Natural Coloring Agents

Total Page:16

File Type:pdf, Size:1020Kb

Natural Coloring Agents Natural coloring O agents H N N Biologically Active Natural Compounds H O 1 COLORANTS DYES PIGMENTS WATER ORGANIC VAT DISPERSE etc. PIGMENTS LACQUERS etc. SOLUBLE SOLUBLE DYES Colorants are characterized by their ability to absorb visible part of the electromagnetic spectrum [380-780 nm]. For good colouring property it has to have high enough absorption coefficient (10 000 to 40 000 l.mol-1.cm-1 ). Further it must have properties enabling it to keep with coloured material and stability (fotochemical, chemical, oxidation ...). As a rule, colorants nowadays have to be harmless. Sometimes we also distinguish [i.a.]: onedimensional pigments (they absorb certain wavelength and reflect the rest) twodimensional (they reflect the light mirror-like) threedimensional (they reflect with pearl effect) Biologically Active Natural Compounds 2 Natural Dyestuffs The most important dyes extracted from animal sources are natural sepia (from the ink sac of the cuttlefish), crimson (from the kermes louse) and Tyrian purple (the Imperial purple of the ancient world, from the murex shellfish). Very many dyes have been extracted traditionally from roots, berries, flowerheads, barks and leaves. Red dyes include madder (from 'dyer's root', the madder plant), brazilwood, beetroot, cranberry, safflower ('dyer's thistle'), and orchil ('dyer's moss'). Orange dye is obtained from stigmas of the saffron flower, yellows from camomile and milkwort flowers, plus weld ('dyer's herb'). Greens are obtainable from ripe buckthorn berries and ragweed; and blue from the woad plant (also called 'dyer's weed') and indigo. As a rule, vegetable dyes are extracted by pounding or cutting up the colouring material. This is immersed in water, heated to just below boiling point and simmered until the colour has been transferred from the dye solution. Colorants could be divided by their Biologically Active Natural Compounds a/ colour, b/ chemical composition or structure, c/ biological function in plant/organism (chlorophyll, haemoglobin …), d/ physical properties (solubility), e/ etc. 3 For most natural dyestuffs to be effective, the article to be coloured must first be saturated with a fixer or mordant, a mineral compound which 'bites' the fibres of the cloth in order to permit the insoluble adhesion of the colouring agent. (A typical mordant consists of a 4:1 mixture of alum [aluminum sulfate Al2(SO4)] and cream of tartar [potassium hydrogen tartrate, KC4H5O6].) The use of other metallic salts, as those containing chromium, copper, tin or iron, make it possible to obtain a considerable range of colours from a single dye source. What is the function of a mordant? O OO M insoluble dye forms complex H2O H2O where mordant can help HO O + NH2 Biologically Active Natural Compounds protein fibre 4 Categories of Natural Colorants, examples Colors Chemical Classifications Common Names Yellow and Brown Flavone dyes Weld, Quercitron, Fustic, Osage, Chamomile, Tesu, Dolu, Marigold, Cutch Yellow Iso-quinoline dyes Barberry Polyene colorants beta-carotene, lycopene … Pyran colorants gentisin Orange-Yellow Chromene dyes Kamala Brown and Purple-Grey Naphthochinone dyes Henna, Walnut, Alkanet, Pitti Red Chinone and Lac, Cochineal, Madder Anthrachinone dyes (Majithro) Chromene dyes Santalin Biologically Active Natural Compounds Purple and Black „Benzophyrone“ dyes Logwood Blue Indigoid Dyes and Indigo Indole colorants 5 Natural Colorants, some typical examples Blue - woad Isatis tinctoria (Brassicaceae) [boryt barvířský] indigo Indigofera tinctoria (Fabaceae) [indigovník barvířský] cornflower flower Centaurea cyanus [květy chrpy modré] bilberry fruits Vaccinium myrtillus [plody borůvek] fruits of Common Elderberry (Sambucus nigra) [plody černého bezu] European ash (Fraxinus excelsior)[kůra jasanu ztepilého] Yellow - turmeric rhizome Curcuma domestica [oddének kurkumy] Safflower (Carthamus tinctorius) [světlice barvířská] carrot (Daucus carota)[kořen mrkve] big marigold Tagetes erecta [aksamitník vzpřímený] Orange - sweet peppers, paprika Capsicum annuum [paprika] annato Bixa orellana [anato] saffron red stigmas Crocus sativus [šafrán] bloodroot Sanguinaria canadensis [krvavěnka] Green - chlorophyll [chlorofyl] Brown - cocoa Theobroma cacao [kakao] fermented tea Camellia thea [čaj] henna Lawsonia inermis [henna pravá] Biologically Active Natural Compounds Purple - alkanet root Alkanna tinctoria [kamejník barvířský] Black and brown - carbon and caramel [uhel a karamel] Confederate gray - butternuts Juglans cinerea [ořešák popelavý] White - titanium oxide [oxid titaničitý] 6 Natural colorants, some typical examples Red Red could have been dyed with madder (Rubia tinctoria) which was used in central Europe since 800 A.D. Red can also be produced from native plants and sources such as: Northern Bedstraw Galium boreale, Hedge Bedstraw Galium album mollugo, Lady's Bedstraw Galium verum, Dyers Woodruff ' Asperula tinctoria, St. John's Wort Hypericum perforatum, paprika (may be irritating), grapes Vitaceae, red cabbage Brassica oleracea capitata, black currants Ribes (cyanins) cochineal. carmina Coccus cacti or Dactylopius coccus red beet, Beta vulgaris (betanin) Reds from Mushrooms The Dermocybe family of mushrooms produces oranges and reds. Additon of an iron mordant gives darker shades and almost black. With older mushrooms, longer cooking times or the addition of ammonia can give lilac shades. Low heat or the addition of acid or Biologically Active Natural Compounds vinegar gives warm reds. Dictyophora cinnabarina Cortinarius semisanguineus 7 Blue Blue was the most used colour in many of the fabrics from the gravesites. Blue may have come from Dyers Woad, Isatis tinctoria. Blue from Mushrooms Thelephora With iron or tin mordants, yields greens and blues. Hydnellum suaveolens, Sarcodon imbricatus, Yields blues if it is old and its top has darkened. Hapalopilus rutilans, With ammonia, yields strong, colourfast violet blue shades. Cortinarius violaceus Produces violet blue shades, and with an iron mordant, dark greys. Biologically Active Natural Compounds 8 mineral dyes ocher mixture of varying proportions of iron oxide and clay, used as a pigment. It occurs naturally as yellow ocher (yellow or yellow-brown in color), the iron oxide being limonite, or as red ocher, the iron oxide being hematite. Ocher grades into sienna, a yellow-brown pigment containing a higher percentage of iron ore than ocher as well as some manganese dioxide; sienna grades into umber, which is darker brown and contains a higher percentage of manganese dioxide. Burnt sienna is brown or bright red; burnt umber is a darker brown than umber. white, titanium oxide, limestone black, carbon, sooth Biologically Active Natural Compounds green, malachite blue, azurite, turquoise red, zinober, iron oxides and hydroxides 9 The principle of the fact that something has a colour is in the interaction of the substance with a light which is then reflected or passed through. The substance could be also involved in the process of light generation (electric arch, burning ...). The interaction influences different wavelenght intensity of the light. Most common is the interaction of photons with electron orbitals of molecules. This effect is discussed with electron spectra (UV-VIS). To see the colours we need a detector which is commonly a spectrophotometer (or for the wavelengths between 400 and 800 nm also human eye) which is capable of distinguishing the changes. chromophore From the Greek from Greek chromophorus (chromos colour), or „colour carrier“, a chromophore is generally a groups of atoms in a molecule responsible for the interaction with the radiation at certain wavelength; example of common chromophore is conjugated multiple bond, rich in Biologically Active Natural Compounds electrons 10 light irradiates the surface reflected light is seen in (white, polychromatic) complementary colour and we see it as blue-green orange part is absorbed (610 nm) light irradiates the surface (white, polychromatic) orange part is Biologically Active Natural Compounds absorbed (610 nm) thorough light is seen in complementary colour 11 and we see it as blue-green sample absorbs yellow resulting light composition is seen as violet- -blue UV VIS NIR IČ FIR 100 200 400 800 nm 0,1 0,2 0,4 0,8 2,5 15 50 µm 12500 4000 670 cm-1 observed colour absorbed colour absorbed wavelength green red 700 nm blue-green orange red 600 nm violet yellow 550 nm violet-red yellow green 530 nm Biologically Active Natural Compounds red blue green 500 nm orange blue 450 nm yellow violet 400 nm 12 13 how photons can interact with the electron orbitals: typlical molecular orbital is as follows: energy Biologically Active Natural Compounds 14 energy of the light which passes through the sample is absorbed by some electrons and they are in that way “excited” to a higher energetic level (state) let us see this situation in butadiene, e.g. ψ4* π* ψ3* LUMO π ψ2 HOMO ψ four basic p 1 atomic orbitals normal state of molecule orbitals of butadiene excited state Biologically Active Natural Compounds LUMO – Lowest Unoccupied Molecular Orbital HOMO – Highest Occupied Molecular Orbital 15 non-conjugated alkene is not “rich in electrons” in common non-conjugated alkene the situation is simple: π* ψ2* LUMO π ψ1 HOMO two basic p atomic orbitals ground state of a molekular excited state orbital of butadiene Biologically Active Natural Compounds 165 nm ε 15,000 16 there are “allowed” and “forbidden” energy transitions in carbonyl we observe also the forbidden transition n->π* π* π* n π n π* π
Recommended publications
  • Natural Colourants with Ancient Concept and Probable Uses
    JOURNAL OF ADVANCED BOTANY AND ZOOLOGY Journal homepage: http://scienceq.org/Journals/JABZ.php Review Open Access Natural Colourants With Ancient Concept and Probable Uses Tabassum Khair1, Sujoy Bhusan2, Koushik Choudhury2, Ratna Choudhury3, Manabendra Debnath4 and Biplab De2* 1 Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India. 2 Regional Institute of Pharmaceutical Science And Technology, Abhoynagar, Agartala, Tripura, India. 3 Rajnagar H. S. School, Agartala, Tripura, India. 4 Department of Human Physiology, Swami Vivekananda Mahavidyalaya, Mohanpur, Tripura, India. *Corresponding author: Biplab De, E-mail: [email protected] Received: February 20, 2017, Accepted: April 15, 2017, Published: April 15, 2017. ABSTRACT: The majority of natural colourants are of vegetable origin from plant sources –roots, berries, barks, leaves, wood and other organic sources such as fungi and lichens. In the medicinal and food products apart from active constituents there are several other ingredients present which are used for either ethical or technical reasons. Colouring agent is one of them, known as excipients. The discovery of man-made synthetic dye in the mid-19th century triggered a long decline in the large-scale market for natural dyes as practiced by the villagers and tribes. The continuous use of synthetic colours in textile and food industry has been found to be detrimental to human health, also leading to environmental degradation. Biocolours are extracted by the villagers and certain tribes from natural herbs, plants as leaves, fruits (rind or seeds), flowers (petals, stamens), bark or roots, minerals such as prussian blue, red ochre & ultramarine blue and are also of insect origin such as lac, cochineal and kermes.
    [Show full text]
  • American Materia Medica, Therapeutics and Pharmacognosy
    American Materia Medica, Therapeutics and Pharmacognosy Developing the Latest Acquired Knowledge of Drugs, and Especially of the Direct Action of Single Drugs Upon Exact Conditions of Disease, with Especial Reference of the Therapeutics of the Plant Drugs of the Americas. By FINLEY ELLINGWOOD, M.D. 1919 Late Professor of Materia Medica and Therapeutics in Bennett Medical College, Chicago; Professor of Chemistry in Bennett Medical College 1884-1898; Author, and Editor of Ellingwood's Therapeutist; Member National Eclectic Medical Association; American Medical Editors' Association. Abridged to include only the botanical entries, and arranged in alphabetical order by latin names Southwest School of Botanical Medicine P.O. Box 4565, Bisbee, AZ 85603 www.swsbm.com ABIES. Abies canadensis Synonym—Hemlock spruce. CONSTITUENTS— Tannic acid, resin, volatile oil. Canada pitch, or gum hemlock, is the prepared concrete juice of the pinus canadensis. The juice exudes from the tree, and is collected by boiling the bark in water, or boiling the hemlock knots, which are rich in resin. It is composed of one or more resins, and a minute quantity of volatile oil. Canada pitch of commerce is in reddish-brown, brittle masses, of a faint odor, and slight taste. Oil of hemlock is obtained by distilling the branches with water. It is a volatile liquid, having a terebinthinate odor and taste. PREPARATIONS— Canada Pitch Plaster Tincture of the fresh hemlock boughs Tincture of the fresh inner bark. Specific Medicine Pinus. Dose, from five to sixty minims. The hemlock spruce produces three medicines; the gum, used in the form of a plaster as a rubifacient in rheumatism and kindred complaints; the volatile oil—oil of hemlock—or a tincture of the fresh boughs, used as a diuretic in diseases of the urinary organs, and wherever a terebinthinate remedy is indicated; and a tincture of the fresh inner bark, an astringent with specific properties, used locally, and internally in catarrh.
    [Show full text]
  • Making Basic Period Pigments at Home
    Making Basic Period Pigments at Home KWHSS – July 2019 Barony of Coeur d’Ennui Kingdom of Calontir Mistress Aidan Cocrinn, O.L., Barony of Forgotten Sea, Kingdom of Calontir Mka Holly Cochran [email protected] Contents Introduction .................................................................................................................................................. 3 Safety Rules: .................................................................................................................................................. 4 Basic References ........................................................................................................................................... 5 Other important references:..................................................................................................................... 6 Blacks ............................................................................................................................................................ 8 Lamp black ................................................................................................................................................ 8 Vine black .................................................................................................................................................. 9 Bone Black ................................................................................................................................................. 9 Whites ........................................................................................................................................................
    [Show full text]
  • An Empirical Assessment of the Relationship Of
    An International Multidisciplinary Journal, Ethiopia Vol. 7 (2), Serial No. 29, April, 2013:350-370 ISSN 1994-9057 (Print) ISSN 2070--0083 (Online) DOI: http://dx.doi.org/10.4314/afrrev.7i2.22 Adire in South-western Nigeria: Geography of the Centres Areo, Margaret Olugbemisola- Department of Fine and Applied Arts, Ladoke Akintola University of Technology, P. M. B 4000, Ogbomoso, Nigeria E-mail; [email protected] & Kalilu, Razaq Olatunde Rom - Department of Fine and Applied Arts, Ladoke Akintola University of Technology, P. M. B 4000, Ogbomoso, Nigeria E-mail; [email protected] Abstract Adire, the patterned dyed cloth is extant and is practiced in almost all Yoruba towns in Southwestern Nigeria. The art tradition is however preponderant in a few Yoruba towns to the extent that the names of these towns are traditionally inseparable with the Adire art tradition. With Western education, introduction of foreign religions, influence from other cultures, technique and technology, there is a shift in the producers of Adire, the training pattern, and even an evolution in the production centre. While Western education resulted in a shift from the hitherto traditional Copyright© IAARR 2013: www.afrrevjo.net 350 Indexed African Journals Online: www.ajol.info Vol. 7 (2) Serial No. 29, April, 2013 Pp.350-370 apprenticeship method to the study of the art in schools, unemployment gave birth to the introduction of training drives by government and non governmental parastatals. This study, a field research, is an appraisal of the factors that contributed to the vibrancy of the traditionally renowned centres, and how the newly evolved centres have in contemporary times contributed to the sustainability of the Adire art tradition.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Use of Orcein in Detecting Hepatitis B Antigen in Paraffin Sections of Liver
    J Clin Pathol: first published as 10.1136/jcp.35.4.430 on 1 April 1982. Downloaded from J Clin Pathol 1982;35:430-433 Use of orcein in detecting hepatitis B antigen in paraffin sections of liver P KIRKPATRICK From the Department ofHistopathology, John Radcliffe Hospital, Headington, Oxjord OX3 9DU SUMMARY This study has shown that different supplies/batches of orcein perform differently and may fail. The "natural" forms generally performed better although the most informative results were obtained with a "synthetic" product. Orcein dye solutions can be used soon after preparation and for up to 7 days without the need for differentiation. After 10 days or so the staining properties become much less selective. Non-specific staining severely reduces contrast and upon differentiation overall contrast is reduced and the staining of elastin is reduced. Copper-associated protein positivity gradually fails and after 14 days is lost. For demonstrating HBsAg in paraffin sections of liver, it is best to use orcein dye preparations that are no older than 7 days and to test each batch of orcein against a known positive control. Orcein dye solutions are now commonly used for the was evaluated. detection of hepatitis B surface antigen (HBsAg) Eight samples of orcein were supplied by: Sigma copyright. and copper-associated protein in paraffin sections London Chemical ("natural" batch Nos 89C-0264 of liver.' It is generally believed that orcein dyes and 59C-0254 and "synthetic" batch Nos 31 F-0441); from a single source should be used. 2-6 Variable Raymond A Lamb ("natural" batch No 5094); results are obtained with different reagents perhaps Difco Laboratories ("natural" batch No 3220); because of different manufacturing procedures or BDH Chemicals ("synthetic" batch No 5575420A); significant batch variations.
    [Show full text]
  • Chromosomal Staining Comparison of Plant Cells with Black Glutinous Rice (Oryza Sativa L.) and Lac (Laccifer Lacca Kerr)
    © 2010 The Japan Mendel Society Cytologia 75(1): 89–97, 2010 Chromosomal Staining Comparison of Plant Cells with Black Glutinous Rice (Oryza sativa L.) and Lac (Laccifer lacca Kerr) Praween Supanuam1, Alongkoad Tanomtong1,*, Sirilak Thiprautree1, Somret Sikhruadong2 and Bhuvadol Gomontean3 1 Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand 2 Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Muang, Mahasarakham 44000, Thailand 3 Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakam, 44150, Thailand Received October 10, 2009; accepted February 8, 2010 Summary The study on chromosomal staining comparison of plant cells with natural dyes was carried out to compromise the use of expensive dyes. Dyes from black glutinous rice (Oryza sativa L.) and Lac (Laccifer lacca Kerr) were extracted using acetic acid, ethanol, butanol and hexane with the concentration levels of 30%, 45% and 60%, respectively. The pH was then adjusted from 1 to 7, the natural extracted dyes were used to stain the chromosomes of spider lily (Hymenocallis littoralis Salisb.) root cells, which were ongoing mitotic cell division, using the squash technique. The results showed that the natural extract dyes were capable of chromosome staining and cell division observing. Natural dyes which showed well-stained chromosome included 45% acetic acid-extracted black glutinous rice dye (pH 1–3), 45% butanol-extracted black glutinous rice dye (pH 1–3) and 60% ethanol-extracted Lac dye (pH 1–3). We also concluded that all other extracts have no significant quality as chromosomal staining indication. Key words Natural dye, Chromosome staining, Black glutinous rice (Oryza sativa L.), Lac (Laccifer lacca Kerr), Spider lily (Hymenocallis littoralis Salisb).
    [Show full text]
  • Conservation Assessment for Butternut Or White Walnut (Juglans Cinerea) L. USDA Forest Service, Eastern Region
    Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. USDA Forest Service, Eastern Region 2003 Jan Schultz Hiawatha National Forest Forest Plant Ecologist (906) 228-8491 This Conservation Assessment was prepared to compile the published and unpublished information on Juglans cinerea L. (butternut). This is an administrative review of existing information only and does not represent a management decision or direction by the U. S. Forest Service. Though the best scientific information available was gathered and reported in preparation of this document, then subsequently reviewed by subject experts, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Milwaukee, Wisconsin 53203. Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. 2 Table Of Contents EXECUTIVE SUMMARY .....................................................................................5 INTRODUCTION / OBJECTIVES.......................................................................7 BIOLOGICAL AND GEOGRAPHICAL INFORMATION..............................8 Species Description and Life History..........................................................................................8 SPECIES CHARACTERISTICS...........................................................................9
    [Show full text]
  • Student Safety Sheets Dyes, Stains & Indicators
    Student safety sheets 70 Dyes, stains & indicators Substance Hazard Comment Solid dyes, stains & indicators including: DANGER: May include one or more of the following Acridine orange, Congo Red (Direct dye 28), Crystal violet statements: fatal/toxic if swallowed/in contact (methyl violet, Gentian Violet, Gram’s stain), Ethidium TOXIC HEALTH with skin/ if inhaled; causes severe skin burns & bromide, Malachite green (solvent green 1), Methyl eye damage/ serious eye damage; may cause orange, Nigrosin, Phenolphthalein, Rosaniline, Safranin allergy or asthma symptoms or breathing CORR. IRRIT. difficulties if inhaled; may cause genetic defects/ cancer/damage fertility or the unborn child; causes damages to organs/through prolonged or ENVIRONMENT repeated exposure. Solid dyes, stains & indicators including Alizarin (1,2- WARNING: May include one or more of the dihydroxyanthraquinone), Alizarin Red S, Aluminon (tri- following statements: harmful if swallowed/in ammonium aurine tricarboxylate), Aniline Blue (cotton / contact with skin/if inhaled; causes skin/serious spirit blue), Brilliant yellow, Cresol Red, DCPIP (2,6-dichl- eye irritation; may cause allergic skin reaction; orophenolindophenol, phenolindo-2,6-dichlorophenol, HEALTH suspected of causing genetic PIDCP), Direct Red 23, Disperse Yellow 7, Dithizone (di- defects/cancer/damaging fertility or the unborn phenylthiocarbazone), Eosin (Eosin Y), Eriochrome Black T child; may cause damage to organs/respiratory (Solochrome black), Fluorescein (& disodium salt), Haem- HARMFUL irritation/drowsiness or dizziness/damage to atoxylin, HHSNNA (Patton & Reeder’s indicator), Indigo, organs through prolonged or repeated exposure. Magenta (basic Fuchsin), May-Grunwald stain, Methyl- ene blue, Methyl green, Orcein, Phenol Red, Procion ENVIRON. dyes, Pyronin, Resazurin, Sudan I/II/IV dyes, Sudan black (Solvent Black 3), Thymol blue, Xylene cyanol FF Solid dyes, stains & indicators including Some dyes may contain hazardous impurities and Acid blue 40, Blue dextran, Bromocresol green, many have not been well researched.
    [Show full text]
  • Reviewanthraquinones, the Dr Jekyll and Mr Hyde of the Food Pigment
    Food Research International 65 (2014) 132–136 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Review Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family Laurent Dufossé ⁎ Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, ESIROI Agroalimentaire, Parc Technologique, 2 rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de La Réunion, France article info abstract Article history: Anthraquinones constitute the largest group of quinoid pigments with about 700 compounds described. Their Received 28 January 2014 role as food colorants is strongly discussed in the industry and among scientists, due to the 9,10-anthracenedione Received in revised form 9 September 2014 structure, which is a good candidate for DNA interaction, with subsequent positive and/or negative effect(s). Accepted 18 September 2014 Benefits (Dr Jekyll) and inconveniences (Mr Hyde) of three anthraquinones from a plant (madder color), an Available online 28 September 2014 insect (cochineal extract) and filamentous fungi (Arpink Red) are presented in this review. For example excellent Keywords: stability in food formulation and variety of hues are opposed to allergenicity and carcinogenicity. All the anthra- Anthraquinone quinone molecules are not biologically active and research effort is requested for this strange group of food Color pigments. Pigment © 2014 Elsevier Ltd. All rights reserved. Madder Carmine Filamentous fungi Contents 1. Introduction.............................................................
    [Show full text]
  • Colonial Garden Plants
    COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds.
    [Show full text]
  • Textile Society of America Newsletter 27:2 — Fall 2015 Textile Society of America
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Textile Society of America Newsletters Textile Society of America Fall 2015 Textile Society of America Newsletter 27:2 — Fall 2015 Textile Society of America Follow this and additional works at: https://digitalcommons.unl.edu/tsanews Part of the Art and Design Commons Textile Society of America, "Textile Society of America Newsletter 27:2 — Fall 2015" (2015). Textile Society of America Newsletters. 71. https://digitalcommons.unl.edu/tsanews/71 This Article is brought to you for free and open access by the Textile Society of America at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Textile Society of America Newsletters by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VOLUME 27. NUMBER 2. FALL, 2015 Cover Image: Collaborative work by Pat Hickman and David Bacharach, Luminaria, 2015, steel, animal membrane, 17” x 23” x 21”, photo by George Potanovic, Jr. page 27 Fall 2015 1 Newsletter Team BOARD OF DIRECTORS Roxane Shaughnessy Editor-in-Chief: Wendy Weiss (TSA Board Member/Director of External Relations) President Designer and Editor: Tali Weinberg (Executive Director) [email protected] Member News Editor: Ellyane Hutchinson (Website Coordinator) International Report: Dominique Cardon (International Advisor to the Board) Vita Plume Vice President/President Elect Editorial Assistance: Roxane Shaughnessy (TSA President) and Vita Plume (Vice President) [email protected] Elena Phipps Our Mission Past President [email protected] The Textile Society of America is a 501(c)3 nonprofit that provides an international forum for the exchange and dissemination of textile knowledge from artistic, cultural, economic, historic, Maleyne Syracuse political, social, and technical perspectives.
    [Show full text]