Guidance Algorithm for an Air-To-Air Boost Phase Interceptor Master Thesis Report
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
NIKE-HERCULES Système D'arme Sol-Air À Longue Portée États-Unis
NIKE-HERCULES Système d’arme sol-air à longue portée États-Unis Genèse du NIKE-HERCULES Le système Nike-Hercules est une évolution du système Nike-Ajax (cf. tableau comparatif des missiles en annexe). L’engin Nike-Hercules (MIM-14) est également un missile à deux étages. Son booster, beaucoup plus puissant (puissance 173.000 livres), lui permet d’être très rapidement supersonique. Après 3,4 secondes, le booster se sépare du missile, ce qui déclenche la mise à feu du second étage ; celui-ci fonctionne pendant 29 secondes et permet au missile d’atteindre une vitesse dépassant Mach 3 et une altitude de 100.000 pieds. Le Nike-Hercules peut emporter une ogive nucléaire ou une ogive conventionnelle. Initialement, la version nucléarisée emportait la tête nucléaire W-7 Mod 2, offrant des puissances de 2,5 ou 28 KT. En 1961, les anciennes ogives furent remplacées par des charges W-31 avec des puissances de 2 KT (Y1) ou 30 KT (Y2). Les dernières versions comportèrent l'ogive W31 Mod2, offrant des puissances de 2 ou 20 KT. En raison de l’efficacité du missile contre certains ICBM, Le Nike-Hercules fut pris en considération dans les accords SALT. Une utilisation sol-sol a été expérimentée en Alaska et appliquée à certaine versions. Le Nike-Hercules a connu une évolution majeure améliorant sa résistance aux contre-mesures électroniques et augmentant sa capacité de détection. Les missiles ainsi modifiés ont été désignés Nike-Hercules Improved (NHI). Système de guidage du Nike-Hercules Déploiements du Nike-Hercules Le Nike-Hercules est entré en service opérationnel en juin 1958 et fut tout d'abord déployé à Chicago. -
Prepared by Textore, Inc. Peter Wood, David Yang, and Roger Cliff November 2020
AIR-TO-AIR MISSILES CAPABILITIES AND DEVELOPMENT IN CHINA Prepared by TextOre, Inc. Peter Wood, David Yang, and Roger Cliff November 2020 Printed in the United States of America by the China Aerospace Studies Institute ISBN 9798574996270 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute Cover art is "J-10 fighter jet takes off for patrol mission," China Military Online 9 October 2018. http://eng.chinamil.com.cn/view/2018-10/09/content_9305984_3.htm E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. -
Pegasus Vectored-Thrust Turbofan Engine
Pegasus Vectored-thrust Turbofan Engine Matador Harrier Sea Harrier AV-8A International Historic Mechanical Engineering Landmark 24 July 1993 International Air Tattoo '93 RAF Fairford The American Society of Mechanical Engineers I MECH E I NTERNATIONAL H ISTORIC M ECHANICAL E NGINEERING L ANDMARK PEGASUS V ECTORED-THRUST T URBOFAN ENGINE 1960 T HE B RISTOL AERO-ENGINES (ROLLS-R OYCE) PEGASUS ENGINE POWERED THE WORLD'S FIRST PRACTICAL VERTICAL/SHORT-TAKEOFF-AND-LANDING JET AIRCRAFT , THE H AWKER P. 1127 K ESTREL. USING FOUR ROTATABLE NOZZLES, ITS THRUST COULD BE DIRECTED DOWNWARD TO LIFT THE AIRCRAFT, REARWARD FOR WINGBORNE FLIGHT, OR IN BETWEEN TO ENABLE TRANSITION BETWEEN THE TWO FLIGHT REGIMES. T HIS ENGINE, SERIAL NUMBER BS 916, WAS PART OF THE DEVELOPMENT PROGRAM AND IS THE EARLIEST KNOWN SURVIVOR. PEGASUS ENGINE REMAIN IN PRODUCTION FOR THE H ARRIER II AIRCRAFT. T HE AMERICAN SOCIETY OF M ECHANICAL ENGINEERS T HE INSTITUTION OF M ECHANICAL ENGINEERS 1993 Evolution of the Pegasus Vectored-thrust Engine Introduction cern resulted in a perceived need trol and stability problems associ- The Pegasus vectored for combat runways for takeoff and ated with the transition from hover thrust engine provides the power landing, and which could, if re- to wing-borne flight. for the first operational vertical quired, be dispersed for operation The concepts examined and short takeoff and landing jet from unprepared and concealed and pursued to full-flight demon- aircraft. The Harrier entered ser- sites. Naval interest focused on a stration included "tail sitting" types vice with the Royal Air Force (RAF) similar objective to enable ship- exemplified by the Convair XFY-1 in 1969, followed by the similar borne combat aircraft to operate and mounted jet engines, while oth- AV-8A with the United States Ma- from helicopter-size platforms and ers used jet augmentation by means rine Corps in 1971. -
Differential Throttling and Fluidic Thrust Vectoring in a Linear Aerospike
International Journal of Turbomachinery Propulsion and Power Article Differential Throttling and Fluidic Thrust Vectoring in a Linear Aerospike Michele Ferlauto , Andrea Ferrero * , Matteo Marsicovetere and Roberto Marsilio Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; [email protected] (M.F.); [email protected] (M.M.); [email protected] (R.M.) * Correspondence: [email protected] Abstract: Aerospike nozzles represent an interesting solution for Single-Stage-To-Orbit or clustered launchers owing to their self-adapting capability, which can lead to better performance compared to classical nozzles. Furthermore, they can provide thrust vectoring in several ways. a simple solution consists of applying differential throttling when multiple combustion chambers are used. An alternative solution is represented by fluidic thrust vectoring, which requires the injection of a secondary flow from a slot. In this work, the flow field in a linear aerospike nozzle was investigated numerically and both differential throttling and fluidic thrust vectoring were studied. The flow field was predicted by solving the Reynolds-averaged Navier–Stokes equations. The thrust vectoring performance was evaluated in terms of side force generation and axial force reduction. The effectiveness of fluidic thrust vectoring was investigated by changing the mass flow rate of secondary flow and injection location. The results show that the response of the system can be non-monotone with respect to the mass flow rate of the secondary injection. In contrast, differential throttling provides a linear behaviour but it can only be applied to configurations with multiple Citation: Ferlauto, M.; Ferrero, A.; combustion chambers. -
Rockets of the Armed Forces.Pdf
NUIWX4)- j623.4519 Bk&ro. Bergaust l^OS'lcT; Rockets of the Armed Forces O O u- - "5« ^" CO O PUBLIC LIBRARY Fort Wayne c.r.d Allen County, Indiana 81-1 JT r PUHI I IBRAFU sno IC fflimiivN 3 1833 00476 4350 Rockets of the Armed Forces Between primitive man's rock-hurling days, and modern technology's refined rocket systems, man has come a long way in missile combat. Beginning with the principles of rocketry from early time to the present, Erik Bergaust classifies all forty-two current operational missiles into four basic categories : air-to-air ; air-to-surface ; surface- to-air; and surface-to-surface. From the Navy's highly sophisticated Polaris to the Sidewinder, widely used in Vietnam, the author pinpoints the type, propulsion, guid- ance, performance, and construction of each rocket. A picture and a short paragraph describing each rocket's military use, plus a glossary, are included. Inspection of liquid hydrogen engines. Hydro- gen is a powerful fuel and is often used in combination with liquid oxygen. Fuels are car- ried in the missile in separate tanks and are mixed in the rocket's combustion chamber where the burning takes place. / Bell ROCKETS of the ARMED FORCES By Erik Bergaust 76 6. P. Putnam's Sons New York | 80 260 4 1 ' © 1966 by Erik Bergaust All Rights Reserved Published simultaneously in the Dominion of Canada by Longmans Canada Limited, Toronto Library of Congress Catalog Card Number: AC 66-1025A PRINTED IN THE UNITED STATES OF AMERICA Second Impression 1430318 ACKNOWLEDGMENTS The cooperation of the Office of the Assistant Secre- tary of Defense, Magazine and Book Branch, Directorate of Information Services, made it possible to compile in this book the latest information and data on all opera- tional United States military rockets. -
University of Kansas – MQM-1A Road Runner
MQM-1A ROAD RUNNER Max Johnson Jacob Gorman Justin Matt Steven Meis Andrew Mills Nathan Sunnarborg 6 May 2020 Team Members Team Member AIAA Number Signature Max Johnson 1069044 Co-Author Jacob Gorman 998671 Co-Author Justin Matt 985135 Co-Author Steven Meis 985214 Co-Author Andrew Mills 980191 Co-Author Nathan Sunnarborg 1069091 Co-Author Dr. R. Barrett-Gonzalez 022393 Adviser Aerospace Engineering Department ii Table of Contents 1. Introduction .........................................................................................................................................................1 1.1 Mission Specifications & Profile ................................................................................................................1 1.2 Mission Profile ............................................................................................................................................1 1.3 Design Methods and Process ......................................................................................................................2 1.4 Conclusions and Recommendations �����������������������������������������������������������������������������������������������������������3 2. Historical Target Drone Relevant Designs ..........................................................................................................3 2.1 Orbital Sciences GQM-163 Coyote ............................................................................................................3 2.2 Lockheed Q-5/AQM-60 Kingfisher ...........................................................................................................3 -
INSTITUTE of AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 500 043 UNIT-I INTRODUCTION
LECTURE NOTES ON LAUNCH VEHICLE MISSILE TECHNOLOGY IV B. Tech II semester (JNTUH-R13) Mr. Shiva Prasad U. Assistant Professor AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 500 043 UNIT-I INTRODUCTION 1.1 Introduction Launch vehicles are the rocket-powered systems that provide transportation from the earth's surface into the environment of space. In the early days of the U.S. civilian space program the term "launch vehicle" was used by NASA in preference to the term "booster" because "booster" had been associated with the development of the military missiles. "Booster" now has crept back into the vernacular of the Space Age and is used interchangeably with "launch vehicle." Space Launch Vehicles 1.2 TYPES 1. EXPANDABLE 2. REUSABLE Classification of Missile Missiles are generally classified on the basis of their Type, Launch Mode, Range, Propulsion, Warhead and Guidance Systems. Type: 1.CRUISE MISSILE 2. BALLISTIC MISSILE Launch Mode: Surface-to-Surface Missile Surface-to-Air Missile Surface (Coast)-to-Sea Missile Air-to-Air Missile Air-to-Surface Missile Sea-to-Sea Missile Sea-to-Surface (Coast) Missile 2 Anti-Tank Missile Range: Short Range Missile Medium Range Missile Intermediate Range Ballistic Missile Intercontinental Ballistic Missile Propulsion: Solid Propulsion Liquid Propulsion Hybrid Propulsion Ramjet Scramjet Cryogenic Warhead: Conventional Strategic Guidance Systems: Wire Guidance Command Guidance Terrain Comparison Guidance Terrestrial Guidance Inertial Guidance Beam Rider Guidance 3 Laser Guidance RF and GPS Reference 1.3 On the basis of Type: (i) Cruise Missile: A cruise missile is an unmanned self-propelled (till the time of impact) guided vehicle that sustains flight through aerodynamic lift for most of its flight path and whose primary mission is to place an ordnance or special payload on a target. -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
Su-30MKI PROGRAM the JOINT SUCCESS of RUSSIA and INDIA
Su-30MKI PROGRAM THE JOINT SUCCESS OF RUSSIA AND INDIA www.irkut.com 2 MILESTONES www.irkut.com 1996 2000 2002 2004 2005 2007 2015 Aircraft samples of The flight Aircraft final configuration The first The first Contract for of the test aircraft samples The first aircraft delivered participation participation development Contract for of initial overhaul The first HAL- in international in international and delivery licensed configuration at HAL facility manufactured exercise in India exercise abroad production delivered aircraft delivered 3 PRIMACY www.irkut.com Joint efforts of Russia Leading companies Su-30MKI Su-30MKI and India have ensured of Russia, India, and is optimised to meet epitomises creation of the new other countries have cost/effectiveness the world benchmark fighter aircraft featuring been participating criterion of heavy multirole outstanding capabilities in creation of this fighter aircraft aircraft 4 MULTIFUNCTIONALITY www.irkut.com Su-30MKI is the first in the world fighter equipped with the phased-array radar, delivered for export Weapons control system provides: • reliable detection of aerial, ground, and water-surface targets beyond visual range • tracking of 15 aerial targets and simultaneous engagement of four of them Open architecture of avionics suite ensures enhancing its capabilities and expanding weapons set Two-pilots crew is able to perform air-to-air and air-to-ground combat tasks concurrently Front cockpit Aft cockpit 5 SUPERMANEUVERABILITY www.irkut.com Su-30MKI is the first in the world supermaneuverable -
Thrust Vectoring Nozzle for Military Aircraft Engines
ICAS 2000 CONGRESS Industria de Turbo Propulsores, S.A. THRUST VECTORING NOZZLE FOR MILITARY AIRCRAFT ENGINES Daniel Ikaza Industria de Turbo Propulsores S.A. (ITP) Parque Tecnológico, edificio 300 48170 Zamudio, Spain [email protected] number of actuators, which, in turn, leads to an optimized mass and overall engine efficiency. ITP has dedicated a research programme on Thrust Vectoring technology which started back in 1991, and which met an important milestone as is the ground testing of a prototype nozzle at ITP. Fig. 1.- CFD Model of a TVN ABSTRACT Even though Thrust Vectoring is a relatively new technology, it has been talked about for some time, and several programmes worldwide have explored its Fig. 2.- TVN ground tests at ITP application and benefits. Thrust Vectoring can provide modern military aircraft with a number of advantages The next major goal will be the realisation of a flight regarding performance and survivability, all of which has programme, in order to validate the system in flight, and an influence upon Life Cycle Cost. evaluate the capabilities and performance of the system as a means of primary flight control. There are several types of Thrust Vectoring Nozzles. For example, there are 2-D and 3-D Thrust Vectoring A decisive contribution is being done by ITP’s partner Nozzles. The ITP Nozzle is a 3-D Vectoring Nozzle. company MTU of Munich, Germany, by developing the Also, there are different ways to achieve the deflection of electronic Control System. the gas jet: the most efficient one is by mechanically This programme is making the Thrust Vectoring deflecting the divergent section only, hence minimizing technology available in Europe for existing military the effect on the engine upstream of the throat (sonic) aircraft such as Eurofighter, in which the introduction of section. -
The Raf Harrier Story
THE RAF HARRIER STORY ROYAL AIR FORCE HISTORICAL SOCIETY 2 The opinions expressed in this publication are those of the contributors concerned and are not necessarily those held by the Royal Air Force Historical Society. Copyright 2006: Royal Air Force Historical Society First published in the UK in 2006 by the Royal Air Force Historical Society All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without permission from the Publisher in writing. ISBN 0-9530345-2-6 Printed by Advance Book Printing Unit 9 Northmoor Park Church Road Northmoor OX29 5UH 3 ROYAL AIR FORCE HISTORICAL SOCIETY President Marshal of the Royal Air Force Sir Michael Beetham GCB CBE DFC AFC Vice-President Air Marshal Sir Frederick Sowrey KCB CBE AFC Committee Chairman Air Vice-Marshal N B Baldwin CB CBE FRAeS Vice-Chairman Group Captain J D Heron OBE Secretary Group Captain K J Dearman Membership Secretary Dr Jack Dunham PhD CPsychol AMRAeS Treasurer J Boyes TD CA Members Air Commodore H A Probert MBE MA *J S Cox Esq BA MA *Dr M A Fopp MA FMA FIMgt *Group Captain N Parton BSc (Hons) MA MDA MPhil CEng FRAeS RAF *Wing Commander D Robertson RAF Wing Commander C Cummings Editor & Publications Wing Commander C G Jefford MBE BA Manager *Ex Officio 4 CONTENTS EARLY HISTORICAL PERSPECTIVES AND EMERGING 8 STAFF TARGETS by Air Chf Mshl Sir Patrick Hine JET LIFT by Prof John F Coplin 14 EVOLUTION OF THE PEGASUS VECTORED -
ORI( Tnalpage'l$ Pooe Oualn' 292 Proceedings of the NA3A/USRA Advanced Design Program 6Th Summer Conference
t P,/o 291 PRELIMINARY DESIGN OF A SUPERSONIC SHORT-TAKEOFF AND VERTICAL-LANDING (STOVL) FIGHTER MRCRAFT UNIVERSITY OF KANSAS, LAWRENCE N 91-18165 A preliminary design study of a supersonic short-takeoff and vcrticaHanding (STOVL) fighter is presented. Three configurations (a lift + lift/cruise concept, a hybrid fan-vectored thrust concept, and a rnLxed-flow-vectored thrust concept) were initially investigated with one configuration .selected for further design analysis. The selected configuration (the lift + lift/cruise concept) was successfully integrated to accommodate the powered-lift short takeoff and vertical landing requirements as well a,s the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capabilit T using the lift + lift/cruise engine concept seems a viable option for the next generation fighter. NOMENCIATImE PHASE I AIRCRAFT STUDY BAi Battlefield Air Interdiction Mission Prof'des and Specification CA Counter Air e.g. Center of Gravity, The mission profiles for the Phase I study (Figs. I and 2) FS Fuselage Station show the design defensive counter air superiority mission and HFVT Hybrid Fan-Vectored Thrust the fallout battlefield air interdiction mis,sion. The mis.sion LIFT I.ift + IJft/Crui_ specification (Table l ) shows the armament carried for each MFVT Mixed-Flow-Vectored Thrust mission and the point performance requirements. n.m Nautical Mile STOVL Short Takeoff, Vertical Landing 8 INTRODUCTION 5 6 7 9 I0 The sur_ivability of long, hard-surface runways at Air Force Main Operating Bases is fundamental to the current operations • I . 2 3_ -- 151) NM_50 NMi [50 NMb_---_IS0 NM_ of the Air Force Tactical Air Command.