Structure and Algorithms for (Cap, Even Hole)-Free Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterizations of Graphs Without Certain Small Minors by J. Zachary
Characterizations of Graphs Without Certain Small Minors By J. Zachary Gaslowitz Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mathematics May 11, 2018 Nashville, Tennessee Approved: Mark Ellingham, Ph.D. Paul Edelman, Ph.D. Bruce Hughes, Ph.D. Mike Mihalik, Ph.D. Jerry Spinrad, Ph.D. Dong Ye, Ph.D. TABLE OF CONTENTS Page 1 Introduction . 2 2 Previous Work . 5 2.1 Planar Graphs . 5 2.2 Robertson and Seymour's Graph Minor Project . 7 2.2.1 Well-Quasi-Orderings . 7 2.2.2 Tree Decomposition and Treewidth . 8 2.2.3 Grids and Other Graphs with Large Treewidth . 10 2.2.4 The Structure Theorem and Graph Minor Theorem . 11 2.3 Graphs Without K2;t as a Minor . 15 2.3.1 Outerplanar and K2;3-Minor-Free Graphs . 15 2.3.2 Edge-Density for K2;t-Minor-Free Graphs . 16 2.3.3 On the Structure of K2;t-Minor-Free Graphs . 17 3 Algorithmic Aspects of Graph Minor Theory . 21 3.1 Theoretical Results . 21 3.2 Practical Graph Minor Containment . 22 4 Characterization and Enumeration of 4-Connected K2;5-Minor-Free Graphs 25 4.1 Preliminary Definitions . 25 4.2 Characterization . 30 4.3 Enumeration . 38 5 Characterization of Planar 4-Connected DW6-minor-free Graphs . 51 6 Future Directions . 91 BIBLIOGRAPHY . 93 1 Chapter 1 Introduction All graphs in this paper are finite and simple. Given a graph G, the vertex set of G is denoted V (G) and the edge set is denoted E(G). -
Topics in Low Dimensional Computational Topology
THÈSE DE DOCTORAT présentée et soutenue publiquement le 7 juillet 2014 en vue de l’obtention du grade de Docteur de l’École normale supérieure Spécialité : Informatique par ARNAUD DE MESMAY Topics in Low-Dimensional Computational Topology Membres du jury : M. Frédéric CHAZAL (INRIA Saclay – Île de France ) rapporteur M. Éric COLIN DE VERDIÈRE (ENS Paris et CNRS) directeur de thèse M. Jeff ERICKSON (University of Illinois at Urbana-Champaign) rapporteur M. Cyril GAVOILLE (Université de Bordeaux) examinateur M. Pierre PANSU (Université Paris-Sud) examinateur M. Jorge RAMÍREZ-ALFONSÍN (Université Montpellier 2) examinateur Mme Monique TEILLAUD (INRIA Sophia-Antipolis – Méditerranée) examinatrice Autre rapporteur : M. Eric SEDGWICK (DePaul University) Unité mixte de recherche 8548 : Département d’Informatique de l’École normale supérieure École doctorale 386 : Sciences mathématiques de Paris Centre Numéro identifiant de la thèse : 70791 À Monsieur Lagarde, qui m’a donné l’envie d’apprendre. Résumé La topologie, c’est-à-dire l’étude qualitative des formes et des espaces, constitue un domaine classique des mathématiques depuis plus d’un siècle, mais il n’est apparu que récemment que pour de nombreuses applications, il est important de pouvoir calculer in- formatiquement les propriétés topologiques d’un objet. Ce point de vue est la base de la topologie algorithmique, un domaine très actif à l’interface des mathématiques et de l’in- formatique auquel ce travail se rattache. Les trois contributions de cette thèse concernent le développement et l’étude d’algorithmes topologiques pour calculer des décompositions et des déformations d’objets de basse dimension, comme des graphes, des surfaces ou des 3-variétés. -
Rooted Graph Minors and Reducibility of Graph Polynomials Arxiv
Rooted Graph Minors and Reducibility of Graph Polynomials by Benjamin Richard Moore B.A., Thompson Rivers University, 2015 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science in the Department of Mathematics and Statistics Faculty of Science c Benjamin Richard Moore 2017 SIMON FRASER UNIVERSITY Spring 2017 arXiv:1704.04701v1 [math.CO] 15 Apr 2017 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Benjamin Richard Moore Degree: Masters of Science (Mathematics) Title: Rooted Graph Minors and Reducibility of Graph Poly- nomials Examining Committee: Dr. Ladislav Stacho (chair) Associate Professor Dr. Karen Yeats Senior Supervisor Associate Professor Dr. Luis Goddyn Supervisor Professor Dr. Bojan Mohar Internal Examiner Professor Date Defended: April 6, 2017 ii Abstract In 2009, Brown gave a set of conditions which when satisfied imply that a Feynman integral evaluates to a multiple zeta value. One of these conditions is called reducibility, which loosely says there is an order of integration for the Feynman integral for which Brown’s techniques will succeed. Reducibility can be abstracted away from the Feynman integral to just being a condition on two polynomials, the first and second Symanzik polynomials. The first Symanzik polynomial is defined from the spanning trees of a graph, and the second Symanzik polynomial is defined from both spanning forests of a graph and some edge and vertex weights, called external momenta and masses. -
Minor Excluded Network Families Admit Fast Distributed Algorithms∗
Minor Excluded Network Families Admit Fast Distributed Algorithms∗ Bernhard Haeupler,y Jason Li,y Goran Zuzicy January 22, 2018 Abstract Distributed network optimization algorithms, such as minimum spanning tree, minimum cut, and shortest path, are an active research area in distributed computing. This paper presents a fast distributed algorithm for such problems in the CONGEST model, on networks that exclude a fixed minor. pOn general graphs, many optimization problems, including the ones mentioned above, require Ω(~ n) rounds of communication in the CONGEST model, even if the network graph has a much smaller diameter. Naturally, the next step in algorithm design is to design efficient algorithms which bypass this lower bound on a restricted class of graphs. Currently, the only known method of doing so uses the low-congestion shortcut framework of Ghaffari and Haeupler [SODA'16]. Building off of their work, this paper proves that excluded minor graphs admit high-quality shortcuts, leading to an O~(D2) round algorithm for the aforementioned problems, where D is the diameter of the network graph. To work with excluded minor graph families, we utilize the Graph Structure Theorem of Robertson and Seymour. To the best of our knowledge, this is the first time the Graph Structure Theorem has been used for an algorithmic result in the distributed setting. Even though the proof is involved, merely showing the existence of good shortcuts is sufficient to obtain simple, efficient distributed algorithms. In particular, the shortcut framework can effi- ciently construct near-optimal shortcuts and then use them to solve the optimization problems. This, combined with the very general family of excluded minor graphs, which includes most other important graph classes, makes this result of significant interest. -
Classes of Perfect Graphs
This paper appeared in: Discrete Mathematics 306 (2006), 2529-2571 Classes of Perfect Graphs Stefan Hougardy Humboldt-Universit¨atzu Berlin Institut f¨urInformatik 10099 Berlin, Germany [email protected] February 28, 2003 revised October 2003, February 2005, and July 2007 Abstract. The Strong Perfect Graph Conjecture, suggested by Claude Berge in 1960, had a major impact on the development of graph theory over the last forty years. It has led to the definitions and study of many new classes of graphs for which the Strong Perfect Graph Conjecture has been verified. Powerful concepts and methods have been developed to prove the Strong Perfect Graph Conjecture for these special cases. In this paper we survey 120 of these classes, list their fundamental algorithmic properties and present all known relations between them. 1 Introduction A graph is called perfect if the chromatic number and the clique number have the same value for each of its induced subgraphs. The notion of perfect graphs was introduced by Berge [6] in 1960. He also conjectured that a graph is perfect if and only if it contains, as an induced subgraph, neither an odd cycle of length at least five nor its complement. This conjecture became known as the Strong Perfect Graph Conjecture and attempts to prove it contributed much to the developement of graph theory in the past forty years. The methods developed and the results proved have their uses also outside the area of perfect graphs. The theory of antiblocking polyhedra developed by Fulkerson [37], and the theory of modular decomposition (which has its origins in a paper of Gallai [39]) are two such examples. -
Mathematisches Forschungsinstitut Oberwolfach Graph Theory
Mathematisches Forschungsinstitut Oberwolfach Report No. 2/2016 DOI: 10.4171/OWR/2016/2 Graph Theory Organised by Reinhard Diestel, Hamburg Daniel Kr´al’, Warwick Paul Seymour, Princeton 10 January – 16 January 2016 Abstract. This workshop focused on recent developments in graph theory. These included in particular recent breakthroughs on nowhere-zero flows in graphs, width parameters, applications of graph sparsity in algorithms, and matroid structure results. Mathematics Subject Classification (2010): 05C. Introduction by the Organisers The aim of the workshop was to offer a forum to communicate recent develop- ments in graph theory and discuss directions for further research in the area. The atmosphere of the workshop was extremely lively and collaborative. On the first day of the workshop, each participant introduced her/himself and briefly presented her/his research interests, which helped to establish a working atmosphere right from the very beginning of the workshop. The workshop program consisted of 9 long more general talks and 21 short more focused talks. The talks were comple- mented by six evening workshops to discuss particular topics at a larger depth; these were held in ad hoc formed groups in the evenings. The workshop focused on four interlinked topics in graph theory, which have recently seen new exciting developments. These topics were nowhere-zero flows and the dual notion of graph colorings, • sparsity of graphs and its algorithmic applications, • width parameters and graph decompositions, and • results following the proof of Rota’s conjecture in matroid theory. • 52 Oberwolfach Report 2/2016 The four main themes of the workshop were reflected in the selection of the work- shop participants and in the choice of the talks for the program. -
Perfect Graphs and Vertex Coloring Problem
IAENG International Journal of Applied Mathematics, 39:2, IJAM_39_2_06 ______________________________________________________________________________________ Perfect Graphs and Vertex Coloring Problem Hac`eneAit Haddadene (1) , Hayat Issaadi (2) ¤ Abstract|The graph is perfect, if in all its induced remarked that the smallest graph with ®(G) < θ(G) is subgraphs the size of the largest clique is equal to C5 the cycle of length ¯ve. A hole is a chordless cy- the chromatic number.In 1960 Berge formulated two cle of length at least four and an anti hole is the com- conjectures about perfct graphs one stronger than plementary graph of a hole. We say that G is a Berge the other, the weak perfect conjecture was proved graph if G contains neither odd hole nor odd anti hole. in 1972 by Lovasz and the strong perfect onjecture A graph is called γ ¡ perfect(respectively ® ¡ perfet) was proved in 2003 by Chudnovsky and al.The prob- if γ(H) = !(H)(respectively ®(G) = θ(G)) for every in- lem to determine an optimal coloring of a graph is duced subgraph H of G.It was Shannon's work which NP-complete in general case.GrÄotschell and al devel- motivated Claude Berge in 1960 [7] to propose two con- oped polynomial algorithm to solve this problem for jectures: the ¯rst known as being the weak perfect graph the whole of the perfect graphs. Indeed their algo- conjecture (WCPG). rithms are not practically e±cient. Thus, the search of very e±cient polynomial algorithms to solve these 1.1 Conjecture[7] problem in the case of the perfect graphs continues A graph G is γ ¡ perfect if and only if G is ® ¡ perfet. -
An Exact Cutting Plane Algorithm to Solve the Selective Graph Coloring
An Exact Cutting Plane Algorithm to Solve the Selective Graph Coloring Problem in Perfect Graphs ⋆ Oylum S¸ekera,∗, Tınaz Ekimb, Z. Caner Ta¸skınb aDepartment of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada bDepartment of Industrial Engineering, Bo˘gazi¸ci University, 34342, Bebek, Istanbul, Turkey Abstract We consider the selective graph coloring problem, which is a generalization of the classical graph coloring problem. Given a graph together with a partition of its vertex set into clusters, we want to choose exactly one vertex per cluster so that the number of colors needed to color the selected set of vertices is minimized. This problem is known to be NP-hard. In this study, we focus on an exact cutting plane algorithm for selective graph coloring in perfect graphs. Since there exists no suite of perfect graph instances to the best of our knowledge, we also propose an algorithm to randomly (but not uniformly) generate perfect graphs, and provide a large collection of instances available online. We conduct computational experiments to test our method on graphs with varying size and densities, and compare our results with a state-of-the-art algorithm from the literature and with solving an integer programming formulation of the problem by CPLEX. Our experiments demonstrate that our solution strategy significantly improves the solvability of the problem. Keywords: Graph theory; selective graph coloring; partition coloring; cutting plane algorithm; perfect graph generation arXiv:1811.12094v3 [cs.DS] 22 Dec 2020 ⋆This study is supported by Bo˘gazi¸ci University Research Fund (grant 11765); and T. -
Approximation Algorithms for Routing and Related Problems on Directed Minor-Free Graphs
Approximation algorithms for routing and related problems on directed minor-free graphs Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ario Salmasi, Graduate Program in Department of Computer Science and Engineering The Ohio State University 2019 Dissertation Committee: Yusu Wang, Co-Advisor Anastasios Sidiropoulos, Co-Advisor Srinivasan Parthasarathy Rephael Wenger c Copyright by Ario Salmasi 2019 Abstract This thesis addresses two of the fundamental routing problems in directed minor-free graphs. Broadly speaking, minor-free graphs are a generalization of planar graphs, and their structural and topological properties can be used in order to achieve efficient algorithms. A graph H is called a minor of a given graph G, if it can be obtained from G by deleting vertices and edges, and contracting edges. For any graph H, the family of H-minor-free graphs is the set of all graphs excluding H as a minor. The graph structure theorem by Robertson and Seymour determines the rough structure of any family of minor-free graphs. By using the graph structure theorem, we are able to exploit the structural and topological features of a minor-free graph, in order to obtain better approximation algorithms for several problems. As mentioned, we study two of the fundamental routing problems in different families of minor-free graphs. We first study the Asymmetric Traveling Salesman Problem (ATSP). In this problem, the goal is to find a closed walk of minimum cost in a directed graph visiting every vertex. We consider this problem on nearly-embeddable graphs, and show that it admits a constant factor approximation. -
A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface∗
A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface∗ Vincent Cohen-Addady Arnaud de Mesmayz Abstract Given a graph G cellularly embedded on a surface Σ of genus g, a cut graph is a subgraph of G such that cutting Σ along G yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any " > 0, we show how to compute a (1 + ") approximation of the shortest cut graph in time f("; g)n3. Our techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree- width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Ru´e,Sau and Thilikos, which may be of independent interest. 1 Introduction Embedded graphs are commonly used to model a wide array of discrete structures, and in many cases it is necessary to consider embeddings into surfaces instead of the plane or the sphere. For example, many instances of network design actually feature some crossings, coming from tunnels or overpasses, which are appropriately modeled by a surface of small genus. In other settings, such as in computer graphics or computer-aided design, we are looking for a discrete model for objects which inherently display a non-trivial topology (e.g., holes), and graphs embedded on surfaces are the natural tool for that. From a more theoretical point of view, the graph structure theorem of Robertson and Seymour showcases a very strong connection between graphs embedded on surfaces and minor-closed families of graphs. -
Perfect Graphs Chinh T
University of Dayton eCommons Computer Science Faculty Publications Department of Computer Science 2015 Perfect Graphs Chinh T. Hoang Wilfrid Laurier University R. Sritharan University of Dayton Follow this and additional works at: http://ecommons.udayton.edu/cps_fac_pub Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer Sciences Commons eCommons Citation Hoang, Chinh T. and Sritharan, R., "Perfect Graphs" (2015). Computer Science Faculty Publications. 87. http://ecommons.udayton.edu/cps_fac_pub/87 This Book Chapter is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. CHAPTE R 28 Perfect Graphs Chinh T. Hoang* R. Sritharan t CO NTENTS 28.1 Introd uction ... .. ..... ............. ............................... .. ........ .. 708 28.2 Notation ............................. .. ..................... .................... 710 28.3 Chordal Graphs ....................... ................. ....... ............. 710 28.3.1 Characterization ............ ........................... .... .. ... 710 28.3.2 Recognition .................... ..................... ... .. ........ .. ... 712 28.3.3 Optimization ................................................ .. ......... 715 28.4 Comparability Graphs ............................................... ..... .. 715 28.4.1 Characterization -
On the Dual König Property of the Order-Interval Hy- Pergraph of a New
Rostock. Math. Kolloq. 59, 19–27 (2005) Subject Classification (AMS) Isma Bouchemakh1 On the dual K¨onig property of the order-interval hy- pergraph of a new class of poset ABSTRACT. Let P be a finite poset. We consider the hypergraph H(P ) whose vertices are the elements of P and whose edges are the maximal intervals of P . It is known that H(P ) has the K¨onig and dual K¨onig properties for the class of series-parallel posets. Here we introduce a new class which contains series-parallel posets and for which the dual K¨onig property is satisfied. For the class of N-free posets, again a generalization of series-parallel posets, we give a counterexample to see that the K¨onig property is not satisfied. 1 Introduction Let P be a finite poset. A subset I of P of the form I = {v ∈ P : p ≤ v ≤ q} (denoted [p, q]) is called an interval. It is maximal if p (resp. q) is a minimal (resp. maximal) element of P . Denote by I(P ) the family of maximal intervals of P . The hypergraph H(P ) = (P, I(P )), briefly denoted H = (P, I), whose vertices are the elements of P and whose edges are the maximal intervals of P is said to be the order-interval hypergraph of P . The line-graph L(H) of H is a graph whose vertices are points e1, . , em representing the edges I1,...,Im of H, ∗ the vertices ei, ej being adjacent iff Ii ∩Ij 6= ∅. The dual H of the order-interval hypergraph H is a hypergraph whose vertices e1, .