Nepal`S Energy Sector Vision 2050 A.D

Total Page:16

File Type:pdf, Size:1020Kb

Nepal`S Energy Sector Vision 2050 A.D GOVERNMENT OF NEPAL WATER AND ENERGY COMMISSION SECRETARIAT SINGHA DURBAR, KATHMANDU NEPAL CONSULTING SERVICES FOR PREPARATION OF LONG TERM VISION OF NEPAL’S WATER RESOURCES AND ENERGY SECTORS NEPAL`S ENERGY SECTOR VISION 2050 A.D. NOVEMBER 2013 CONSOLIDATED MANAGEMENT SERVICES NEPAL (P.)LTD. 126 GREEN HOUSE, BHADRABINAYAK MARG, THAPAGAON, NAYA BANESHWOR GPO BOX 10872, KATHMANDU-10, NEPAL Preparation of Long Term Vision of Nepal Final Report on Energy Sector Vision 2050 A.D. TABLE OF CONTENTS ABBREVIATIONS .......................................................................................................................................................... EXECUTIVE SUMMARY .............................................................................................................................................. x CHAPTER 1 .................................................................................................................................................................. 1 INTRODUCTION........................................................................................................................................................... 1 1.1 Rationale for Long Term Vision for Water Resources & Energy Sectors .................................................. 1 1.2 Long Term Vision Formulation Approach .............................................................................................. 2 1.3 Long Term Vision Formulation and Attainment Process ......................................................................... 2 1.5 Basis of the Vision 2050 ..................................................................................................................... 2 1.4 Structure of the Vision Document ........................................................................................................ 3 CHAPTER 2 .................................................................................................................................................................. 5 GLOBAL SCENARIO ................................................................................................................................................... 5 2.1 Current Global Scenario ..................................................................................................................... 5 2.1.1 Traditional (Biomass) Energy ................................................................................................... 5 2.1.2 Commercial Energy ................................................................................................................ 5 2.1.3 Renewable Energy ................................................................................................................. 6 2.2 Current Regional Scenario .................................................................................................................. 8 2.2.1 Traditional (Biomass) Energy Sector in South Asia .................................................................... 8 2.2.2 Commercial Energy Sector in South Asia .................................................................................. 9 2.2.3 Renewable Energy Sector in South Asia ................................................................................. 10 2.3 Current Major Trend in Development and Management ....................................................................... 13 2.3.1 Traditional (Biomass) Energy ................................................................................................. 13 2.3.2 Commercial Energy .............................................................................................................. 14 2.3.3 Renewable Energy ............................................................................................................... 14 CHAPTER 3 ................................................................................................................................................................ 16 HISTORIC PERSPECTIVE OF DEVELOPMENT IN NEPAL: PAST TREND AND FUTURE PROSPECTS............. 16 3.1 Historic Perspective.......................................................................................................................... 16 3.1.1 Planned development during First Plan (2056-2060): Initiation of Planned Development ............. 16 3.1.2 Planned Development during Panchayat Regime (1962-1990): Period of Controlled Planning ..... 16 3.1.3 Plan Holiday Period (1990-1992): Transition from Controlled to Liberalized Planning .................. 16 3.1.4 Planned Development during Constitutiional Monarchy Regime (1992-07): Liberalized Planning .. 17 3.1.5 Planned Development during Republican Regime (2007/08-2012/13): Inclusive Planning ........... 17 3.2 Past Trend in Economic Growth of Nepal ........................................................................................... 20 3.3 Future Macro-Economic Prospects of Nepal ....................................................................................... 20 3.4 Historical Development of Hydropower ............................................................................................... 21 3.5 Historical Development of Rural Electrification .................................................................................... 22 CHAPTER 4 ................................................................................................................................................................ 26 CURRENT SCENARIO OF ENERGY RESOURCES IN NEPAL ............................................................................... 26 4.1 Traditional (Biomass) Energy Resources ............................................................................................ 26 ii | Page Preparation of Long Term Vision of Nepal Final Report on Energy Sector Vision 2050 A.D. CHAPTER 5 ................................................................................................................................................................ 37 CURRENT STATUS OF ENERGY RESOURCES CONSUMPTION IN NEPAL ........................................................ 37 5.1 Current Status of Energy Consumption .............................................................................................. 37 5.1.1 Traditional Energy Consumption by Sector .............................................................................. 38 5.1.2 Commercial Energy Consumption by Sector ........................................................................... 39 5.2 Current Status of Energy Supply........................................................................................................ 41 5.2.1 Traditional (Biomass) Energy Supply ...................................................................................... 41 5.2.2 Commercial Energy Supply ................................................................................................... 41 5.2.3 Renewable Energy Supply .................................................................................................... 41 CHAPTER 6 ................................................................................................................................................................ 43 POLICY AND LEGISLATIVE FRAMEWORK IN ENERGY SECTOR ........................................................................ 43 6.1 Evolution of Legislative Framework in Energy Sector ........................................................................... 43 6.1.1 Legislative Frameworks ......................................................................................................... 43 6.2 Major International Laws and Conventions on Energy Resources that have implications on Nepal ........... 43 6.3 Current Status of Policy and Legislative Framework related to Energy Sector in Nepal ........................... 44 CHAPTER 7 ................................................................................................................................................................ 46 INSTITUTIONAL FRAMEWORK IN ENERGY SECTOR ........................................................................................... 46 7.1 Institutional Framework in Energy Sub-Sectors ................................................................................... 46 7.1.1 Institutional Framework in Traditional (Biomass) Energy Sub-Sector ......................................... 46 7.1.2 Institutional Framework in Commercial Energy Sub-Sector ..................................................... 467 7.1.3 Institutional Framework in Renewable Energy Sub-Sector ...................................................... 468 CHAPTER 8 ................................................................................................................................................................ 51 MAJOR GAPS BETWEEN POTENTIALS OR DEMANDS AND SUPPLY ................................................................ 51 8.1 Major Gaps in Energy Demand and Supply ........................................................................................ 51 8.1.1 Traditional energy ................................................................................................................. 51 8.1.2 Commercial energy ............................................................................................................... 53 8.1.3 Renewable Energy ............................................................................................................... 54 CHAPTER 9 ...............................................................................................................................................................
Recommended publications
  • Damage Mapping of April 2015 Nepal Earthquake Using Small
    J-Rapid Final Workshop 21 June, 2016, Kathmandu Inventory mapping of landslides induced by the Gorkha earthquake 2015 and a proposal for hazard mapping of future landslides for making a plan of better reconstruction "Impact on infrastructure by Gorkha earthquake 2015 induced landslides" Masahiro CHIGIRA Masahiro CHIGIRA Professor, Disaster Prevention Research Institute, Professor, Disaster Prevention Research Institute, Kyoto University Kyoto University Vishnu DANGOL Vishnu DANGOL Professor, Department of Geology, Professor, Department of Geology, Tribhuvan University Tribhuvan University Objective 1. to make an inventory mapping on landslides, cracks, and landslide dams induced by the Nepal earthquake and to investigate their formative mechanisms 2. to detect displaced areas of slope surfaces, of which future susceptibility to landslides would be evaluated on the basis of geology, geomorphology, and groundwater conditions. 3. propose a methodology of hazard mapping for earthquake-induced landslides in Nepal. Members (Japan side) 1. Masahiro CHIGIRA (Kyoto Univ.) PI Applied Geology 2. Daisuke HIGAKI (Hirosaki Univ.) Landslide control 3. Hiroshi YAGI (Yamagata Univ.) Landslide susceptibility mapping 4. Akihiko WAKAI (Gunma Univ.) Geotechnical analysis of landslide 5. Hiroshi, P. SATO (Nihon Univ.) Remote sensing 6. Go, SATO (Teikyo Heisei Univ.) Geomorphology 7. Ching-Ying, TSOU (Hirosaki Univ.) GIS analysis 8. Akiyo YATAGAI (Res. Inst. Humanity and Nature) Meteorology Members (Nepali side) 1. Vishnu DANGOL (Tribhuvan Univ.) PI Applied Geology 2. Smajwal BAJRACHARYA (ICIMOD) Remote sensing 3. Shanmukhesh Chandra AMATYA (DWIDP) Hydrogeology 4. Tuk Lal ADHIKARI (ITECO-Nepal) Geotechnical Field survey • Trishuli River catchment from Trishuli to Syabrubesi (29 October to 1 November, 2015) • Sun Kosi and Bhote Kosi River catchments from Bansaghu to Kodari.
    [Show full text]
  • All Change at Rasuwa Garhi Sam Cowan [email protected]
    Himalaya, the Journal of the Association for Nepal and Himalayan Studies Volume 33 | Number 1 Article 14 Fall 2013 All Change at Rasuwa Garhi Sam Cowan [email protected] Follow this and additional works at: http://digitalcommons.macalester.edu/himalaya Recommended Citation Cowan, Sam (2013) "All Change at Rasuwa Garhi," Himalaya, the Journal of the Association for Nepal and Himalayan Studies: Vol. 33: No. 1, Article 14. Available at: http://digitalcommons.macalester.edu/himalaya/vol33/iss1/14 This Research Report is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in Himalaya, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Research Report | All Change at Rasuwa Garhi Sam Cowan From time immemorial, pilgrims, traders, artisans, and Kyirong to aid the transshipment of goods and to carry religious teachers going to Lhasa from Kathmandu had to out major trading on their own account. Jest records that decide between two main routes. One roughly followed as late as 1959 there were forty five Newar households in the line of the present road to Kodari, crossed the border Kyirong and forty in Kuti (Jest 1993). where Friendship Bridge is built and followed a steep trail The two routes were used for the invasion of Tibet in 1788 to Kuti (Tib. Nyalam). Loads were carried by porters up to and 1791 by the forces of the recently formed Gorkha this point but pack animals were used for the rest of the state under the direction of Bahadur Shah, which led to journey.
    [Show full text]
  • Nepal Human Rights Year Book 2021 (ENGLISH EDITION) (This Report Covers the Period - January to December 2020)
    Nepal Human Rights Year Book 2021 (ENGLISH EDITION) (This Report Covers the Period - January to December 2020) Editor-In-Chief Shree Ram Bajagain Editor Aarya Adhikari Editorial Team Govinda Prasad Tripathee Ramesh Prasad Timalsina Data Analyst Anuj KC Cover/Graphic Designer Gita Mali For Human Rights and Social Justice Informal Sector Service Centre (INSEC) Nagarjun Municipality-10, Syuchatar, Kathmandu POBox : 2726, Kathmandu, Nepal Tel: +977-1-5218770 Fax:+977-1-5218251 E-mail: [email protected] Website: www.insec.org.np; www.inseconline.org All materials published in this book may be used with due acknowledgement. First Edition 1000 Copies February 19, 2021 © Informal Sector Service Centre (INSEC) ISBN: 978-9937-9239-5-8 Printed at Dream Graphic Press Kathmandu Contents Acknowledgement Acronyms and Abbreviations Foreword CHAPTERS Chapter 1 Situation of Human Rights in 2020: Overall Assessment Accountability Towards Commitment 1 Review of the Social and Political Issues Raised in the Last 29 Years of Nepal Human Rights Year Book 25 Chapter 2 State and Human Rights Chapter 2.1 Judiciary 37 Chapter 2.2 Executive 47 Chapter 2.3 Legislature 57 Chapter 3 Study Report 3.1 Status of Implementation of the Labor Act at Tea Gardens of Province 1 69 3.2 Witchcraft, an Evil Practice: Continuation of Violence against Women 73 3.3 Natural Disasters in Sindhupalchok and Their Effects on Economic and Social Rights 78 3.4 Problems and Challenges of Sugarcane Farmers 82 3.5 Child Marriage and Violations of Child Rights in Karnali Province 88 36 Socio-economic
    [Show full text]
  • Indonesia National Sustainable Energy Strategy Report on Enabling Environment and Technology Innovation Ecosystem for Affordable Sustainable Energy Options
    ‘Small Wind and Hybrid Systems: Opportunities and Challenges’ 11–12 October 2011 Indonesia National Sustainable Energy Strategy Report on Enabling Environment and Technology Innovation Ecosystem for Affordable Sustainable Energy Options Prepared for Asian and Pacific Centre for Transfer of Technology (APCTT) of the Economic and Social Commission for Asia and the Pacific (UNESCAP) Prepared by Mr. G.M. Pillai, Project International Consultant June 2014 1 | WISE 11–12 October 2011 <Copyright page> i 11–12 October 2011 Table of Contents List of Figures iii List of Tables iii Case Studies iii Abbreviations iv Acknowledgement vi Executive Summary vii Chapter 1 Background and Methodology 1 1.1 Background of the Study 1 1.2 Scope of Work for Designing the National Strategy Report 1 1.3 Methodology 2 Chapter 2 Introduction 5 Chapter 3 National Enabling Environment for Sustainable Energy 10 3.1 Institutional Framework for Sustainable Energy 10 3.2 Power Industry and Market Structure 11 3.3 Policies/Laws/Regulations for Sustainable Energy 12 3.4 Programme on Sustainable Energy 16 3.5 Incentives for Renewable Energy 17 3.6 Provision of Finance 20 3.7 Permits and Clearances 22 3.8 Negative Investment List 23 3.9 Opportunities and Challenges in Enabling Environment 23 Chapter 4 Analysis of Existing Sustainable Energy Business Mechanisms 26 4.1 Cinta Mekar Micro Hydro Project 26 4.2 Indonesia Domestic Biogas Programme 27 Chapter 5 Technology Innovation Ecosystem for Sustainable Energy Options 30 5.1 Research and Development 31 5.2 Academia 32 5.3 Manufacturing
    [Show full text]
  • Study on Kodari Scheme of Rikaze-Kathmandu Railway
    2017 2nd International Conference on Sustainable Energy and Environment Protection (ICSEEP 2017) ISBN: 978-1-60595-464-6 Study on Kodari Scheme of Rikaze-Kathmandu Railway Location Yaoping ZHANG1,a 1Institute of Vacuum Tube Transport, Xijing University, Xi’an 710123, China a [email protected] Keywords: Rikaze, Kathmandu, Railway location, Rack rail, Linear motor, Himalaya tunnel Abstract: Building Rikaze-Kathmandu Railway will change the broken road situation of Lasa-Rikaze Railway, activate the potential of Qingzang Railway, have Tibet as well as Lasa and Rikaze become the node of south Asia channel of “One Belt and One Road”, strengthen commercial trade and bilateral relations between China and Nepal. It is the shortest route for Rikaze-Kathmandu railway to go through Zhangmu port. By primary analysis, the feasible route should extend from the current Rikaze railway station, going through Qumei county, entering into the current G318 highway belt, then going through Jiding, Liuxiang and Resa, arriving Lazi. The route extends from Lazi, then goes through Jiacuola mountain by tunnel with 45km length, going through Jiacuo county and arriving Dingri. After Dingri, the route extends to west along with Pengqu river valley, going through Zhaguo, then arriving Gangga. Extending to southwest from Gangga, the route goes under Labujikang peak by a 42km tunnel, then arriving Yalai, then Nielamu and Zhangmu. The nature gradient between Nielamu and Zhangmu is 110‰, line mileage 20km, thus the rack rail technology or the linear motor driving should be considered for train to climb the steep slope more than 110‰. Another possible scheme is to build an 88km tunnel with a 28‰ gradient between Gangga and Zhangmu for going under Himalaya, so as to avoid the 110‰ steep slope between Nielamu-Zhangmu.
    [Show full text]
  • Cross Border Electricity Trade in Bangladesh–Bhutan–India–Nepal (BBIN) Region: a Cost-Based Market Perspective
    Cross Border Electricity Trade in Bangladesh–Bhutan–India–Nepal (BBIN) Region: A Cost-Based Market Perspective Jagruti Thakur1, Mohammad Reza Hesamzadeh1, Frank Wolak2 1KTH Royal Institute of Technology, 2Stanford University Current Draft: April 14, 2021 Abstract The rapid growth of electricity demand in developing nations, the availability of complementary generation resources and the emergence of digital technologies have created increased opportunities for international electricity trade. This paper proposes a framework for cross-border electricity trade in the Bangladesh-Bhutan-India-Nepal (BBIN) region that recognizes the governance challenges associated with establishing an international electricity market. We explore the lessons for BBIN region from different types of Cross Border Electricity Trade (CBET) models. Specifically, existing markets in North-West Europe (NWE), Latin America, and the United States (US) provide insights into the development of our proposed cost-based CBET framework. We provide recommendations based on our proposed CBET framework to improve efficiency and increase the extent of electricity trade in the BBIN region. Keywords: Cross Border Electricity Trade, BBIN, Cost-based market, Developing countries 1. Introduction In this paper, we propose a market-based framework for increasing the volume and efficiency of international electricity trade in the Bangladesh-Bhutan-India-Nepal (BBIN) region. A number of factors support this goal. In south Asia, 100 million people do not have access to electricity [1]. In addition, electricity demand in the region is expected to grow at an average rate of 6% per year [2]. Finally, the hydropower potential of Nepal, Bhutan, and India is 150 gigawatts (GW), out of which only 17% is currently utilized [3].
    [Show full text]
  • 49215-001: Earthquake Emergency Assistance Project
    Environmental Assessment Document Initial Environmental Examination Loan: 3260 July 2017 Earthquake Emergency Assistance Project: Panchkhal-Melamchi Road Project Main report-I Prepared by the Government of Nepal The Environmental Assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. Government of Nepal Ministry of Physical Infrastructure and Transport Department of Roads Project Directorate (ADB) Earthquake Emergency Assistance Project (EEAP) (ADB LOAN No. 3260-NEP) INITIAL ENVIRONMENTAL EXAMINATION OF PANCHKHAL - MELAMCHI ROAD JUNE 2017 Prepared by MMM Group Limited Canada in association with ITECO Nepal (P) Ltd, Total Management Services Nepal and Material Test Pvt Ltd. for Department of Roads, Ministry of Physical Infrastructure and Transport for the Asian Development Bank. Earthquake Emergency Assistance Project (EEAP) ABBREVIATIONS AADT Average Annual Daily Traffic AC Asphalt Concrete ADB Asian Development Bank ADT Average Daily Traffic AP Affected People BOD Biological Oxygen Demand CBOs Community Based Organization CBS Central Bureau of Statistics CFUG Community Forest User Group CITIES Convention on International Trade in Endangered Species CO Carbon Monoxide COI Corridor of Impact DBST Double Bituminous Surface Treatment DDC District Development Committee DFID Department for International Development, UK DG Diesel Generating DHM Department of Hydrology and Metrology DNPWC Department of National
    [Show full text]
  • The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey
    ORIGINAL RESEARCH published: 22 June 2015 doi: 10.3389/fbuil.2015.00008 The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey Katsuichiro Goda1*, Takashi Kiyota2, Rama Mohan Pokhrel2, Gabriele Chiaro2, Toshihiko Katagiri 2, Keshab Sharma3 and Sean Wilkinson4 1 Department of Civil Engineering, University of Bristol, Bristol, UK, 2 Institute of Industrial Science, University of Tokyo, Tokyo, Japan, 3 Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, 4 School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK The 2015 Gorkha Nepal earthquake caused tremendous damage and loss. To gain valuable lessons from this tragic event, an earthquake damage investigation team was dispatched to Nepal from 1 May 2015 to 7 May 2015. A unique aspect of the earthquake damage investigation is that first-hand earthquake damage data were obtained 6–11 days after the mainshock. To gain deeper understanding of the observed earthquake damage Edited by: in Nepal, the paper reviews the seismotectonic setting and regional seismicity in Nepal Solomon Tesfamariam, The University of British Columbia, and analyzes available aftershock data and ground motion data. The earthquake damage Canada observations indicate that the majority of the damaged buildings were stone/brick masonry Reviewed by: structures with no seismic detailing, whereas the most of RC buildings were undamaged. Vladimir Sokolov, Karlsruhe Institute of Technology, This indicates that adequate structural design is the key to reduce the earthquake risk in Germany Nepal. To share the gathered damage data widely, the collected damage data (geo-tagged Takeshi Koike, photos and observation comments) are organized using Google Earth and the kmz file Kyoto University, Japan is made publicly available.
    [Show full text]
  • Energy Outlook for Asia and the Pacific 2013
    Energy Outlook for Asia and the Pacific October 2013 Energy Outlook for Asia and the Pacific October 2013 © 2013 Asian Development Bank All rights reserved. Published in 2013. Printed in the Philippines. ISBN 978-92-9254-272-6 (Print), 978-92-9254-273-3 (PDF) Publication Stock No. BKK135488-3 Cataloging-In-Publication Data Asian Development Bank. Energy Outlook for Asia and the Pacific. Mandaluyong City, Philippines: Asian Development Bank, 2013. 1. Energy. 2. Asia and the Pacific. I. Asian Development Bank. The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. ADB encourages printing or copying information exclusively for personal and noncommercial use with proper acknowledgment of ADB. Users are restricted from reselling, redistributing, or creating derivative works for commercial purposes without the express, written consent of ADB. Note: In this publication, “$” refers to US dollars. In this report, the term “Taipei City” refers to the urban area centered on the City of Taipei or Taipei,China. Unless otherwise stated, boxes, figures and tables without explicit sources were prepared by the Asia Pacific Energy Research Centre.
    [Show full text]
  • Electricity As a Cooking Means in Nepal—A Modelling Tool Approach
    sustainability Article Electricity as a Cooking Means in Nepal—A Modelling Tool Approach Ramchandra Bhandari * ID and Surendra Pandit Institute for Technology and Resources Management in the Tropics and Subtropics, TH Köln (University of Applied Sciences), Betzdorfer Strasse 2, 50679 Cologne, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-221-8275-2416 Received: 4 May 2018; Accepted: 4 August 2018; Published: 10 August 2018 Abstract: Cooking energy has an important role in energy demand of Nepal. Over the last decade, import of Liquefied Petroleum Gas (LPG) has increased by 3.3 times as an alternate cooking fuel to kerosene and firewood. The growing subsidy burden to endorse modern fuel switching from traditional energy sources and high import of LPG are challenges for sustainability and energy security. This paper analyzes the future residential cooking energy demand and its environmental and economic impacts from 2015 to 2035 using a Long-range Energy Alternative Planning System (LEAP) tool. In 2035, the LPG demand for cooking is projected to be 26.5 million GJ, 16.3 million GJ, 45.2 million GJ and 58.2 million GJ for business as usual (BAU), low growth rate (LGR), medium growth rate (MGR) and high growth rate (HGR) scenarios, respectively. To substitute LPG with electricity in the cooking sector by 2035, an additional 1207 MW, 734 MW, 2055 MW and 2626 MW hydropower installation is required for BAU, LGR, MGR and HGR scenarios, respectively. In the MGR scenario, substituting LPG with electricity could save from $21.8 million (2016) to $70.8 million (2035) each year, which could be used to develop large-scale hydropower projects in the long term.
    [Show full text]
  • Energy Poverty in Nepal: a Case Study on the Use of Biomass in the Rural Villages of Biratnagar
    Energy poverty in Nepal: A Case Study on the Use of Biomass in the Rural Villages of Biratnagar By POUDYAL Ritu 51-178229 A Master’s Thesis Submitted to Professor ARIMA Jun Graduate School of Public Policy (GraSPP) The University of Tokyo May 2019 Abstract This thesis focuses on the situation of energy poverty and traditional biomass energy (TBE) use in the rural villages of Biratnagar Metropolitan city of Nepal. Although it is believed that the TBE use and energy poverty can be eradicated through the supply of modern energy services, this case study reflects the minimal role of grid electricity supply in eradicating the use of TBEs in the study area. The result of the study shows how the poor socio-economic condition and low awareness level on the negative impacts of TBE use have been the main factors guiding the energy choices of the households. Lastly, based on the overall study about the energy situation of Nepal and the findings of the area study, the study provides recommendation to the state and the non-state actors to promote cleaner energy sources to reduce the energy poverty levels in Nepal. Keywords: Biomass, energy poverty, socio- economic development, traditional biomass energy, modern biomass technologies, Improved Biomass Technologies Acknowledgements First of all, I would like to thank my father Upendra Poudyal, my mother Raina Poudyal and my sister Riju Poudyal for their constant support in every step of my life. Their love has given me strength and motivation to accomplish my goals. I would also like to express my sincere gratitude to Professor Arima Jun for his guidance and support.
    [Show full text]
  • Nepal Earthquake Situation Update (12 May 2015)
    Nepal Earthquake Situation Update (12 May 2015) LOCATION: Kathmandu, Nepal DATE: 12 May 2015 Situation Update An earthquake registering 7.3 magnitude struck today (12 May) at 12:50 local time (UTC +5:45). The epicentre was southeast of Kodari (Sindhupalchowk District), 76 km northeast of Kathmandu – an area already affected by the 25 April quake. Additional aftershocks ranging from 5.0-7.3 magnitude have occurred afterwards within 35 km of Kodari and a 6.3 magnitude one with the epicentre in Ramechhap District. Landslides were reported in Langtang Region in the Himalayas. The area affected by the earthquake is prone to landslides which may further blocking roads and making transport difficult. Kathmandu International Airport (KTM) suspended operations immediately after the earthquake to assess the status of the tarmac. At 15:05 Nepal local time air operations resumed as normal. As soon as KTM airport re-opened, a UNHAS helicopter took off to the affected area with an assessment team to evaluate the impact of the earthquake. Phone lines in Kathmandu are congested but functioning. Road access constraints In Sindhupalchok, the road from Chautara to Dolalghat (and onwards to Kathmandu) has been reported open. Blockages were reported between Dolalghat to Charikot. Assessments are on-going. The DfID/ GIZ Risk Management Office provided an update on the three road access constraints below: o The Banepa Bardibas (B.P.) Koirala Highway, connecting Bardibas, Mahottari to Banepa, Kavre district – Kathmandu. The road is reported to be fractured in the Sindhuli-Nepalthok section of the road (54 km). Debris is also reported from landslide in different places of the road section.
    [Show full text]