Structure Theorem and Isomorphism Test for Graphs with Excluded Topological Subgraphs Martin Grohe Dániel Marx∗ Institut für Informatik Computer and Automation Research Institute, Humboldt-Universität zu Berlin Hungarian Academy of Sciences (MTA SZTAKI) Berlin, Germany Budapest, Hungary
[email protected] [email protected] ABSTRACT Keywords We generalize the structure theorem of Robertson and Sey- topological minors, fixed-parameter tractability, graph iso- mour for graphs excluding a fixed graph H as a minor to morphism graphs excluding H as a topological subgraph. We prove that for a fixed H, every graph excluding H as a topological subgraph has a tree decomposition where each part is either 1. INTRODUCTION \almost embeddable" to a fixed surface or has bounded de- We say that a graph H is a minor of G if H can be ob- gree with the exception of a bounded number of vertices. tained from G by deleting vertices, deleting edges, and con- Furthermore, such a decomposition is computable by an al- tracting edges. A graph G is H-minor free if H is not a minor gorithm that is fixed-parameter tractable with parameter of G. Robertson and Seymour [25] proved a structure theo- SHS. rem for the class of H-minor graphs: roughly speaking, every We present two algorithmic applications of our structure H-minor free graph can be decomposed in a way such that theorem. To illustrate the mechanics of a \typical" appli- each part is \almost embeddable" into a fixed surface. This cation of the structure theorem, we show that on graphs structure theorem has important algorithmic consequences: excluding H as a topological subgraph, Partial Dominat- many natural computational problems become easier when ing Set (find k vertices whose closed neighborhood has restricted to H-minor free graphs [4, 13, 6, 15, 14, 5, 10].