Loew) (Diptera: Phoridae), is of medical, veterinary, and forensic importance. In the case of the latter, M. scalaris is commonly associated with indoor death or neglect cases of humans or household animals, and its larvae are useful in determining time of colonization (TOC). This study is the first to examine the effects of different temperatures and tissues from two vertebrate species on the growth rate and http://jme.oxfordjournals.org/ larval length of M. scalaris. A preliminary validation of these data was also conducted. Immatures of M. scalaris were reared on either bovine or porcine biceps femoris at 24 C, 28 C, and 32 C. Temperature significantly im- pacted immature development time, including egg eclosion, eclosion to pupation, and pupation to adult emer- gence, to favor faster development at higher temperatures. From ovipostion to eclosion, development rate was 32.1% faster from 24 Cto28C, 13.9% faster from 28 Cto32C, and 45.5% faster from 24 Cto32C.
    [Show full text]
  • Fly Times Issue 41, October 2008
    FLY TIMES ISSUE 41, October, 2008 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! Let me first thank everyone for sending in such interesting articles – I hope you all enjoy reading it as much as I enjoyed putting it together! With that, please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, and to report on or announce meetings relevant to the community. This is also a great place to report on your interesting (and hopefully fruitful) collecting activities! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm. The Diptera community would greatly appreciate your independent contributions to this newsletter. For this issue, I want to again thank all the contributors for sending me so many great articles! That said, we need even more reports on trips, collections, methods, updates, and anything else you can think of about flies, with all the associated digital images you wish to provide. Feel free to share your opinions or provide ideas on how to improve the newsletter (I am very happy to hear ways that I can enhance it!).
    [Show full text]
  • Zootaxa, Diptera, Phoridae
    Zootaxa 593: 1–11 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 593 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) A mitochondrial 12S and 16S rRNA phylogeny of critical genera of Phoridae (Diptera) and related families of Aschiza CHARLES E. COOK1 , JEREMY J. AUSTIN2 & R. HENRY L. DISNEY1,3 1 Department and Museum of Zoology, University of Cambridge, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, ENGLAND. Email: [email protected] 2 The Natural History Museum, Cromwell Road, London SW7 5BD, ENGLAND. (Current address: Sciences Department, Museum Victoria, GPO Box 666E, Melbourne VIC 3001, Australia. Email: [email protected] 3 Email: [email protected] Abstract Phylogenetic analysis of mitochondrial 12S and 16S rRNA gene sequences supports the monophyly of the Phoridae. Within this family the Phorinae clade includes two aberrant termitophilous subfam- ilies, the Thaumatoxeninae and the Termitoxeniinae, which cluster with Dohrniphora and Diplonevra. These two genera include termitophiles and parasitoids of termites, so we hypothesize that these termitophilous phorids are a monophyletic group. While the data neither refute nor sup- port the assumed monophyly of the Metopininae, the genera of this subfamily were not monophyl- etic in our analysis, but fell into two subclades that correspond with the tribes Metopinini and Gymnophorini. Key words: Diptera, Aschiza, Phoridae, rRNA sequences, phylogeny, maximum likelihood, Baye- sian phylogeny, mitochondria, mtDNA, 12S, 16S lsuRNA, ssuRNA Introduction The flies, midges, and gnats (Diptera) are a successful and widespread insect order that includes over 120 named families and over 140,000 named species. However, the majority of species still remain undescribed and unnamed.
    [Show full text]
  • Diptera: Phoridae) Recorded from Caves in Nevada, USA
    Subterranean Biology 9: 73-84, 2011 Scuttle flies from caves in Nevada 73 doi: 10.3897/subtbiol.9.2511 New species of scuttle flies (Diptera: Phoridae) recorded from caves in Nevada, USA R. Henry L. DISNEY (1,*), Steven J. TAYLOR (2), Michael E. SLAY (3), Jean K. KREJcA (4) (1) Department of Zoology, University of cambridge, Downing Street, cambridge cB2 3EJ, UK; email: [email protected] (2) Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois1816 S. Oak Street (Mc-652) champaign, Illinois 61820-6953, USA; email: [email protected] (3) The Nature conservancy, 601 North University Avenue, Little Rock, Arkansas 72205, USA; email: [email protected] (4) Zara Environmental LLc, 1707 W FM 1626, Manchaca Texas 78652, USA; email: [email protected] * corresponding author ABSTRAcT Five new species of scuttle fly are reported from caves in Nevada, USA, namelyAenigmatias bakerae Disney, Megaselia excunicu- lus Disney, M. krejcae Disney, M. folliculorum Disney, M. necpleuralis Disney and a female Megaselia that can not be named until linked to its male. Key words: Diptera, Phoridae, new species, caves, USA Aenigmatias Meinert, 1890 INTRODUcTION A dozen species are known from the Nearctic and Pa- Our knowledge of the scuttle flies (Diptera: laearctic Regions. The males are keyed by Disney (2002) Phoridae) reported from subterranean habitats in and some females are covered by Borgmeier (1963), the USA has been recently expanded along with a Schmitz (1955) and Disney (1993). revision of some of the identities and nomencla- ture for the records from the 19th and 20th centuries Aenigmatias bakerae Disney, sp.
    [Show full text]
  • Diptera: Phoridae)
    EFFECTS OF TEMPERATURE AND TISSUE TYPE ON THE DEVELOPMENT OF MEGASELIA SCALARIS (LOEW) (DIPTERA: PHORIDAE) A Thesis by JOSHUA KELLOGG THOMAS Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Jeffery K. Tomberlin Committee Members, Michelle Sanford Pete Teel Michael Longnecker Head of Department, David Ragsdale December 2015 Major Subject: Entomology Copyright 2015 Joshua Kellogg Thomas ABSTRACT The scuttle fly, Megaselia scalaris (Loew), is a Dipteran from the Phoridae family of medical, veterinary, and forensic importance. In the case of the latter, M. scalaris is commonly associated with indoor death scenes and its larvae are useful in determining time of colonization (TOC). This is the first developmental study on the effects of different temperatures and tissues from two different vertebrate species on the growth rate and larval length of M. scalaris, and consequently, on estimated TOC. A validation study of these data was also conducted. Immature M. scalaris were reared on either bovine or porcine biceps femoris at 24°C, 28°C, and 32°C. Temperature significantly impacted immature development including egg hatch, development from hatch to pupa, and from pupa to adult. From egg to hatch, development had a growth rate difference of 32.1% from 24°C to 28°C, 13.9% from 28°C to 32°C, and 45.5% from 24°C to 32°C. Development of larva to pupation displayed similar results with differences of 30.3% between 24°C and 28°C, 15.4% between 28°C and 32°C, and 45.2% between 24°C and 32°C.
    [Show full text]
  • Diptera: Phoridae
    International Journal of Entomology Research ISSN: 2455-4758; Impact Factor: RJIF 5.24 www.entomologyjournals.com Volume 1; Issue 3; March 2016; Page No. 33-38 Diversity and distribution pattern of scuttle flies (Diptera: Phoridae) in India 1 Bulganin Mitra, 2 Souradip Roy, 3 Sumana Halder, *4 Sankarsan Roy, 5 Shiladitya Mukhopadhyay 1, 3, 4 Zoological Survey of India, New Alipore, Kolkata, India. 2 Post Graduate Department of Zoology, Vidyasagar College, Kolkata, India. 5 Post Graduate Department of Zoology, Barasat Govt. College, Kolkata, India. Abstract A total of 67 species of the family Phoridae under 04 subfamilies belonging to the order Diptera are reported from India which is only 1.59% of total global Phorid fauna. Among 67 species, 32 species have restricted their distribution within the country. But there is no sufficient information about the specific distributional localities of 28.35% of Indian Phorids. Considering the bio- geographic zones of India, the highest number (37.31%) of scuttle flies were found in the Ghats and Peninsular regions and the least number from both the Arid- Semi Arid and Hot desert region and the Islands region (1.49%). This communication serves the consolidated report on the current status of Indian phorid fauna. Keywords: Biodiversity, Bio-geographical Patterns, Endemism, Phoridae 1 Introduction a consolidated list of Indian scuttle fly [3], which enumerates The family Phoridae is one of the most biologically diverse 67 species belonging to 04 subfamilies (Table- 1). groups among brachyceran Diptera, which constitute nearly 2% of the total global animal species [1]. Phorid flies are Table 1: Taxonomic diversity of the family Phoridae in India commonly known as Coffin flies, Scuttle flies and sometimes Sub Family No.
    [Show full text]