Session 3D: Graphs and Population PODC’18, July 23-27, 2018, Egham, United Kingdom Minor Excluded Network Families Admit Fast Distributed Algorithms∗ Bernhard Haeupler Jason Li Goran Zuzic Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University Pittsburgh, PA Pittsburgh, PA Pittsburgh, PA
[email protected] [email protected] [email protected] ABSTRACT KEYWORDS Distributed network optimization problems, such as minimum span- Distributed Computing; CONGEST; Graph Structure Theorem; Mi- ning tree, minimum cut, and shortest path, are an active research nor Excluded Graphs; Shortcuts; Low-congestion Shortcuts area in distributed computing. This paper presents a fast distributed ACM Reference Format: algorithm for such problems in the CONGEST model, on networks Bernhard Haeupler, Jason Li, and Goran Zuzic. 2018. Minor Excluded Net- that exclude a fixed minor. work Families Admit Fast Distributed Algorithms. In PODC ’18: ACM Sym- On general graphs, many optimization problems, including the posium on Principles of Distributed Computing, July 23ś27, 2018, Egham, ones mentioned above, require Ω(˜ √n) rounds of communication United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10. in the CONGEST model, even if the network graph has a much 1145/3212734.3212776 smaller diameter. Naturally, the next step in algorithm design is to design efficient algorithms which bypass this lower bound on 1 INTRODUCTION a restricted class of graphs. Currently, the only known method of doing so uses the low-congestion shortcut framework of Ghaffari Network optimization problems in the CONGEST model, such as and Haeupler [SODA’16]. Building off of their work, this paper Minimum Spanning Tree, Min-Cut or Shortest Path are an active proves that excluded minor graphs admit high-quality shortcuts, research area in theoretical distributed computing [8, 11, 22, 27].