Évaluation des impacts de l'illumination du pont Jacques-Cartier sur l'avifaune et l'entomofaune

Mémoire

Shivia Nankoo

Maîtrise en génie des eaux - avec mémoire Maître ès sciences (M. Sc.)

Québec, Canada

© Shivia Nankoo, 2019

Évaluation des impacts de l’illumination du pont Jacques-Cartier sur l’avifaune et l’entomofaune

Mémoire de maîtrise

Shivia Nankoo

Sous la direction de :

Rosa Galvez-Cloutier, directrice de recherche

Résumé

Plusieurs lumières ont été installées sur le pont Jacques-Cartier le 17 mai 2017 afin de célébrer le 375ième anniversaire de la ville de Montréal et le 150ième anniversaire du Canada. Les lumières varient en couleur et intensité et sont illuminées toutes les nuits, pour une durée d’au moins 10 ans. L’Université Laval a répondu à l’appel d’offre lancée par l’organisation du pont afin de déterminer l’effet de ces lumières sur les animaux qui vivent à proximité du ou au pont, c’est-à-dire : l’hirondelle à front blanc (Petrochelidon pyrrhonota), le faucon pèlerin (Falco peregrinus), l’engoulevent d’Amérique (Chordeiles minor), le martinet ramoneur (Chaetura pelagica) et l’entomofaune (les insectes). Les observations, effectuées en 2017 et 2018, consistaient à détecter la présence, l’abondance, les activités de nidification et le taux d’activité des espèces d’intérêt. Les résultats ont montré que l’engoulevent d’Amérique et le martinet ramoneur n’ont pas été détectés aux alentours du pont et que l’illumination semble ne pas avoir d’impact sur leur présence. Les observations sur le faucon pèlerin ont montré que l’espèce n’était présente au pont qu’en 2018. Bien que des activités de chasse ont eu lieu, aucune nidification n’a été observée. Les observations sur les hirondelles ont montré que l’illumination a eu peu d’impacts en 2017. En 2018, l’espèce est plus abondante à proximité du pont, surtout dans la zone illuminée, et est plus active le soir lorsque les lumières sont allumées. Bien qu’aucun impact n’ait été observé en 2017, les observations ont montré une abondance plus élevée à proximité de la zone illuminée du pont. Une chaine alimentaire semble connecter les insectes, les hirondelles et les faucons puisque qu’une augmentation de l’un entraine une augmentation de l’autre. Les implications de ces observations sont expliquées et des recommandations sont émises sur la continuation du suivi.

ii

Abstract

Several lights were installed on the Jacques-Cartier on May 17, 2017 to celebrate the 375th anniversary of the city of and the 150th anniversary of Canada. Lights vary in color and intensity and are illuminated every night, for a period of at least 10 years. Université Laval applied for the tender issued by the bridge’s organisation to determine the effect of the illumination on species that live near or on the bridge, specifically the cliff swallow (Petrochelidon pyrrhonota), the peregrine falcon (Falco peregrinus), the common nighthawk (Chordeiles minor), the chimney swift (Chaetura pelagica) and the insect fauna. The observations, conducted in 2017 and 2018, consisted of detecting the presence, abundance, nesting behavior and activity rate of the species of interest. The results reported that the common nighthawk and the chimney swift were not detected near the bridge and therefore seem to be unaffected by the illumination. Observations of the peregrine falcon indicated that the species was only seen in 2018. Although the bridge was used as a hunting ground, no nesting occurred. The observations on the cliff swallow showed the bridge had no impact on the species in 2017. However, in 2018, the species was more abundant, especially in the illuminated zone, and was more active in the evening when the lights were on. Although observations of the insect fauna showed no impact from the bridge in 2017, abundance of insects in 2018 was higher near the illuminated part of the bridge. A food chain seems to connect the insects, the swallows and the falcons since it is possible that an increase in one causes an increase in the next. The implications of these observations are explained, and recommendations are made on further follow- up.

iii

Table des matières

Résumé ...... ii

Abstract ...... iii

Table des matières ...... iv

Liste des figures ...... ix

Liste des tableaux ...... xii

Liste des sigles ...... xiii

Liste des acronymes ...... xiv

Liste des abréviations ...... xv

Remerciements ...... xvi

Avant-propos ...... xvii

Introduction ...... 1

Présentation des espèces à l’étude ...... 3

Le faucon pèlerin ...... 3

L’hirondelle à front blanc ...... 5

L’entomofaune ...... 6

Problématique ...... 7

Objectifs de la recherche ...... 8

L’avifaune ...... 8

L’entomofaune ...... 9

Chapitre 1 « The multiple consequences of urban light pollution on birds » ...... 10

1.1 Résumé ...... 10

1.2 Abstract ...... 10

1.3 Introduction ...... 10

1.4 Methods ...... 12

1.5 The relation between birds and light ...... 12

1.5.1 Sensitivity to Light ...... 12

iv

1.5.1.1 Visible light ...... 12 1.5.1.2 Ultraviolet light ...... 13 1.5.2 Attraction to Light ...... 13

1.5.2.1 Food source ...... 13 1.5.2.2 Nesting sites ...... 13 1.5.2.3 Protection against predators ...... 14 1.5.2.4 Orientation ...... 14 1.5.3 Repulsion from Light ...... 14

1.6 How studies were performed ...... 14

1.6.1 Experiments in the laboratory...... 14

1.6.2 Experiments in the wild ...... 15

1.6.3 Ethical standards ...... 15

1.7 The consequences of artificial light on birds ...... 15

1.7.1 Reproduction ...... 15

1.7.1.1 First discovery of the consequence ...... 15 1.7.1.2 Modification of the timing of reproduction ...... 16 1.7.1.3 Modification of the sex apparatus ...... 17 1.7.2 Sleep pattern ...... 17

1.7.2.1 Modification of the timing and the duration of sleep ...... 17 1.7.3 Migration ...... 18

1.7.3.1 Attraction causing fatigue, disorientation and death ...... 19 1.7.4 Patterns of activity ...... 19

1.7.4.1 Modification of the timing of activity ...... 19 1.7.5 Communication ...... 20

1.7.6 Problem-solving skills ...... 21

1.8 Other factors stronger than light ...... 21

1.8.1 Noise ...... 21

1.8.2 Cloud cover ...... 22

1.8.3 Eye size ...... 22

1.8.4 Body size ...... 23

v

1.8.5 Pulsing light ...... 23

1.9 Discussion ...... 23

1.9.1 Future directions ...... 27

1.10 Conclusion ...... 28

1.11 Glossary ...... 29

1.12 Literature Cited ...... 29

Chapitre 2 « The Jacques Cartier bridge impacts nesting behavior and activity of the cliff swallow (Petrochelidon pyrrhonota) » ...... 36

2.1 Résumé ...... 36

2.2 Abstract ...... 36

2.3 Introduction ...... 37

2.4 Methods ...... 38

2.4.1 Nest abundance and distribution ...... 40

2.4.2 Nest activity ...... 40

2.5 Results ...... 41

2.5.1 Nest abundance and distribution ...... 41

2.5.2 Nest activity ...... 42

2.6 Discussion ...... 47

2.7 Conclusion ...... 50

2.8 Acknowledgements ...... 51

2.9 Literature Cited ...... 51

Chapitre 3 « The impact of the Jacques Cartier bridge illumination on the food chain: from insects to predators » ...... 56

3.1 Résumé ...... 56

3.2 Abstract ...... 56

3.3 Introduction ...... 57

3.4 Methods ...... 58

3.4.1 Insects ...... 58

vi

3.4.2 Cliff swallows ...... 60

3.4.3 Peregrine falcons ...... 60

3.5 Results ...... 62

3.5.1 Insects ...... 62

3.5.2 Cliff swallows ...... 64

3.5.3 Peregrine falcons ...... 65

3.6 Discussion ...... 66

3.7 Conclusion ...... 71

3.8 Acknowledgements ...... 71

3.9 Literature Cited ...... 71

Chapitre 4 « Insect relative mortality rate of different types of urban lights » ...... 75

4.1 Résumé ...... 75

4.2 Abstract ...... 75

4.3 Introduction ...... 75

4.4 Methodology ...... 77

4.5 Results ...... 79

4.6 Discussion ...... 82

4.7 Conclusion ...... 84

4.8 Compliance with ethical standards ...... 84

4.9 Literature Cited ...... 84

Conclusion ...... 88

Recommandations...... 89

Récapitulatif des conclusions ...... 90

Bibliographie ...... 92

Annexe A Suivi du martinet ramoneur et de l’engoulevent d’Amérique ...... 106

A.1 Introduction ...... 106

A.1.1 Le martinet ramoneur ...... 106

vii

A.1.2 L’engoulevent d’Amérique ...... 108

A.2 Méthodologie...... 109

A.2.1 Martinet ramoneur ...... 109

A.2.2 Engoulevent d’Amérique ...... 110

A.3 Résultats ...... 111

A.3.1 Martinet ramoneur ...... 111

A.3.2 Engoulevent d’Amérique ...... 114

A.4 Discussion ...... 114

A.5 Conclusion ...... 116

A.6 Références ...... 116

Annexe B Analyse visuelle et génétique de l’entomofaune ...... 119

B.1 Introduction ...... 119

B.2 Méthodologie...... 119

B.3 Résultats ...... 120

B.4 Discussion ...... 124

B.5 Conclusion ...... 126

Annexe C Protocole d’extraction d’ADN pour l’analyse génétique de l’entomofaune (Qiagen, 2006) ...... 127

Annexe D Protocole de PCR (polymerase chain reaction, réaction de polymérase en chaine) pour l’analyse génétique de l’entomofaune ...... 128

Annexe E Protocole de purification d’ADN pour l’analyse génétique de l’entomofaune (Zymo Research, 2001) ...... 129

Annexe F Protocole de préparation des échantillons pour le séquençage SANGER pour l’analyse génétique de l’entomofaune ...... 130

Annexe G Descriptions des ordres d’insectes identifiés visuellement ...... 131

Annexe H Résultats complets de l’identification génétique des insectes par séquençage SANGER ...... 137

viii

Liste des figures

Figure 1. Le pont Jacques-Cartier illuminé (source : PJCCI)...... 1

Figure 2. Faucon pèlerin en vol (https://www.pronatura-ge.ch/Plan_d_action_Pelerin)...... 3

Figure 3. Hirondelle à front blanc en vol (https://www.allaboutbirds.org/guide/Cliff_Swallow/id)...... 5

Figure 4. Picture taken from NASA International Space Station (ISS) of the American continent at night (2017) (https://www.nasa.gov/image-feature/new-full-hemisphere-views-of-earth-at-night)...... 11

Figure 5. Picture of the section of the Jacques Cartier bridge illuminated at night (https://jacquescartierchamplain.ca/community-heritage/structures-and-projects/illumination-of-jacques-cartier- bridge/?lang=en)...... 38

Figure 6. Map of the Jacques Cartier bridge (Montréal, Canada) with its sections (2, 3, 4, 5, 6, 7 and 8) (sourced from Jacques Cartier and Champlain Incorporated (JCCBI))...... 39

Figure 7. Location of the three (3) sites used to observe cliff swallows nests on the Jacques Cartier bridge. Locations were changed between the two (2) years to ensure that active nests were present in each zone. Orange circles represent the locations of the zones in 2017 and blue circles the locations of the zones in 2018...... 40

Figure 8. Total abundance of cliff swallow nests on the Jacques Cartier bridge from 2012 to 2018 regardless of sections. The white columns represent the past data and the dark columns represent the data collected in this study...... 41

Figure 9. Abundance of cliff swallow nests in a) section 6 and b) section 7 of the Jacques Cartier bridge. These sections are the closest to the bridge’s lights. No observations were made before 2016 in section 7. The blue column shows the data collected in the first year of this study and the orange column the data in the second year of this study...... 42

Figure 10. Percentage of activity and abundance in parentheses of active cliff swallow nests in each section of the Jacques Cartier bridge for the two years of the study...... 44

Figure 11. Abundance of cliff swallow movements to and from nests separated by the period of the day (morning, afternoon and evening) in a) 2017 and b) 2018, and number of cliff swallow movements to and from nests separated by the period of the day (morning, afternoon and evening) and by study sites (illuminated, intermediate and control) in c) 2017 and d) 2018...... 46

Figure 12. Location of the three sites for insect capture in proximity to the Jacques Cartier bridge. The light gray circles represent the study sites in 2017 and the black ones in 2018...... 59

ix

Figure 13. Pictures of the two types of insect traps used in this experiment: a) Aerial trap (MegaView Science Co. SLAM Trap Large BT1005 and b) Emergence trap (MegaView Science Co. Amphibious Emergence Trap BT2008)...... 59

Figure 14. Location of the sections on the Jacques Cartier bridge. The peregrine falcon observation site is located in section 7 (sourced from Jacques Cartier and Champlain Bridges Incorporated (JCCBI))...... 61

Figure 15. Insect abundance at the Jacques Cartier bridge in 2017 and 2018 per m3 for aerial traps at a) the control site, b) the intermediate site and c) the illuminated site, as well as insect abundance per m2 for aquatic traps at d) the control site, e) the intermediate site and f) the illuminated site. Loss and breakage of traps might cause discrepancies in the data...... 63

Figure 16. Cliff swallow nest abundance from 2012 to 2018. The first year of the study (2017) is shown in yellow and the second year (2018) is shown in green. Results from 2012 to 2016 were taken from Services Environnementaux Faucons (SEF)...... 64

Figure 17. Percentage of activity and abundance in parentheses of cliff swallow nests at each section (2, 3, 4, 5, 6 and 7) of the Jacques Cartier bridge in a) 2017 and b) 2018...... 65

Figure 18. Percentage occurrence of peregrine falcon behaviors observed in 2018 at the Jacques Cartier bridge...... 66

Figure 19. Diagram of the food chain connecting insects, insectivorous birds (including the cliff swallow) and peregrine falcons (the top predator species). Full arrows show a direct impact and dotted arrows show an indirect impact...... 70

Figure 20. Pictures of the four (4) types of urban lights used in this experiment: a) the custom-made LED spotlight b) the custom-made LED light strip c) the LED lamp post and d) the sodium lamp post and the custom-made wood supporting apparatus for e) the LED spotlight f) the LED light strip g) the LED lamp post h) the sodium lamp post...... 78

Figure 21. Experimental protocol for the determination of the insect mortality rate in relation to the type of urban light used...... 79

Figure 22. Relative mortality rate of the four (4) types of urban light sources...... 81

Figure 23. Precipitation data in millimeters two (2) days before insect collection and percentage of moon light the night before insect collection in relation to insect abundance on each collection day (some precipitation data was not available)...... 82

Figure 24. Martinet ramoneur perché (http://www.thewoodthrushshop.com/news/2016/9/8/bird-bio-chimney- swifts-common-nighthawks)...... 106

x

Figure 25. Engoulevent d’Amérique au repos (https://www.canada.ca/fr/environnement-changement- climatique/services/oiseaux-canada/celebrons-100-ans-conservation-internationale/on-est-aux- oiseaux/coralie-daigle-bruno-drolet.html)...... 108

Figure 26. Cheminées se trouvant sur le bâtiment Hélène-de-Champlain sur l’Île Ste-Hélène observées pour leur potentiel de servir de sites de nidification pour les martinets ramoneurs...... 110

Figure 27. Carte des deux (2) routes suivies lors de l’observation de l’engoulevent d’Amérique aux alentours du pont Jacques-Cartier. Les chiffres montrent l’ordre dans lequel les stations ont été parcourues...... 111

Figure 28. Cheminées propices au martinet ramoneur visitées lors des inventaires réalisés en 2017 (Pérez 2017)...... 112

Figure 29. Carte de la zone autour du pont Jacques-Cartier sans la présence d’engoulevents...... 114

Figure 30. Photographie d’un insecte de l’ordre Trichoptera pour l’analyse visuelle...... 119

xi

Liste des tableaux

Tableau 1. Calendrier du cycle de nidification du faucon pèlerin...... 4

Tableau 2. Calendrier du cycle de nidification de l’hirondelle à front blanc...... 6

Tableau 3. Abundance of active and inactive nests on the whole Jacques Cartier bridge in 2012, 2017 and 2018. The blue line shows the data collected in the first year of this study and the orange line the data from the second year of this study...... 43

Tableau 4. Insect mortality rates for each collection day, total mortality rate and mean mortality rate for the four (4) different types of urban lights...... 80

Tableau 5. Impact de l’illumination sur chaque groupe animal observé au pont Jacques-Cartier en 2017 et 2018...... 88

Tableau 6. Calendrier du cycle de nidification de l’engoulevent d’Amérique...... 107

Tableau 7. Calendrier du cycle de nidification de l’engoulevent d’Amérique...... 108

Tableau 8. Sites possibles de nidification du martinet ramoneur observés en 2017 et 2018...... 113

Tableau 9. Identification et dénombrement des populations d’insectes lors de la collecte d’échantillonnage in- situ d’août 2017...... 121

Tableau 10. Identification par séquençage SANGER des insectes récoltés aux sites témoin, intermédiaire et illuminé dans la zone du pont Jacques-Cartier en août 2017 représentant les proportions du nombre d’individus les plus élevées...... 123

Tableau 11. Description des caractéristiques et du cycle de vie des différents ordres d’insectes identifiés visuellement au pont Jacques-Cartier en août 2017...... 131

Tableau 12. Résultats complets des identifications par séquençage SANGER d’insectes récoltés aux sites témoin, intermédiaire et illuminé dans la zone du pont Jacques-Cartier en août 2017...... 137

xii

Liste des sigles

ADN : Acide désoxyribonucléique

CRFPQ : Comité de Rétablissement du Faucon Pèlerin au Québec

DDT : Dichlorodiphényltrichloroéthane

DNA : Deoxyribonucleic acid

ÉEE : Évaluation des effets environnementaux

ICOAN : Initiative de conservation des oiseaux de l'Amérique du Nord

JCCBI : Jacques Cartier and Champlain Bridges Incorporated

LED : Light Emitting Diode

LEP : Loi sur les Espèces en Péril

MFFP : Ministère de la Forêt, de la Faune et des Parcs

MRNF : Ministère des Ressources Naturelles et de la Faune

NCBI : National Center for Biotechnology Information

PCR : Réaction en chaîne par polymérase, Polymerase chain reaction

PJCCI : Les Ponts Jacques Cartier et Champlain Incorporée

SEF : Services Environnementaux Faucons

UV : Ultraviolet

xiii

Liste des acronymes

ALAN : Artificial Light at Night

BLAST: Basic Local Alignment Search Tool

CHUL : Centre Hospitalier de l’Université Laval

COSEPAC : Comité sur la situation des espèces en péril au Canada

COSEWIC : Committee on the Status of Endangered Wildlife in Canada

DEL : Diode électroluminescente

xiv

Liste des abréviations m : mètres mg : milligrammes ml : millilitres rpm : Rotation par minute

μL : microlitre

xv

Remerciements

J’aimerais remercier la professeure Rosa Galvez pour m’avoir permis de réaliser cette recherche et de m’avoir encouragé durant la totalité de mon parcours.

Je suis reconnaissante pour tout le support qui m’a été donné par Les Ponts Jacques Cartier et Champlain Incorporé pour la réalisation de cette recherche, l’accès aux sites et l’aide technique pour l’entreposage et l’installation de l’équipement nécessaire. Je souhaite remercier Emanuel Chênevert, Soufyane Loubar, Sylvie Boulanger et Stéphane Vaquette.

Je veux remercier l’organisation Services Environnementaux Faucons pour leur aide précieuse pour l’observation des espèces aviaires et les techniques de prises de données, notamment Marilou G. Skelling, Marie-Line Fiola et Luana Graham-Sauvé.

J’aimerais aussi remercier le personnel du Centre Hospitalier de l’Université Laval pour leur support et leur conseils précieux pour l’analyse génétique des insectes, plus spécialement Jacques Corbeil, Nancy Boucher, Pier-Luc Plante et Francis Brière.

J’aimerais aussi remercier les entomologistes de l’Université de Milan pour leur aide lors de la récolte d’insectes et l’analyse des données, notamment Matteo Montagna et Giuseppe Lozzia.

Je veux exprimer ma gratitude envers le professeur Maximiliano Cledon ainsi que tous les stagiaires qui ont participé aux collectes de données et aux observations sur le terrain durant la totalité de cette étude : Arnaud Benoît-Pépin, Jasmine Duchesneau, Marie Bourgault et Justine Auquier.

Je suis reconnaissante à Michel Bisping pour m’avoir permis l’accès aux laboratoires de l’Université et m’avoir aidé pour l’utilisation de l’équipement nécessaire à l’analyse des échantillons d’insectes. Je veux aussi remercier Martin Lapointe, Denis Jobin et Vincent Aeschlimann pour leur aide dans l’organisation et l’installation de l’équipement à l’Université pour une majeure partie de mon projet.

Finalement, je veux remercier Sébastien Raymond et Stéphane Boudreau d’avoir accepté de faire partie du jury pour l’évaluation de mon mémoire et de mon séminaire, et pour leurs nombreux conseils par rapport aux analyses et conclusions de mon projet.

xvi

Avant-propos

Ce mémoire intègre quatre (4) articles scientifiques :

• « The multiple consequences of urban light pollution on birds » au chapitre 1: o Date de soumission: 5 mars 2019 o Date d’acceptation: NA o Date de publication: NA o Statut d’auteur: Je suis l’auteur principal. o Rôle : J’ai écrit, corrigé et soumis l’article. o Coauteurs : Sébastien Raymond, Maximiliano Cledon et Rosa Galvez.

• « The Jacques Cartier bridge impacts nesting behavior and activity of the cliff swallow (Petrochelidon pyrrhonota) » au chapitre 2: o Date de soumission: 26 avril 2019 o Date d’acceptation: NA o Date de publication: NA o Statut d’auteur: Je suis l’auteur principal. o Rôle : J’ai écrit, corrigé et soumis l’article. o Coauteurs : Sébastien Raymond et Rosa Galvez.

• « The impact of the Jacques Cartier bridge illumination on the food chain: from insects to predators » au chapitre 3: o Date de soumission: 29 mars 2019 o Date d’acceptation: 2 juillet 2019 o Date de publication: 20 octobre 2019 o Statut d’auteur: Je suis l’auteur principal. o Rôle : J’ai écrit, corrigé et soumis l’article. o Coauteurs : Sébastien Raymond et Rosa Galvez.

• « Insect relative mortality rate of different types of urban lights » au chapitre 4: o Date de soumission: 28 mars 2019 o Date d’acceptation: NA o Date de publication: NA o Statut d’auteur: Je suis l’auteur principal. o Rôle : J’ai écrit, corrigé et soumis l’article. o Coauteurs : Sébastien Raymond et Rosa Galvez.

xvii

Les sections qui ne sont pas des articles scientifiques ont été extraits du rapport présenté à Les Ponts Jacques Cartier et Champlain Incorporé en décembre 2018 (Nankoo et al. 2018). Certains volets de la recherche effectuée sont présentés dans les annexes : le suivi de l’engoulevent d’Amérique et du martinet ramoneur en annexe A et l’analyse visuelle et génétique des insectes en annexe B.

xviii

Introduction

Dans le cadre des festivités du 375e anniversaire de Montréal et du 150e anniversaire du Canada, le pont Jacques-Cartier est illuminé depuis le 17 mai 2017, et le restera pour une période d’au moins dix ans. Cette mise en lumière met en valeur un repère historique et architectural majeur du paysage urbain de la région montréalaise, contribuant à son rayonnement touristique international. Le promoteur du projet est Les Ponts Jacques Cartier et Champlain Incorporée (PJCCI), société d’État mandataire mère, propriétaire du pont Jacques-Cartier.

Figure 1. Le pont Jacques-Cartier illuminé (source : PJCCI).

L’illumination du pont se trouve à la section 7 (qui inclue les piles 23 à 26) située entre Montréal et l’Île Ste- Hélène. Les zones éclairées incluent les tourelles, les piles, l’intérieur et l’extérieur de la structure du pont (Figure 1). Les luminaires utilisés comprennent 2 000 réglettes et 400 projecteurs. Ces derniers peuvent être ajustés afin d’illuminer un endroit désiré. Tous les luminaires sont de type LED. Les projecteurs sur la structure sont de type RGB; ils peuvent donc afficher n’importe quelle couleur, alors que ceux sur les piles sont blancs (Raymond et al. 2017, PJCCI 2017a, PJCCI 2017b).

Un rapport émis par le consortium WSP Canada Inc. (WSP) / Aecom Consultants Inc. (Aecom) en 2016 a présenté l’évaluation des effets environnementaux (ÉEE) du projet. Selon les conclusions du rapport, l’effet de l’illumination est ‘’non important’’. Cependant, plusieurs recommandations ont été émises afin de limiter les impacts de l’illumination. En ce qui concerne l’avifaune, une des recommandations mentionne : « effectuer un suivi sur les deux (2) espèces aviaires (hirondelle à front blanc et faucon pèlerin) utilisant la structure et ses environs une fois l’illumination entamée afin de quantifier les effets du projet sur les espèces ». C’est dans ce

1

cadre que la professeure Rosa Galvez de l’Université Laval a été mandatée par PJCCI pour réaliser le suivi environnemental de l’illumination du pont Jacques-Cartier sur l’avifaune, en particulier le faucon pèlerin, le martinet ramoneur, l’engoulevent d’Amérique et l’hirondelle à front blanc, et l’entomofaune (insectes).

La présence de lumière artificielle est reconnue pour avoir un impact sur le mode de vie des animaux vivant à proximité. Chez les oiseaux, la lumière peut encourager la nidification, la protection contre les prédateurs et la recherche de nourriture (Robertson et al. 2010, Tets et al. 1969, Rao et Koli 2017, De Molenaar et al. 2000, Gorenzel et Salmon 1995). Ces aspects peuvent être positifs pour les individus puisqu’ils aident leur survie. Cependant, plusieurs impacts négatifs ont aussi été observés vis-à-vis l’exposition à la lumière urbaine. Celle- ci peut causer une modification de la période adéquate pour la reproduction en accélérant le processus de développement des organes sexuels et la ponte des œufs (Dominoni et Partecke 2015, Dominoni et al. 2015, Dominoni et al. 2013, Kempenaers et al. 2010). Le sommeil des oiseaux peut aussi être négativement affecté par la lumière artificielle. Plusieurs recherches ont trouvé que le moment auquel les oiseaux vont dormir est décalé, c’est-à-dire que les oiseaux s’endorment plus tard dans la nuit et peuvent se lever plus tard le matin. De plus, la quantité de sommeil (en heures) peut diminuer (Sun et al. 2017, Raap et al. 2017, Yorzinski et al. 2015). La migration des oiseaux peut aussi être modifié puisque les oiseaux peuvent être attirés par la lumière artificielle sur les immeubles et dévier de leur trajectoire initiale (Poot et al. 2008, Cochran et al. 2004, Horváth et al. 2009, Longcore et Rich 2004, Stone 2018, Kociolek et al. 2011, Squires et Hanson 1918, Merkel et Johansen 2011, Avery et al. 1976, Jones et Francis 2003). Les activités de chasse peuvent aussi avoir lieu plus tard dans la soirée, même pour les oiseaux diurnes, lorsque de la lumière artificielle est présente (Jong et al. 2016, Lustick 1973, Russ et al. 2015). De plus, elle peut encourager les oiseaux à chanter plus tôt le matin (Miller 2006, Silva et al. 2016, Kempenaers et al. 2010). Tous ces aspects peuvent jouer un rôle sur la survie des espèces aviaires puisqu’ils affectent leur reproduction, leur recherche de nourriture et leur migration. Le premier chapitre de ce mémoire présente ces informations en détail.

La lumière artificielle peut aussi avoir un impact sur les insectes. En effet, plusieurs recherches effectuées ont démontré que la présence de lumière attire les insectes, les rendant ainsi vulnérables à la prédation (par les oiseaux, par exemple), et diminuant leur chance de survie puisqu’ils risquent la mort par brûlure ou épuisement (McDonnell et al. 2015, Justice and Justice 2016, Pawson and Bader 2014, Egri et al. 2017). Une diminution importante d’insectes dans l’environnement est susceptible d’avoir des conséquences désastreuses pour tous les animaux qui en font leur source de nourriture primaire.

Ces informations montrent l’importance de la recherche effectuée dans ce mémoire afin d’évaluer l’impact de la présence des nouvelles lumières sur le pont et d’assurer la préservation des espèces animales vivant à proximité.

2

Présentation des espèces à l’étude

Les sections suivantes comprennent des informations sur les quatre espèces de l’avifaune étudiées dans le cadre de cette recherche, soit le faucon pèlerin, le martinet ramoneur, l’engoulevent d’Amérique et l’hirondelle à front blanc. Elles ont été choisies dû à leur présence antérieure ou récente à proximité du pont et à leur statut précaire selon différents organismes responsables de la protection des animaux. Les informations relatives au martinet ramoneur et à l’engoulevent d’Amérique sont présentées à l’annexe A.

Le faucon pèlerin

Le faucon pèlerin (Falco peregrinus) est un des oiseaux les plus étudiés au monde (Davis 2008).

Le faucon arbore un ventre rayé et son dos est gris foncé, presque bleu. La disposition des plumes au niveau de sa tête donne l’apparence d’un casque noir avec des longs favoris de la même couleur, alors que son cou est blanc (figure 2). Les individus juvéniles n’ont pas le cou blanc, mais sont striés de la base de la tête au ventre. Leur dos a une coloration brunâtre (Brûlotte 2000, Davis 2008, Vuilleumier 2009).

Figure 2. Faucon pèlerin en vol (https://www.pronatura-ge.ch/Plan_d_action_Pelerin).

Le faucon pèlerin est une espèce d’oiseau migrateur qui niche normalement le long des côtes dans les montagnes. En milieux urbains, on le retrouve sur les hauts édifices et les ponts (COSEPAC 2007, Hémisphère 2011, Brûlotte 2000). Il préfère nicher dans les grands espaces ouverts afin de faciliter sa capacité à chasser ses proies (Davis 2008).

La présence de l’espèce est notée sur tous les continents sauf l'Antarctique (Davis 2008). En Amérique, son territoire comprend le sud du Canada, les États-Unis, le Mexique ainsi qu’une partie de l’Amérique Centrale et du Sud (Cooperation 2000, Davis 2008). Au Québec, des faucons ont été observés dans la région de Montréal et au Nord de la province (Brûlotte 2000). Ils migrent jusqu’à la côte Est des États-Unis ou même jusqu’en Amérique du Sud alors qu’ils suivent les oiseaux migrateurs qui leur servent de proies (CRFPQ 2002).

3

En temps que prédateurs généralistes, ils se nourrissent des espèces disponibles à l’endroit où ils se trouvent. Leur régime est surtout constitué d’oiseaux, mais peut parfois compter de petits mammifères. Ils sont souvent vu en chasse au-dessus des plans d’eau où ils se nourrissent d’oiseaux marins. Ils chassent en vol, frappant leur proie du dessus pour l’assommer (Davis 2008).

Le vol du faucon se caractérise par des courts, mais puissants battements d’ailes. Ses ailes sont longues et pointues alors que sa queue est carrée (Brûlotte 2000). Il plane souvent. De loin, il peut être confondu pour un corbeau ou un aigle (Davis 2008). Le faucon a un comportement diurne (COSEPAC 2007).

Les faucons nichent dans des dépressions dans la surface des falaises ou des structures urbaines (Davis 2008). Ils pondent 3 à 4 œufs durant l’été et la couvaison dure 28 à 35 jours (Brûlotte 2000, Davis 2008). La période de nidification est séparée en plusieurs parties, tel qu’illustré dans le tableau 1 (Molina et al. 2016).

Tableau 1. Calendrier du cycle de nidification du faucon pèlerin.

Mars Avril Mai Juin Juillet Août Ponte des œufs Incubation des œufs Élevage des juvéniles Indépendance des juvéniles Dissémination des oiseaux

Les faucons ont tendance à réutiliser les mêmes endroits pour nicher pendant plusieurs années (COSEPAC 2007, Davis 2008). Les juvéniles qui reviennent ont tendance à nicher à l’endroit où ils sont nés (Bird 1997). C’est pour cette raison qu’il est important de protéger les nids présents sur les structures anthropiques.

Les faucons se sont très bien adaptés aux milieux urbains. Les hauts bâtiments sont des endroits de nidification pour l’espèce. De plus, la forte présence d’oiseaux urbains comme les pigeons assurent leur alimentation. Cependant, plusieurs dangers sont présents dans les villes : les collisions avec les automobiles, les grandes fenêtres qui reflètent la lumière et la présence d’eau sous les ponts où ils nichent augmentent le risque de mortalité des juvéniles (Davis 2008). Plusieurs nids artificiels ont été installés dans la région de Montréal pour répondre à la chute de la population des faucons (Hémisphère, 2011).

Le nombre de faucons a grandement diminué depuis les années 1950. L’insecticide DDT utilisé en grande quantité par les agriculteurs serait l’une des causes de la baisse de leurs populations. L’exposition au pesticide a pour effet secondaire de fragiliser la coquille des œufs des faucons. Les parents brisaient alors leurs œufs de façon accidentelle lors de la couvaison, réduisant ainsi la capacité de reproduction de l’espèce (Vuilleumier 2009). Le DDT a depuis été banni. Des efforts de conservation ont été mis en œuvre et le nombre de faucons

4

a augmenté (Davis 2008). Entres autres, des individus ont été élevés en captivité et relâchés dans la nature afin d’augmenter la population sauvage (Vuilleumier 2009, CRFPQ 2002). Les populations de cette espèce seraient maintenant stables (Davis 2008, Vuilleumier 2009).

Le faucon pèlerin est désigné vulnérable au Québec par le Ministère de la Forêt, de la Faune et des Parcs (MFFP) et est donc protégé par la Loi sur les espèces menacées et vulnérables. De plus, étant un oiseau de proie, il est protégé par la Loi sur la conservation et la mise en valeur de la faune. Cette loi interdit, en tout temps, de chasser, de piéger ou d’avoir en sa possession un oiseau de proie sauvage (vivant ou mort). Le faucon pèlerin est considéré menacé par le Comité sur la situation des espèces en péril du Canada (Cooperation 2000, COSEPAC 2007, Gauthier et al. 2007). Il est aussi considéré vulnérable par le ministère des Ressources Naturelles et de la faune au Québec (MRNF 2008-2009). Le faucon pèlerin possède aussi le statut d’espèce préoccupante au Canada en vertu de la Loi sur les espèces en péril (LEP).

L’hirondelle à front blanc

L’hirondelle à front blanc (Hirundo pyrrhonota) est une espèce d’oiseau migrateur. Elle peut être trouvée partout en Amérique du Nord (Vuilleumier 2009). Elle y passe l’été pour nicher et élever sa progéniture, et migre ensuite en Amérique du Sud pour y passer l’hiver (Québec Oiseaux 2017a).

Figure 3. Hirondelle à front blanc en vol (https://www.allaboutbirds.org/guide/Cliff_Swallow/id).

L’hirondelle a un dos bleu et noir, un ventre blanc, une gorge brune et une tache blanche sur le front, lui valant ainsi son nom (figure 3) (Brûlotte 2000).

L’hirondelle est insectivore et se nourrit en vol, souvent au-dessus des plans d’eau (Québec Oiseaux 2017a). C’est de cette façon qu’elle est majoritairement détectée.

5

Le nid de l’hirondelle est fait de boules de boue que l’hirondelle récolte et agglutine pour construire un nid en forme de gourde (Hémisphère 2011). En milieu urbain, les hirondelles utilisent les structures anthropiques de façon à minimiser la quantité de boue à utiliser. Elles forment ainsi leurs nids dans les coins des structures formant un angle. Les nids sont souvent regroupés les uns à côté des autres afin de minimiser le temps et l’énergie dépensés à la construction, ce qui est avantageux pour l’espèce. Les hirondelles sont aussi susceptibles de réutiliser les nids qui ont été construits les années précédentes. Cependant, des parasites peuvent être présents dans les nids (Molina et al. 2012). À chaque saison de reproduction, l’hirondelle pond 4 à 5 œufs (Brûlotte 2000). L’oiseau devient territorial pendant sa période de nidification et ne pond généralement qu’une fois dans la saison. La période de nidification de l’hirondelle est présentée au tableau 2 (Molina et al. 2016).

Tableau 2. Calendrier du cycle de nidification de l’hirondelle à front blanc.

Mars Avril Mai Juin Juillet Août Construction du nid Ponte des œufs Incubation des œufs Élevage des juvéniles

Cette espèce étant une espèce migratrice, elle est donc protégée par la Loi de 1994 sur la convention concernant les oiseaux migrateurs. Il est donc illégal de causer des dommages à l’espèce, même de façon accidentelle. De plus, il est interdit de déranger ou détruire le nid et les œufs de ces espèces, et ce, même hors de la période de nidification. L’hirondelle n’a pas de statut selon la Loi sur les espèces en péril au Canada (2002) ou la Loi sur les espèces menacées et vulnérables au Québec (2017).

L’entomofaune

Les insectes forment le plus grand groupe d'organismes vivants au monde en terme du nombre d'espèces et de biomasse. Dans le monde, 850 000 espèces sont identifiées, mais ce nombre ne cesse d'augmenter. Il y a 13 000 espèces d’insectes au Québec, mais le compte total serait autour de 25 000 en estimant celles qui n'ont pas encore été identifiées (Bélanger 1991).

Les insectes se nourrissent surtout de plantes (racines, feuilles, jeunes pousses, fleurs, etc.). Ils se nourrissent en grande partie durant leur stade de développement. Le stade adulte est principalement associé avec la reproduction et la ponte des œufs (Arnett 2000).

La maturation des insectes se fait durant le printemps ou l'été. Ils hivernent pendant l'hiver. La plupart des espèces d'insectes ne migrent pas (Arnett 2000).

6

Les insectes peuvent vivre dans une variété d'environnements différents: des forêts jusqu'au désert. Peu vivent dans l'océan (Arnett 2000, Bélanger 1991). Au Québec, les forêts boréales, les marécages et les lacs sont des exemples d'écosystèmes favorables aux insectes (Bélanger 1991). Une grande abondance d'insectes est souvent associée aux milieux urbains due à l'importante quantité de lumière émise dans les villes. Cette lumière attire les insectes (Robinson 2005).

Les différents stades juvéniles des insectes sont difficiles à trouver en nature; les espèces sont souvent observées à leur stade adulte (Arnett 2000).

La fragmentation et la destruction des habitats (notamment des milieux humides), l'utilisation excessive de pesticides et la pollution sont des causes du déclin des insectes (Arnett 2000). Par conséquent, plusieurs insectes sont en danger d'extinction, comme certains coléoptères, lépidoptères et odonates (Bélanger 1991).

La plupart des informations connues au sujet des insectes traitent de leur activité au stade adulte. Les stades de développement sont beaucoup moins étudiés (Bélanger 1991). Il n'y a aucune donnée sur les espèces présentes dans la région du pont Jacques-Cartier ou même dans la région de Montréal. La grande diversité d’espèces et l’absence de suivis rend difficile une inventorisation historique des espèces. Aucune étude de ce genre n’a été effectuée au pont Jacques-Cartier.

Problématique

Les impacts de l’illumination du pont Jacques-Cartier sur les espèces à l’étude ne sont pas connus. Les premières observations sur l’effet potentiel de l’illumination ont été mentionnées dans le rapport de WSP (2016).

À première vue, l’impact potentiel de l’illumination sur le faucon, une espèce territoriale et diurne, apparait faible ou limité. De plus, selon WSP (2016), le faucon pèlerin n’est pas directement touché par l’illumination du pont Jacques-Cartier puisqu’il ne niche plus au pont depuis plusieurs années.

En ce qui concerne le martinet, il est diurne et peu présent autour du pont, tout comme le faucon. Ainsi, l’impact de la lumière est potentiellement faible voir nul sur la nidification de cet oiseau.

Contrairement aux autres espèces à l’étude, l’engoulevent d’Amérique est nocturne. Cependant, selon certaines données historiques, il est peu abondant autour du pont. L’illumination pourrait potentiellement avoir un impact sur son activité.

WSP (2016) affirme aussi que l’hirondelle ne sera pas affectée par l’illumination puisqu’aucun nid n’avait été détecté dans la section de l’illumination. Cependant, des observations récentes ont permis de montrer que des hirondelles nichent effectivement sur la section illuminée du pont, ce qui pourrait avoir un impact sur son comportement.

7

Finalement, chez les insectes, l’illumination du pont augmentera potentiellement les effets environnementaux liés à la lumière dû à l’attraction des insectes vers les sources lumineuses.

Une des difficultés liées à l’évaluation de l’impact de l’illumination concerne la disponibilité des données antérieures pour comparer les résultats obtenus. En effet, les suivis sont rares en ce qui a trait aux espèces aviaires et sont inexistantes pour les insectes. Un suivi temporel pour la comparaison avant-après l’illumination est donc difficile. Ainsi, cette étude se concentrera sur une comparaison temporelle restreinte et une comparaison spatiale (entre différents sites aux alentours du pont).

Objectifs de la recherche

Afin d’évaluer l’impact de l’illumination du pont Jacques-Cartier sur la faune, les quatre (4) espèces aviaires présentées ont été étudiées, à savoir : le faucon pèlerin, le martinet ramoneur, l’engoulevent d’Amérique et l’hirondelle à front blanc. Le suivi des insectes a également été réalisé dans le cadre de cette étude. Les observations ont été compilées et analysées pour déterminer des tendances à l’aide des deux (2) années de suivi (2017 et 2018) et des données antérieures disponibles. Les objectifs liés à chaque groupe étudié dépendent de la présence antérieure de l’espèce et des impacts potentiels de l’illumination.

L’avifaune

Concernant le faucon pèlerin, les buts spécifiques de cette recherche étaient de :

• Déterminer s’il y a présence/absence de l’espèce à proximité du pont Jacques-Cartier; • Déterminer les comportements de l’espèce en relation avec le pont, par exemple la chasse ou la nidification.

Pour ce qui est du martinet ramoneur, les buts spécifiques de cette recherche étaient de :

• Déterminer s’il y a présence/absence de l’espèce à proximité du pont Jacques-Cartier; • En cas de présence, déterminer si la nidification est présente.

Pour l’engoulevent d’Amérique, les buts spécifiques de cette recherche étaient de :

• Déterminer s’il y a présence/absence de l’espèce à proximité du pont Jacques-Cartier; • En cas de présence, déterminer si la nidification est présente.

Concernant l’hirondelle à front blanc, les buts spécifiques de cette recherche étaient de :

• Déterminer s’il y a présence/absence de l’espèce à proximité du pont Jacques-Cartier; • Mesurer l’activité de cette espèce, c’est-à-dire l’occupation du nid et le nombre de mouvements aux nids;

8

• Évaluer l’évolution de la répartition spatio-temporelle des nids; • Évaluer s’il y a des changements d’activités en fonction de la répartition spatio-temporelle.

L’entomofaune

Concernant les insectes, les objectifs de cette recherche étaient de :

• Déterminer l’abondance et la biomasse des insectes pour différents sites répartis spatialement selon leur distance par rapport au pont Jacques-Cartier; • Déterminer les ordres présents et leurs abondances selon les sites; • Évaluer le taux de mortalité spécifique causé par les différents types de lumières disponibles au pont.

Ce rapport présente les résultats obtenus à la suite des deux (2) années de suivi effectuées sur l’illumination du pont Jacques-Cartier. Il comprend les conclusions produites sur l’effet de l’illumination sur les espèces de l’avifaune et les insectes étudiés.

9

Chapitre 1 « The multiple consequences of urban light pollution on birds »

1.1 Résumé

L’augmentation du territoire couvert par l’homme entraîne l’accroissement de l’éclairage artificiel utilisé pendant la nuit. Bien que la lumière nocturne soit essentielle au mode de vie de l'homme, elle a des conséquences importantes sur les animaux vivant en milieu urbain. La présente revue examine les nombreuses recherches publiées à ce jour sur ces conséquences, plus spécifiquement les conséquences pour l’avifaune. La littérature citée a été trouvée en utilisant des bases de données de journaux et en analysant chaque article de manière approfondie. Les informations trouvées dans la littérature sont organisées pour conclure que l’éclairage artificiel a un impact sur les nombreux comportements des oiseaux, notamment la reproduction, le sommeil, la migration, la communication, la quête de nourriture et la résolution de problèmes. Des articles additionnels sont intégrés dans cette revue qui rejettent les hypothèses précédentes, suggérant plutôt que la lumière a un impact secondaire sur les comportements d’oiseaux. Les effets de la lumière artificielle sont ensuite reliés à des conséquences écologiques plus importantes à long terme pour les populations d'oiseaux en termes de survie des populations. Des domaines de recherche futurs sont également explorés.

1.2 Abstract

The expansion of the territory covered by humans brings with it the increase of the extent of artificial lighting used at night. Although light at night is essential to human lifestyle, it is known to have important consequences on animals living within urban environments. The present review looks at the multiple research published up to date on these consequences specifically affecting birds. Literature was found using journal databases and analysing each article thoroughly. The information found in the literature is neatly arranged in a way to conclude that artificial lighting has impacts on many bird behaviors including reproduction, sleep, migration, communication, foraging and problem-solving skills. The research supporting these claims is then rebuffed by further research that show light as a secondary impactor for these behaviors. The effects of artificial light are then related to more important ecological consequences on the longer term for bird populations in terms of their individual fitness and population survival. Future areas of research are also explored.

1.3 Introduction

Throughout history, humans have increased the modification of the environment they use. With rapid population growth, the expansion of these modified areas was also increased. Moreover, the area covered in artificial lights

10

affects wider stretches of territory (Longcore and Rich 2004) and can be visible from space (Figure 4). Light at night is very useful to humans. It encourages activity later in the evening and is necessary for urban life (Kyba et al. 2015). However, the level of light and noise is the highest it’s ever been in human history (Swaddle et al. 2015). Moreover, light emitted by an urban area can be scattered into the atmosphere increasing the overall light level (Kyba et al. 2015). Around 83% of the population in the world live where the ambient light conditions at night are about 8% higher than natural nighttime conditions (Falchi et al. 2016).

Figure 4. Picture taken from NASA International Space Station (ISS) of the American continent at night (2017) (https://www.nasa.gov/image-feature/new-full-hemisphere-views-of-earth-at-night).

Light can however be harmful to other organisms that live in the urban environments. Although humans depend on artificial lighting to live their lives, animals depend on natural light cycles for many of their physiological behaviors (Navara et al. 2007). This observation has slowly been gaining interest in the field and more research needs to be done to properly assess how artificial light can affect animals living in or close to urban areas (Longcore and Rich 2004, Swaisgood 2007, Lyytimäki et al. 2012).

Some species have been able to adapt to urban environments and make them their home. These species include birds (most songbirds) and small to medium mammals like squirrel (Ditchkoff et al. 2006). In an experiment on European blackbirds, it was found that urban birds of these species were more successful in solving small tasks (they solved the task faster) than birds of the same species in forest habitats (Preiszner et al. 2017). These species can survive in anthropogenic areas, often have access to large quantities of food and predation is less of an issue. However, urban landscapes are not without consequences for them (Ditchkoff et al. 2006). In fact, pollution, light and methods of transport (for example cars) can cause disease, infections, injuries, and death (Kociolek et al. 2011). These dangers can substantially modify animal behaviour like the timing of their activities,

11

their diet, their reproductive success and their survival (Ditchkoff et al. 2006). Even though cities can be dangerous for animals, it was found that they are a positive factor in determining the density and species richness of birds in an area and their population stability in between seasons (Ciach and Fröhlich 2017). In fact, animals can have multiple reasons to be attracted to cities.

As taken from Longcore and Rich (2004), the type of light examined in the present article is ecological light pollution. It is the artificial light that ‘’alters [the] natural light regimes in terrestrial and aquatic ecosystems’’. This is the type of light that will potentially affect avian populations. In this article, the effect of light pollution on birds will be assessed by investigating the information found throughout multiple articles published on this subject.

1.4 Methods

The articles used in this review were found using the database from the Université Laval library website to get access to the PDF version of the articles. Google Scholar was also used in some instances. Search terms almost always included almost always the term ‘’bird’’ combined with either ‘’artificial light’’, ‘’light’’ and ‘’light pollution’’. Other articles were extracted from the cited references of already found articles.

1.5 The relation between birds and light

1.5.1 Sensitivity to Light

Light plays an important role in a bird’s life. It is useful in communication between conspecifics when the see each other’s colours, avoidance of predators by camouflage and detection of resources (water, food or nesting sites) (Blackwell 2002). Animals can have different sensitivities to different wavelengths and light intensity (Morgan and Tromborg 2007). Birds are known to see light both from the visible and the ultraviolet wavelengths. They are tetrachromatic (some species can be pentachromatic) which means that the four principal colours they can detect are ultraviolet, blue, green and red (Maier 1992, Blackwell 2002). Whether the light is in the visible or the UV range, its effect is different on the bird’s behavior.

1.5.1.1 Visible light

Most articles on the effect of light focus on which lights are the most attractive to birds. For example, Avery et al. (1976) indicated that birds seem to be more attracted to red and white lights. The same observation was done by Poot et al. (2008). This research also highlights that green and blue lights don’t attract birds as much. In contrast, Lustick (1973) indicated that they are sensitive to light in between 500 and 506 nm, which is green.

12

1.5.1.2 Ultraviolet light

Ultraviolet light is necessary for multiple bird behaviours. It can be used in orientation, foraging, and signaling (for mating, conspecific communication and predation, for example) (Blackwell 2002, Hart and Hunt 2007). It is also necessary for birds to detect surrounding colours (Maddocks et al. 2002, Hart and Hunt 2007). In fact, it was shown that the stress level in captive birds with UV-deficient conditions was increased; the birds exhibited more hanging on the cage and pecking at the cage types of behaviour which show that they are trying to escape.

In light of these observations, it is possible to say that birds can either be attracted or repelled by light.

1.5.2 Attraction to Light

1.5.2.1 Food source

Lights can be signs of abundant food sources for many bird species. In fact, many researchers have found that birds will be lured in proximity to anthropogenic lights (for example streetlamps) to forage. Robertson et al. (2010) discovered that some birds took advantage of an illuminated structure to hunt insects. The aquatic insects preyed on by the birds are polarotactic, which means that they are attracted to tall glass buildings because they see them as water surfaces. This is due to the polarizing effect glass surfaces have by reflecting sunlight and skylight. Birds have been found to take advantage of this behaviour and feed on the insects that swarmed around these surfaces. Although this isn’t an example of the attraction of birds towards a typical light source, it shows that birds can benefit from lighted structures for foraging purposes. In another observation by van Tets et al. (1969), lights on airport runways were the cause for multiple bird strikes. In fact, these lights attracted birds due to the accumulation of insects around them. These examples demonstrate how birds can be attracted to light sources due to the abundance of resource these lights offer.

1.5.2.2 Nesting sites

Light sources can also give birds another type of cue as nesting. Research has found that birds can decide to nest close to light for the same reason stated above; light offers a food source to insectivorous birds. Building a nest in these areas is therefore favorable to a bird’s survival. Rao and Koli (2017) reported that the presence of road lights encouraged birds from 14 different species to nest close to roads, again due to the fact that streetlamps attract insects. De Molenaar et al. (2000) also observed that black-tailed godwits more often chose to place their nests closer to artificial light near roadways. The exact reasons for this behaviour are unknown although it might again be related to food availability.

13

1.5.2.3 Protection against predators

Birds can also be attracted to light to protect themselves against predators. In fact, Gorenzel and Salmon (1995) observed that crows living in urban environments roost in areas with high illumination. They argued that this behavior was favorable to crows because the high visibility increases their chance to easily detect the approach of humans or predators (like owls) and they can move between roosting sites without difficulty if they perceive a risk of predation.

1.5.2.4 Orientation

One of the most commonly known reasons why birds can be attracted to light is that nocturnal birds need light to orient themselves during migration. Often, the light they will use is celestial light (Rowan 1925, Cochran et al. 2004). However, when weather conditions are bad, birds will use artificial light sources to find their way (Avery et al. 1976, Ogden 1996, Longcore and Rich 2004). This phenomenon was observed to happen frequently on boats with bright lights (Merkel and Johansen 2011). In another study, birds were highly attracted to lighthouses (Jones and Francis 2003).

1.5.3 Repulsion from Light

Although birds have multiple beneficial reasons for being attracted to light, they can also be repulsed by it. In fact, an experiment entailed placing LED lights inside nest boxes and some birds were found to not enter when the light was turned on (Raap et al. 2017). Moreover, in terms of nocturnal migration, birds seem to avoid lighted structures when the sky is clear and the weather is calm (Avery et al. 1976). In another experiment, birds were also found to sleep away from a light source when the intensity was high (Yorzinski et al. 2015). The exact reasons for this behaviour are unknown.

1.6 How studies were performed

The research works studied in this review used observations and experimentations to determine how light affected birds. These manipulations were either done in a laboratory or in the wild.

1.6.1 Experiments in the laboratory

Laboratory experiments were used mostly in the oldest articles (before 2000). The oldest ones consisted of captured wild birds that were either exposed or not to artificial light and used to determine the difference between two bird population samples. In most of these studies, the birds were killed to determine the size of specific organs or the levels of certain compounds in the birds’ organisms. The most recent articles used the following methodology: the scientists captured birds and exposed them to different artificial light intensities in the lab. Different behaviours were then recorded without killing or hurting the animals.

14

1.6.2 Experiments in the wild

The later experiments consisted mostly of manipulations in the wild. Often natural or artificial nest boxes already present in an area were used. The researchers inserted artificial light inside these boxes and measured different bird behaviour in reaction to this light. These experiments also solely consisted of observations of birds in relation to certain impacts.

1.6.3 Ethical standards

In the oldest articles, there were no restrictions or constraints in relation to the death of test subjects. In the newest research, a section of the article is reserved to ethics. The details are specific to each research. Often, the experiments were conducted according to certain protocols depending on the region the experiment took place. Most of the times, the animals were not harmed in the procedure of the research.

1.7 The consequences of artificial light on birds

Since natural light has so many different important roles for birds, it is possible to think that artificial light can have multiple effects on bird behaviour. Gathering information across multiple articles helped demonstrate how artificial light can be harmful to birds. Six major aspects of bird behaviour were found to be most impacted by light pollution: reproduction, sleep, migration, activity, communication and problem-solving skills. These will either be impacted negatively or positively. These six facets were examined and their implications for the ecosystem and the bird community were explored.

1.7.1 Reproduction

1.7.1.1 First discovery of the consequence

Rowan (1925) suggested that light is important in bird migration patterns. Moreover, he first discovered that light could have negative consequences on the physiology of dark-eyed juncos (Junco hyemalis). He trapped multiple specimens of this species and placed them into two open-air aviaries. One of the shelters served as a control while the other was the experiment. Every night, the artificial lights (two 50-watt lights) were kept on after sunset for 5 minutes and this time was lengthened to an additional 5 minutes every subsequent night. At every two weeks interval, one bird from the control group and one from the light exposure group were killed and examined. By looking at the size of their testes, Rowan was able to determine that the birds under artificial light had a change in their developmental organs, probably due to light exposure. Although he couldn’t explain the specific way in which the change was taking place, he was convinced that artificial light can induce important changes in the physiology of birds (Rowan 1925). This experiment initiated a multitude of subsequent studies on the

15

impact of light exposure on birds. Other future studies further tested Rowan’s discovery to determine how the changes were taking place.

1.7.1.2 Modification of the timing of reproduction

Light exposure can modify two different components of reproduction: the timing of reproductive behaviour and the sex apparatus itself. Without killing and examining the reproductive organs of birds, it is possible to determine that artificial light causes changes in the timing of reproduction.

A particular study was done on European blackbirds (Turdus merula). Birds of this species were captured from two different environments: a natural area with multiple bushes and trees, and an urban area with a high population density and few trees. They were tagged with a backpack with a radio-transmitter (to determine the state of activity of the bird) and a light logger (to record the intensity of light exposition) and released. They were caught again later to extract the data from the backpack. The researchers found that their results were consistent with the hypothesis that artificial light can induce variation in the onset of reproductive behaviour of birds (Dominoni and Partecke 2015). A separate experiment conducted on the same bird species (European blackbirds) demonstrated the same effect. The authors started this experiment knowing that urban birds usually breed earlier than rural birds and they wanted to determine why. They collected 30 urban and 30 rural nestlings and placed them in individual cages in a laboratory. For two years, their reproductive behaviour was studied. After this period, males were placed either alone or with a female in separate outdoor rooms. The difference in gonadal development between urban and rural birds are explained in detail in the next section. However, one main conclusion of the experiment was that exposition to a female alone cannot explain the earlier onset of reproductive maturity. In fact, the authors suggested that this difference was most likely due to light pollution (Dominoni et al. 2015). Using the same species of birds, scientists discovered that gonadal development and testosterone production happened up to a month earlier in exposed birds. This result was discovered by experimentally exposing rural and urban birds to either light or no light conditions. The researchers also found that a small light intensity is enough for an effect to be observed (Dominoni et al. 2013).

An experiment on blue tits (Cyanistes caeruleus) showed the same pattern as the two above. The researchers recorded the breeding pattern of birds in nests from areas with artificial light and without (only natural light). It was found that female birds in the lighted area laid their eggs 1.5 days earlier than females in the natural area. This effect was also influenced by the intensity of the light source; if the nest was closer to the streetlamp, the female laid her eggs earlier and if the nest was further away from the streetlamp, the female laid her egg later (Kempenaers et al. 2010).

16

1.7.1.3 Modification of the sex apparatus

As mentioned earlier in the article by Rowan (1925), light pollution can alter the development of the sexual organs of birds. Rowan continued his experimentation with another article published in 1937 on the effect of light on gonadal development. The same bird species was used: dark-eyed junco (Junco hyemalis). The manipulations are similar: male birds were captured and kept in either control cages or experimental cages (under an electric bulb). The light in the experimental cages was turned on every night and turned off a little later every subsequent night to gradually increase exposure to light. Every week, birds were killed and their testes were examined. The experiment took place for 8 weeks. As expected, the testes of the animals exposed to light were larger than those of the control birds. Moreover, the testes of birds increased in accordance with light exposure: the longer the light exposure, the larger the testes became. In another part of his experiment, Rowan recovered wild birds from an urban environment (London) and compared the size of their testes with birds from a rural area (Bedfordshire). Again, for birds collected at approximately the same date, the size of the testes was larger in urban birds than in rural birds (Rowan 1937).

Dominoni et al. (2015) also demonstrated an effect of light on testes size, as stated above. The researchers measured the size of birds’ testes four times during the experiment by incision. It was discovered that males housing with a female had functional sexual organs 3.5 days earlier than males without a female, but the authors explain that this difference is not significant. Moreover, there was no difference in the size of testes between rural and urban birds. These conclusions are unsatisfying in terms of the effect of social cues on bird reproductive behaviour. Again, the authors suggest that the main difference that is usually seen in the wild in testes size is most probably caused by artificial light exposure (Dominoni et al. 2015).

A study by Yoshimura et al. (2003) demonstrated a possible mechanism by which birds’ sexual organs are affected by lighting. The medial basal hypothalamus (MBH) is a part of the brain which is responsible for the response to photoperiodic time exposure. Simulating this area increased the growth of the testis in male birds. The authors exposed male Japanese quail to either 1 hour of light exposure or no light. They then extracted their MBH. A gene for a specific enzyme was highly expressed in birds exposed to light: Dio2. This shows that this enzyme is probably responsible for the physical response of birds to light exposure.

1.7.2 Sleep pattern

1.7.2.1 Modification of the timing and the duration of sleep

Light pollution has been known to affect the sleep pattern of birds. The two main ways in which it happens is through the modification of the timing of sleep onset and offset and the modification of the total time spent

17

sleeping. In fact, birds are seen to fall asleep later and wake up earlier, which in turn reduces the amount of sleep the birds get.

Sun et al. (2017) made these observations in two birds: the great tits (Parus major) and the blue tits (Cyanistes caeruleus). They did so by installing LED lights inside wild nest boxes in a semi-rural area. Some nests were lighted and others served as control (without a light). The nests were kept dark the first night and then the light was turned on. After filming the movements of the wild birds, the researchers found that great tits were highly affected by light pollution; they entered their nest later at night and exited their nest earlier in the morning. Moreover, they fell asleep later and woke up earlier. The sleep percentage (the amount of time spent sleeping on the total amount of time spent in the nest) of great tits was reduced by 3% and their total sleep time (the number of minutes spent sleeping per night) was reduced by an hour. Blue tits were not affected as much; their latency (the time spent in the nest box before falling asleep at night) was lengthened, although not as strongly as in great tits (Sun et al. 2017). Raap et al. (2017) observed wild great tits in the same way that Sun et al. (2017) did. They placed LED lights inside nest boxes and determine the effect of this light on sleep. Birds were found to wake up earlier and leave their nest box earlier than in dark conditions. Moreover, they fell asleep 15 minutes later. Morning and evening latency were increased. The length of sleep the birds had was reduced by approximately 40 minutes due to light exposure. A novel discovery from this study was that light intensity doesn’t affect the changes in sleep behaviour. A higher light intensity delayed sleep onset whereas a lower intensity didn’t. However, that is the only difference in light intensity observed (Raap et al. 2017)., The same pattern was observed by Yorzinski et al. (2015) in adult peahens. The authors observed that the birds had a reduced time spent sleeping due to the increased vigilance they had to do in high luminated areas. They did so by measuring the level of head movements with accelerometers attached to the birds’ heads. Captured peahens were staying in either a control cage (no light) or an experimental cage (with light) for seven nights. The birds showed more head movements (used as a proxy for vigilance in this experiment) when the artificial light was on compared to when it was off. These birds were also the ones spending less time sleeping. When artificial light was low or there was no artificial light, birds were less vigilant because being vigilant in these conditions is useless since vision is decreased (it’s dark) (Yorzinski et al. 2015).

1.7.3 Migration

Many nocturnal bird species use natural light to orient themselves during their migration. As expected, artificial light sources can replace this light and the migration pattern of birds will be disrupted.

18

1.7.3.1 Attraction causing fatigue, disorientation and death

Birds are attracted to light sources due to positive phototaxis (Poot et al. 2008). They use celestial cues like the setting sun or the polarized light in the sky to orient themselves and recalibrate their inner compass (Cochran et al. 2004, Poot et al. 2008, Horváth et al. 2009).

Birds that are attracted to a light source can become entrapped by it while migrating. They will enter a lighted area and won’t be able to exit it. They can then collide with each other or with buildings, become exhausted and be predated on, which often results in the death of the animal (Longcore and Rich 2004, Stone 2018, Kociolek et al. 2011). In a study of bird strikes on lighthouses on the coast of California, scientists determined multiple conclusions. They saw that bird mortality was highest at taller lighthouses. More than often, large birds will collide with the lighthouse’s windows and die whereas small birds will mostly die from exhaustion (Squires and Hanson 1918). The same conclusions can be seen for seabirds attracted to boat lights in Southwest Greenland (Merkel and Johansen 2011) and nocturnal birds attracted to tall lighted towers in Southeastern North Dakota (Avery et al. 1976). Most of the birds found dead near a light source were either shore birds or seabirds (Squires and Hanson 1918, Merkel and Johansen 2011). All nocturnal migrating birds were affected in an experiment done on a platform for natural gas production in the Netherlands (Poot et al. 2008).

The most important conclusion from all the articles on this issue is that most bird strikes happen when weather conditions are bad (high cloud coverage, fog, snow or rain, for example) or when the night is very dark. In these conditions, birds are more likely to rely on artificial light sources and deviate their natural migration route (Squires and Hanson 1918, Avery et al. 1976, Jones and Francis 2003, Longcore and Rich 2004, Poot et al. 2008, Merkel and Johansen 2011). It was observed that when the night sky clears, the remaining birds leave the lighted area to continue their migration (Avery et al. 1976).

1.7.4 Patterns of activity

As previously mentioned, Dominoni and Partecke (2015) determined if daylight exposure of blackbirds is longer in urban environments than in forests. In fact, the researchers found that birds living in the centre of the city were experiencing a daylength of approximately 49 minutes longer than birds living in a forest due to artificial lighting (Dominoni and Partecke 2015). It is to be expected that this longer daylength will affect the activities of diurnal birds, mainly by allowing them to continue their daily activities (for example, foraging) further into the evening or the night (Gaston et al. 2013). The next section demonstrates how that is the case in some studies.

1.7.4.1 Modification of the timing of activity

The activities as mentioned in this article refer to an active state of the bird; when the bird is not asleep. Most of the examples shown in this section will discuss foraging. A succeeding section will discuss singing.

19

In terms of patterns of activity, artificial light has the effect of modifying their timing. Most studies show that artificial light at night increases the activity of birds later in the evening whereas in natural conditions, birds would be sleeping at that time of day. This was seen in an experiment on great tits housed in cages with or without light at night. The researchers determined the onset and offset of activity in great tits exposed to different light intensities. They discovered that birds exposed to light started being active earlier in the morning. This effect was stronger with higher light intensity. Birds also stayed active longer in the evening when artificial light was present, but this effect is not as pronounced as in the morning (Jong et al. 2016). An experiment on starlings also observed that evening activity was increased due to light pollution (Lustick 1973). An experiment on wild blackbirds in Germany measured evening activity under different light intensities. They also discovered that birds exposed to high intensity artificial light at night foraged later into the evening than birds that were in dark areas. They further showed that males were more sensitive to this change than females. Moreover, this effect was more pronounced when the days are naturally short than when the days become longer (near the summer solstice). Birds might benefit from the extended ‘’daylength’’ when days are shorter to forage longer (Russ et al. 2015).

1.7.5 Communication

Another type of activity that artificial light could modify is bird communication or singing. If, as mentioned previously (section 5.2.), birds wake up earlier when exposed to light pollution, they will start their daily activities earlier in the morning. These activities often include singing in songbirds and the timing of it could be changed as to begin earlier during the day (Longcore and Rich 2004, Gaston et al. 2013). Multiple researches have been able to demonstrate that change.

A study done on American robins in the United States determined just that. By comparing sites with varying artificial light intensities, the author found that areas with high artificial light had birds singing earlier in the morning than areas with low artificial light. They even began singing when the night was still dark. Birds in areas without artificial light started singing when they naturally do and historically did, at the civil twilight (when the centre of the sun is geometrically 6° below the horizon) (Miller 2006). An experimental study exposed four wild bird species (European robin, common blackbird, great tit and blue tit) to artificial light at night to determine if it induces earlier dawn singing. The birds were previously in a natural undisturbed forest and were exposed to artificial light to determine the time at which they started singing in the morning. Immediate and subsequent effects were observed to determine if artificial light affects dawn chorus only on nights of lighting or if the dawn chorus timing is kept changed after multiple days even if the artificial light is gone (carryover effect). Artificial light caused the four species to start singing earlier in the morning than in dark conditions. This effect was especially strong in the European robin. Carryover effects were not found; as soon as the artificial light was

20

removed, birds would return to their natural dawn song timing. Blackbirds, great tits and blue tits responded less strongly to artificial light (Silva et al. 2016). The same conclusions are seen in songbirds in Vienna. In four species observed, males living close to streetlamps started their dawn singing earlier than males living deeper in the forest (less contact with artificial light). This effect was more pronounced in birds that naturally sing early. In blue tits specifically, males living close to an artificial light source were more successful in getting a mate than males living in the forest. It seemed as if females tended to choose males that sing earlier as an indicator of quality (Kempenaers et al. 2010).

1.7.6 Problem-solving skills

It is a well-known fact that urban birds are highly adapted species. They have moved from natural undisturbed environments to human controlled areas and have developed novel techniques for feeding and nesting which allow them to survive in an anthropomorphic setting. An experiment on bullfinches (Loxigilla barbadensis) shows that this species of urban bird is faster at problem-solving tasks than wild birds. They also have a higher immunocompetence. This is presumed to often be the case for urban species (Audet et al. 2016). Another experiment demonstrates that urban house finches (Haemorhous mexicanus) also have higher task-solving skills than rural birds (Cook et al. 2017). How does artificial light come in play in this behaviour? One particular article relates an experiment on this subject.

In a lab experiment, peafowl were exposed to artificial light for a whole night and then had to solve a specific task the next day (to pierce the lid of an unknown bowl to collect food). The hypothesis was that since artificial light can cause sleep deprivation, birds would have difficulty doing the task after being exposed to light at night. However, short term light pollution didn’t affect how the birds solved the task (Yorzinski et al. 2017).

1.8 Other factors stronger than light

As demonstrated above, artificial light can have a strong impact on the many different behaviours of birds. However, many other articles show that other factors can have a stronger impact than artificial light on these behaviours. These factors include urban noise, cloud coverage, bird eye size, bird body size and pulsing light.

1.8.1 Noise

Birds rely on acoustic communication for multiple of their behaviors. Noise can then be an important influencer of the modification of bird behavior in urban environments (Kociolek et al. 2011). Studies found that noise was a better predictor of the onset of dawn singing than artificial light. In urban European blackbirds, the dawn chorus was initiated 5 hours earlier than in birds in a semi-natural environment. The main cause of this was noise, which was twice as effective as light. However, in urban environments, noise is closely related to artificial light. One is

21

rarely present without the other. The authors also discovered that the louder the ambient noise, the earlier the bird starts singing. This is probably due to the birds trying to avoid spending more energy singing louder than the traffic noise, or that they wake up earlier due to the loud noise (Nordt and Klenke 2013). Another article shows that birds tend to sing at night when daytime noise is strongest. Again, this is to either avoid singing during the day to avoid wasting energy competing with the ambient noise or to sing when urban noise is the lowest (at night). The authors observed that multiple birds that sang at night were not exposed to artificial light but were affected by noise. They then concluded that the effect of artificial light is not an as strong predictor of song timing as urban noise (Fuller et al. 2007).

1.8.2 Cloud cover

Many of the articles shown above demonstrate that the response to light exposure was enhanced due to cloud coverage. For example, a high cloud coverage (and in addition the presence of mist in the air) can further advance the dawn singing in birds (Miller 2006, Nordt and Klenke 2013) and can increase the probability that birds will become entrapped in a lighted area during nocturnal migration (Squires and Hanson 1918, Avery et al. 1976, Longcore and Rich 2004, Merkel and Johansen 2011). Clouds are very reflective (Kyba et al. 2011). It was also observed in a study that cloud cover is the sole impactor in the onset of dawn singing in birds; that artificial light was not responsible for this change. The authors observed that in two very different study sites, the difference in the beginning of dawn singing was very low. The species observed, the wood pigeon (Columba palumbus), is a bird that is usually active later in the morning. The scientists concluded that late-active species are less affected by artificial light at night, but rather by the weather, because they usually start their activities when ambient light is high. An increase in light conditions has no obvious effect on their singing pattern (Böhm et al. 2016).

Depending on the species, artificial light can induce a change in the behaviour. However, cloud cover has a definite effect on the intensity of that change and in some species is the only factor responsible for it.

1.8.3 Eye size

One particular study determined that the changes in the timing of dawn song could be due to the birds’ eye sizes. In fact, birds with larger eyes were observed to start singing earlier than birds with smaller eyes. This is due to the fact that bird species with larger eyes can detect lower light intensities (when the sun is just about to rise) compared to birds with smaller eyes, which can only detect high light intensities (when the sun is already high up in the sky). Larger eyed birds are then more sensitive to light intensity changes in their surroundings and will initiate dawn singing earlier if artificial light is present (Thomas et al. 2002).

22

1.8.4 Body size

The experiment by Sun et al. (2017) on blue and great tits was mentioned in section 5.2. for the effect of light on sleep behaviour. The authors observed that great tits were more affected by light exposure than blue tits. They explain this observation by saying that the difference in body size of two different bird species can induce a different response to artificial light. Larger birds have a bigger energy reserve than small birds do. Smaller birds could then be less responsive to light pollution and wake up less often to limit the amount of body heat loss during their sleep. Larger birds would be able to wake up more often since they wouldn’t be losing as much necessary heat (Sun et al. 2017). Therefore, even though birds respond to light exposure to a certain degree, their body size has a restricting power over the intensity of that response.

1.8.5 Pulsing light

In an experiment cited in section 5.4.1., artificial light increased the activity of starlings later in the evening. The authors also observed that this effect was stronger when there was pulsing light in addition to regular artificial light exposure (Lustick 1973). It would seem that birds are more affected by pulsing light than by regular constant light. The same conclusion is shown in an article on the effect of artificial light on migration. Pulsing lights are the deadliest for birds (Avery et al. 1976).

1.9 Discussion

It is possible to suppose that all the effects of light on the different behaviours of birds can have subsequent effects on the community or ecosystem the bird lives in or on the fitness of the individual bird (Lyytimäki et al. 2012, Gaston et al. 2013, Böhm et al. 2016, Sun et al. 2017). Even though urban animals are known to rapidly adapt their behaviour to counter immediate changes in the environment, the very rapid increase in artificial light might hinder the organisms’ coping mechanisms (Swaddle et al. 2015). This can have potential cascading effects on the birds’ ecology. The next paragraphs describe how the observed effects of artificial light can further disturb bird fitness and population.

Artificial light has important consequences on reproductive timing and mating behaviour (Kempenaers et al. 2010). If females lay their eggs earlier and the nestlings hatch at an earlier date than they usually due, there could be an imbalance between the peak period of food availability and the demand of food from nestlings, potentially causing malnutrition in baby birds and death (Kempenaers et al. 2010). This is described in terms of climate change and the early arrival of migrating birds due to the rising temperatures. If birds start migrating earlier and arriving at their foraging grounds at an earlier period, they may not have any food source available for them to forage and could starve (Price and Glick 2002, Dominoni et al. 2015). The same pattern could be hypothesized for earlier reproduction in birds.

23

Light, or the duration of the exposure to it, affects the development of the sexual organs in birds (as seen from articles in section 5.1.3.). A longer photoperiod (which coincides with the end of winter and the beginning of spring) causes the secretion of a specific hormone which kicks off gonadal maturation and therefore breeding (Dawson et al. 2001). With the presence of artificial light, the difference between the photoperiod in winter and spring could become undetectable, preventing birds from detecting a long photoperiod and delaying their breeding onset. The size of the bird population could then decrease, and it could eventually disappear.

Any animal that is exposed to strong and constant light conditions, as it is the case in cities, can suffer from sleep deprivation. An article by Morgan and Tromborg (2007) supports this claim by analyzing multiple articles on the effect of light on captive animals. They discovered that constant exposure to light can cause alterations in the melatonin and serotonin levels in the animal, disturbing the activity of the central nervous system. It can also disrupt circadian rhythms, affecting the sleep pattern of the individual and increasing its stress level (Morgan and Tromborg 2007). Melatonin also affects the timing of bird migration and orientation (Gwinner 1996, Schneider et al. 1994). It can also have consequences on the health, immune response and reproductive system of birds. This can in turn have consequences for their fitness (Dominoni et al. 2016).

Minimizing sleep to increase vigilance during nights with high illumination can be detrimental to the overall fitness of an individual. It can cause impairments in its cognitive functions. These detriments can, after a prolonged period, outweigh the benefits of being more alert at night. In an experiment mentioned earlier, researchers also noticed that after prolonged exposition to artificial light, peahens were less vigilant to minimize the lost of sleep. Moreover, when possible, peahens preferred to sleep away from illuminated areas to roost in areas with low or no artificial light (Yorzinski et al. 2015). Sleep is essential for learning the skills necessary to survive. In chicks, imprinting is an important part of growing up and learning about their surroundings. Sleep greatly increases the effectiveness of the process of imprinting (Jackson et al. 2008).

As expected, attraction to an artificial light source can interfere with the migration pattern of birds (Longcore and Rich 2004). Moreover, in each experiment, the largest number of bird strikes was often detected during the migration period of the bird species studied (Squires and Hanson 1918, Merkel and Johansen 2011). This can potentially cause birds to arrive later than they usually arrive at their destination and cause disruption in the ecological community of the area.

On their migration route, birds can migrate during the day and rest at different locations every night until they reach their destination. To migrate efficiently, birds will adopt a strategy that either reduces the time spent migrating or the energy wasted during migration. This means that they will make as little stops as possible and stay as little time at each spot as they can (Krebs 2009). Migration can be negatively affected by attraction to light if this attraction means spending more time at a resting location and wasting more energy there (by flying

24

around restlessly around the light source). If birds don’t die as a result of being attracted to a light source, they can lose a large amount of their energy reserve (Poot et al. 2008). This can potentially cause exhaustion at a later period onto their migration route, meaning that they will never reach their destination.

Upon their arrival, birds could start nesting later which can cause a disbalance between the food availability and the nestling feeding behaviour. In the same way explained above, birds arriving later than usual at their nesting grounds could miss the optimal food source period, causing a phenological mismatch (Price and Glick 2002). Nestlings could end up being malnourished and suffer from this in their adult age or die. Moreover, pollination could be greatly reduced if birds responsible for it arrive later than the blooming of the flowers they feed from (although this is speculated in terms of climate change) (Price and Glick 2002).

Artificial light could also increase habitat fragmentation. In an experiment, the presence of artificial light in a wildlife corridor hindered the passage of animals. Animals were not detected using the passage (meaning that they were avoiding having to use it) due to the light (Bliss-Ketchum et al. 2016). Although birds were not studied in this specific experiment, the effect of artificial light could be the same and bird communities could become fragmented.

The modification of the activity pattern of birds could modify the community in many ways. A new niche (termed the ‘’night light niche’’ by Longcore and Rich (2004)) could develop. Through this process, animals living close to a light source could become adapted to this new habit (increased foraging at night). The light could become a selecting force by which the organisms surrounding it form a new species completely different from the original one (Partecke et al. 2005). The selection at play in this situation would be directional selection in which the phenotype for foraging solely during the day would be selected against and the individuals foraging at night would be favored (Krebs 2009). Connectivity between different areas with high illumination could increase for animals (and birds) that are light-tolerant but could be potentially negative for those who are not (Bliss-Ketchum et al. 2016). There are no recorded observations for this phenomenon yet.

New predator-prey interactions (Robertson et al. 2010) could develop through the attraction of insects at a light source that birds are not used to eat. These new connections could change the composition and the interactions of the community surrounding the light source (Longcore and Rich 2004). The bird population and the insect population could change in a synchronous manner. In fact, in some predator-prey relationships, prey density is largely responsible for predator density. As prey density increases, the number of predators also increases (Krebs 2009). This is seen in the classic example of the snowshoe hare and its two main predators: the lynx and the coyote. In the Yukon, snowshoe hare population varies from high density to low density in a cyclical manner through the years. By comparing the population density of both coyote and lynx, it was found that their variation was linked to the snowshoe hare population change. This suggested that the snowshoe hare density changes

25

determined the variation in lynx and coyote population (O'Donoghue et al. 1997). Similarly, as the number of insects available near a light source increases, bird density might increase in consequence. The attraction of novel insect species could also attract novel bird species to nest in the near environment, also causing change in the bird community (Robertson et al. 2010).

Competition between day and night species due to prolonged activity during dark could evolve (Gaston et al. 2013). Diurnal species could impede on the ecological niche of nocturnal species, causing a disparity in the resource available to the nocturnal birds.

One of the ways prey can persist in a community is because they are protected from predators due to its foraging habits. Diurnal predators will only forage during the day leaving nighttime for the preys to rest, hide or feed (Krebs 2009). As birds start foraging later in the evening and earlier in the morning, there is less time left for insects to rest or replenish their population.

Birds are generalist predators because their diet is not restricted to one insect species. This increases their capacity to control prey levels (Krebs 2009). If birds start feeding exclusively on the nocturnal species around light sources, this aptitude could be compromised. Birds will switch towards being specialist predators (feeding on one or two species only) and the diurnal insect populations could increase as a result.

Another main consequence of the expansion of urban lighting is that the latter could favor species that are light- tolerant, to the detriment of species that are not habituated to constant light conditions. These species’ fitness could be negatively affected and either leave the area or disappear. Again, a change in the composition of the community could be expected (Longcore and Rich 2004).

Additionally, increased foraging time could potentially benefit the diurnal bird population and its growth and survival by allowing it to have access to more resources (Miller 2006, Robertson et al. 2010). This possibility was rejected in the study by Russ et al. (2015). They determined that the body condition (body mass and tarsus length) did not differ between the group of birds exposed to light and the one without exposure. This seems to suppose that the increased foraging time might not actually be beneficial to the birds and that artificial light at night is not a factor that influences bird body size (Russ et al. 2015).

Feeding later in the evening can increase the chance of obesity due to the disruption of the circadian rhythm by artificial light (Dominoni et al. 2016). This was observed in mice exposed to light at night. These mice were experiencing obesity (Fonken et al. 2010). The same could be hypothesized for birds.

Artificial light advances the onset of dawn singing in birds. In multiple songbird species, it was found that females tended to prefer males that sing earlier (Kempenaers et al. 2010). This form of sexual selection could cause a

26

change in the local population of birds. Females will either be choosy to have access to the best resources or to insure good genes for their offspring (Davies et al. 2014). In this situation, singing earlier in the morning could be a proxy for good health and therefore good genes. After multiple generations of selection, the male bird population could change significantly in its phenotype and genotype.

The effect of light exposure on task-solving has not yet been studied extensively. Consequences on the bird population are hard to determine without first determining if artificial light has an effect. Long term studies would be necessary to determine if there is an effect after long-term exposure to artificial light (Yorzinski et al. 2017).

1.9.1 Future directions

Although there are multiple studies that observe how artificial light can affect birds, there is much that is left to be discovered. This section will cover some aspects of this field of research that need to be studied further.

There aren’t many studies that determine the specifics characteristics of light that cause attraction in birds. More experiments need to be done on this subject if the effects of artificial light need to be determined and if we are to propose solution to minimize these effects (Avery et al. 1976).

We know very little of the effect of light on specific species since light can affect different species in a different way (Blackwell 2002, Sun et al. 2017). In fact, most experiments are done on the same bird species which are abundant, easy to detect and easy to capture if necessary. Observations need to be done on rare species due to the precarity of their status. They might be critically affected by light exposure.

Long term experiments would be needed to determine if there is an actual change in the phenotype of a bird population due to light exposure (Jong et al. 2015, Silva et al. 2016). These studies would help determine if the cascading effects hypothesized in section 7.1.1. are currently happening. To determine if there are in fact changes in the bird population, it would be important to do experiments to determine if these changes are due to developmental plasticity, behavioural flexibility or microevolutionary responses. Behavioural flexibility is the immediate response to changes in the environment. Most of the experiments studied in this article show behavioural flexibility. Developmental plasticity is the mechanism by which changes in the environment modify developmental processes and gene expression. Microevolutionary response is determined by the rapid change in allele frequency in a population. The last two processes are the one that can potentially modify the genotype and phenotype of a bird population (Swaddle et al. 2015). Moreover, it would be important to determine if response to light exposure can have a heritable basis, if the trait for light exposure behaviour can be transmitted to an individual’s offspring. This will bring us be closer to determine if light can in fact change bird species (Swaddle et al. 2015).

27

Some experiments determine the effects of light exposure on juvenile birds (Raap et al. 2016a, Raap et al. 2016b) but none observe these changes from birth to adulthood. This could be an interesting experiment. This could help determine if bird behaviour is changed due to its exposure at a juvenile age. These could be done in the laboratory or the wild. Birds could potentially habituate to artificial light and their behaviour could return to normal after long-term exposure (Sun et al. 2017).

There are no studies that observe the effect of one aspect of light exposure on the other. In fact, every study observes one impact of light exposure or two that are closely related to each other (for example, sleep deprivation and sleep onset and offset). It would be interesting to study how two impacts affect each other, for example the effect of sleep deprivation on problem-solving skills due to light exposure. These relations are sometimes hypothesized but never truly observed. Moreover, light and noise are often seen together since urban areas have both (Swaddle et al. 2015). Exploring how they interact in the way they affect bird behaviour would be an interesting experiment.

As light can have multiple impacts of the feeding habits of birds, it would be interesting to include the study of the bird’s food chain. The effect of a different feeding behaviour on the bird’s usual food source could help determine cascading effects of light exposure.

More studies need to explore the dose dependency of light exposure. How higher light exposure increases its impact on bird behaviour (Jong et al. 2016, Raap et al. 2017) and at which intensity is it the most detrimental to bird fitness (Gaston et al. 2013). Few studies observe this effect, but many suspect it to be either present or not.

In section 6.1., factors other than light exposure were observed. More studies would need to be done in to confirm these other ways by which bird behaviour is affected. There is either one or only a few articles that explore these avenues but there would need to be more.

It was observed that birds can develop novel techniques for feeding when artificial light becomes present in their environment. A thorough research on this behaviour could potentially enlighten us on the effects of light exposure on bird community and ecology.

1.10 Conclusion

Artificial or natural light is used by birds everywhere as a tool for either feeding, nesting, protection and migration. In this article, through the analysis of multiple studies, it was shown that artificial light can have multiple effects on birds, more specifically on their reproduction, sleep, migration, activity, communication and problem-solving capacities. These effects are often negative since they can change the timing or duration of naturally organized behaviours. Although most studies demonstrate a specific effect of light exposure on birds, there aren’t many

28

that show that these effects can impact the bird’s community. Many more studies need to be done to determine if these small-scale effects can have bigger impacts and change the ecology of bird populations.

1.11 Glossary

Behavioural flexibility: ‘’Immediate adjustments of behaviour and physiology in response to environmental conditions’’ (Swaddle et al. 2015)

Developmental plasticity: ‘’A single genotype’s change in developmental trajectory and phenotypic outcome in response to a different environmental condition’’ (Swaddle et al. 2015)

Microevolution: ‘’Change in allele frequencies in a population over time’’ (Swaddle et al. 2015)

1.12 Literature Cited

Audet, J.-N., S. Ducatez, and L. Lefebvre. 2016. The town bird and the country bird: problem solving and immunocompetence vary with urbanization. Behavioral Ecology 27: 637-644.

Avery, M., P. F. Springer, and J. F. Cassel. 1976. The effects of a tall tower on nocturnal bird migration: a portable ceilometer study. American Ornithological Society 93: 281-291.

Blackwell, B. F. 2002. Understanding avian vision: the key to using light in bird management. USDA APHIS Wildlife Research Center - Staff Publications 465.

Bliss-Ketchum, L. L., C. E. d. Rivera, B. C. Turner, and D. M. Weisbaum. 2016. The effect of artificial light on wildlife use of a passage structure. Biological Conservation 199: 25-28.

Böhm, F., J. Brückner, D. Eichhorn, R. Geiger, B. Johl, S. Kahl, I. Kleudgen, K. Köhler, V. Kreifelts, K. Metschke, M. Meyer, A.-C. Richter, B. Schulze, R.-M. Stecker, P. O. M. Steinhoff, M. Winter, and K. Fischer. 2016. Cloud cover but not artificial light pollution affects the morning activity of Wood Pigeons. Ornis Fennica 93: 246-252.

Ciach, M., and A. Fröhlich. 2017. Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosystems 20: 547-559. DOI: 10.1007/s11252-016-0613-6

Cochran, W. W., H. Mouritsen, and M. Wikelski. 2004. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304: 405-408. DOI: 10.1126/science.1095844

29

Cook, M. O., M. J. Weaver, P. Hutton, and K. J. McGraw. 2017. The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus). Behavioral Ecology and Sociobiology 71. DOI: 10.1007/s00265-017-2304-6

Davies, N. B., J. R. Krebs, and S. A. West. 2014. An introduction to behavioural ecology. 4th edition edition. Wiley-Blackwell.

Dawson, A., V. M. King, G. E. Bentley, and G. F. Ball. 2001. Photoperiodic control of seasonality in birds. Journal of Biological Rythms 16: 365-380.

De Molenaar, J. G., D. A. Jonkers and M. E. Sanders. 2000. Road illumination and nature 3. Local influence of road lights on a black-tailed godwit (Limosa l. limosa) population. Alterra, Wageningen, The Netherlands.

Ditchkoff, S. S., S. T. Saalfeld, and C. J. Gibson. 2006. Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosystems 9: 5-12. DOI: 10.1007/s11252-006-3262-3

Dominoni, D., M. Quetting, and J. Partecke. 2013. Artificial light at night advances avian reproductive physiology. Proceedings of the Royal Society of London B 280.

Dominoni, D. M., J. C. Borniger, and R. J. Nelson. 2016. Light at night, clocks and health: from humans to wild organisms. Biology Letters 12.

Dominoni, D. M., T. J. V. t. Hof, and J. Partecke. 2015. Social cues are unlikely to be the single cause for early reproduction in urban European blackbirds (Turdus merula). Physiology & Behavior 142: 14-19.

Dominoni, D. M., and J. Partecke. 2015. Does light pollution alter daylength? A test using light loggers on free- ranging European blackbirds (Turdus merula). Philosophical Transactions of the Royal Society B 370.

Falchi, F., P. Cinzano, D. Duriscoe, C. C. Kyba, C. D. Elvidge, K. Baugh et al. 2016. The new world atlas of artificial night sky brightness. Science Advances 2(6): 1-25.

Fonken, L. K., J. L. Workman, J. C. Walton, Z. M. Weil, J. S. Morris, A. Haim, and R. J. Nelson. 2010. Light at night increases body mass by shifting the time of food intake. PNAS 107: 18664-18669.

Fuller, R. A., P. H. Warren, and K. J. Gaston. 2007. Daytime noise predicts nocturnal singing in urban robins. Biology Letters 3: 368-370. DOI: 10.1098/rsbl.2007.0134

Gaston, K. J., J. Bennie, T. W. Davies, and J. Hopkins. 2013. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological Reviews 88: 912-927. DOI: 10.1111/brv.12036

30

Gorenzel, W. P., and T. P. Salmon. 1995. Characteristics of American crow urban roosts in California. The Journal of Wildlife Management 59:638-645.

Gwinner, E. 1996. Circadian and circannual programmes in avian migration. The Journal of Experimental Biology 199: 39-48.

Hart, N. S., and D. M. Hunt. 2007. Avian visual pigments: characteristics, spectral tuning, and evolution. The American Naturalist 169: S7-S26.

Horváth, G., G. Kriska, P. Malik and B. Robertson. 2009. Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment 7(6): 317-325. DOI: 10.1890/080129

Jackson, C., B. J. McCabe, A. U. Nicol, A. S. Grout, M. W. Brown, and G. Horn. 2008. Dynamics of a memory trace: effects of sleep on consolidation. Current Biology 18: 393-400. DOI: 10.1016/j.cub.2008.01.062

Jones, J., and C. M. Francis. 2003. The effects of light characteristics on avian mortality at lighthouses. Journal of Avian Biology 34: 328-333.

Jong, M. d., L. Jeninga, J. Q. Ouyang, K. v. Oers, K. Spoelstra, and M. E. Visser. 2016. Dose-dependent responses of avian daily rhythms to artificial light at night. Physiology & Behavior 155: 172-179.

Jong, M. d., J. Q. Ouyang, A. D. Silva, R. H. A. v. Grunsven, B. Kempenaers, M. E. Visser, and K. Spoelstra. 2015. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philosophical Transactions of the Royal Society B 370.

Kempenaers, B., P. Borgström, P. Loës, E. Schlicht, and M. Valcu. 2010. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Current Biology 20: 1735-1739. DOI: 10.1016/j.cub.2010.08.028

Kociolek, A. V., A. P. Clevenger, C. C. St. Clair, D. S. Proppe. 2011. Effects of road networks on bird populations. Conservation Biology 25(2): 241-249. DOI: 10.1111/j.1523-1739.2010.01635.x

Krebs, C. J. 2009. Ecology. 6th edition edition. Pearson.

Kyba, C. C. M., T. Ruhtz, J. Fischer, and F. Hölker. 2011. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6. DOI: 10.1371/journal.pone.0017307

Kyba, C. C. M., K. P. Tong, J. Bennie, I. Birriel, J. J. Birriel, A. Cool, A. Danielsen, T. W. Davies, P. N. d. Outer, W. Edwards, R. Ehlert, F. Falchi, J. Fischer, A. Giacomelli, F. Giubbilini, M. Haaima, C. Hesse, G. Heygster, F.

31

Hölker, R. Inger, L. J. Jensen, H. U. Kuechly, J. Kuehn, P. Langill, D. E. Lolkema, M. Nagy, M. Nievas, N. Ochi, E. Popow, T. Posch, J. Puschnig, T. Ruhtz, W. Schmidt, R. Schwarz, A. Schwope, H. Spoelstra, A. Tekatch, M. Trueblood, C. E. Walker, M. Weber, D. L. Welch, J. Zamorano, and K. J. Gaston. 2015. Worldwide variations in artificial skyglow. Scientific Reports 5. DOI: 10.1038/srep08409

Longcore, T., and C. Rich. 2004. Ecological Consequences of Artificial Night Lighting. Frontiers in Ecology and the Environment 2: 191-198.

Lustick, S. 1973. The effects of intense light on bird behavior and physiology. Bird Control Seminars Proceedings 119: 171-186.

Lyytimäki, J., P. Tapio, and T. Assmuth. 2012. Unawareness in environmental protection: The case of light pollution from traffic. Land Use Policy 29: 598-604. DOI: 10.1016/j.landusepol.2011.10.002

Maddocks, S. A., A. R. Goldsmith, and I. C. Cuthill. 2002. Behavioural and physiological effects of absence of ultraviolet wavelengths on European starlings Sturnus vulgaris. Journal of Avian Biology 33: 103-106.

Maier, E. J. 1992. Spectral sensitivities including the ultraviolet of the passeriform bird Leiothrix lutea. Journal of Comparative Physiology A 170: 709-714.

Merkel, F. R., and K. L. Johansen. 2011. Light-induced bird strikes on vessels in Southwest Greenland. Marine Pollution Bulletin 62: 2330-2336. DOI: 10.1016/j.marpolbul.2011.08.040

Miller, M. W. 2006. Apparent effects of light pollution on singing behavior of American Robins. The Condor 108: 130-139.

Morgan, K. N., and C. T. Tromborg. 2007. Sources of stress in captivity. Applied Animal Behaviour Science 102: 262-302. DOI: 10.1016/j.applanim.2006.05.032

Navara, K. J. and J. N. Nelson. 2007. The dark side of light at night: physiological, epidemiological, and ecological consequences. Journal of Pineal Research 43: 215-224. DOI: 10.1111/j.1600-079X.2007.00473.x

Nordt, A., and R. Klenke. 2013. Sleepless in town – drivers of the temporal shift in dawn song in urban European blackbirds. PLoS ONE 8. DOI: 10.1371/journal.pone.0071476

O'Donoghue, M., S. Boutin, C. J. Krebs, and E. J. Hofer. 1997. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80: 150-162.

32

Ogden, L. J. E. 1996. Collision course: the hazards of lighted structures and windows to migrating birds. Fatal Light Awareness Program (FLAP) 3.

Partecke, J., T. J. V. t. Hof, and E. Gwinner. 2005. Underlying physiological control of reproduction in urban and forest-dwelling European blackbirds Turdus merula. Journal of Avian Biology 36: 295-305.

Poot, H., B. J. Ens, H. d. Vries, M. A. H. Donners, M. R. Wernand and J. M. Marquenie. (2008). Green light for nocturnally migrating birds. Ecology and Society 13.

Preiszner, B., S. Papp, I. Pipoly, G. Seress, E. Vincze, A. Liker, and V. Bókony. 2017. Problem-solving performance and reproductive success of great tits in urban and forest habitats. Animal Cognition 20: 53-63. DOI: 10.1007/s10071-016-1008-z

Price, J., and P. Glick. 2002. The birdwatcher's guide to global warming. National Wildlife Federation and American Bird Conservancy.

Raap, T., G. Casasole, D. Costantini, H. AbdElgawad, H. Asard, R. Pinxten, and M. Eens. 2016a. Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: an experimental study. Scientific Reports 6.

Raap, T., G. Casasole, R. Pinxten, and M. Eens. 2016b. Early life exposure to artificial light at night affects the physiological condition: an experimental study on the ecophysiology of free-living nestling songbirds. Environmental Pollution 218: 909-914. DOI: 10.1038/srep35626

Raap, T., J. Sun, R. Pinxten, and M. Eens. 2017. Disruptive effects of light pollution on sleep in free-living birds: season and/or light intensity-dependent? Behavioural Processes 144: 13-19.

Rao, S., and V. K. Koli. 2017. Edge effect of busy high traffic roads on the nest site selection of birds inside the city area: guild response. Transportation Research Part D 51: 94-101.

Robertson, B., G. Kriska, V. Horvath, and G. Horvath. 2010. Glass buildings as birds feeders: urban birds exploit insects trapped by polarized light pollution. Acta Zoologica Academiae Scientiarum Hungaricae 56: 283-293.

Rowan, W. 1925. Relation of light to bird migration and developmental changes. Nature 115: 494-495.

Rowan, W. 1937. Effects of traffic disturbance and night illumination on London starlings. Nature 122: 11-12.

33

Russ, A., A. Rüger, and R. Klenke. 2015. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. Journal of Ornithology 156: 123-131. DOI: 10.1007/s10336-014- 1105-1

Schneider, T., H.-P. Thalau, P. Semm and W. Wiltschko. 1994. Melatonin is crucial for the migratory orientation of pied flycatchers (Ficedula hypoleuca pallas). Journal of Experimental Biology 194: 255-262.

Silva, A. D., M. Valcu, and B. Kempenaers. 2016. Behavioural plasticity in the onset of dawn song under intermittent experimental night lighting. Animal Behaviour 117: 155-165.

Squires, W. A., and H. E. Hanson. 1918. The destruction of birds at the lighthouses on the coast of California. The Condor 20: 6-10.

Stone, T. 2018. The value of darkness: a moral framework for urban nighttime lighting. Science and Engineering Ethics 24(2):607-628.

Sun, J., T. Raap, R. Pinxten, and M. Eens. 2017. Artificial light at night affects sleep behaviour differently in two closely related songbird species. Environmental Pollution 231: 882-889.

Swaddle, J. P., C. D. Francis, J. R. Barber, C. B. Cooper, C. C. M. Kyba, D. M. Dominoni, G. Shannon, E. Aschehoug, S. E. Goodwin, A. Y. Kawahara, D. Luther, K. Spoelstra, M. Voss, and T. Longcore. 2015. A framework to assess evolutionary responses to anthropogenic light and sound. Trends in Ecology and Evolution 30: 550-560.

Swaisgood, R. R. 2007. Current status and future directions of applied behavioral research for animal welfare and conservation. Applied Animal Behaviour Science 102: 139-162. DOI: 10.1016/j.applanim.2006.05.027

Tets, G. v., W. Vestjens, and E. Slater. 1969. Orange runway lighting as a method for reducing bird strike damage to aircraft. CSIRO Wildlife Research 14: 129-151.

Thomas, R. J., T. Szekely, I. C. Cuthill, D. G. C. Harper, S. E. Newson, T. D. Frayling, and P. D. Wallis. 2002. Eye size in birds and the timing of song at dawn. Proceedings of the Royal Society of London B: 831-837. DOI: 10.1098/rspb.2001.1941

Yorzinski, J. L., S. Chisholm, S. D. Byerley, J. R. Coy, A. Aziz, J. A.Wolf, and A. C. Gnerlich. 2015. Artificial light pollution increases nocturnal vigilance in peahens. PeerJ 3. DOI: 10.7717/peerj.1174

34

Yorzinski, J. L., K. A. Ordonez, and K. T. Chema. 2017. Does artificial light pollution impair problem-solving success in peafowl? Ethology 123: 854-860. DOI: 10.1111/eth.12658

Yoshimura, T., S. Yasuo, M. Watanabe, M. Iigo, T. Yamamura, K. Hirunagi and S. Ebihara. 2003. Light-induced hormone conversion of T4 tp T3 regulates photoperiodic response of gonads in birds. Nature 426: 178-181. DOI: 10.1038/nature02117

35

Chapitre 2 « The Jacques Cartier bridge impacts nesting behavior and activity of the cliff swallow (Petrochelidon pyrrhonota) »

2.1 Résumé

Les impacts des lumières urbaines supplémentaires installées sur une partie du pont Jacques-Cartier à Montréal, au Canada, ont été évaluées afin de déterminer leur impact sur la population d'hirondelles à front blanc (Petrochelidon pyrrhonota) nichant et se nourrissant sur le pont. Chaque été, en 2017 et en 2018, la distribution des nids sur le pont a été déterminée. L'intensité de l’activité des oiseaux a également été mesurée à différents moments de la journée. L'impact de la section éclairée du pont a été comparé à celui des sections non éclairées. Les résultats ont montré qu'il y avait une augmentation de l'abondance des nids et de l'intensité de l'activité dans la section éclairée du pont par rapport aux sections non éclairées. De plus, une activité accrue a été observée le soir, mais cette augmentation ne s'est pas limitée à la zone illuminée. Par conséquent, l'éclairage du pont a un impact positif sur la répartition des nids d'oiseaux et sur l'activité des oiseaux. L’éclairage n’a pas d’impact notable sur la temporalité de l’activité des oiseaux. Les impacts n'ont été observés qu’à la deuxième année de cette étude, soit l'année suivant l'installation des lumières artificielles. Un suivi continu de cette population d'oiseaux est nécessaire pour confirmer la tendance observée dans cette étude de seulement deux ans.

2.2 Abstract

Additional urban lights installed on a section of the Jacques Cartier bridge in Montreal, Canada were evaluated to determine their impact on the cliff swallow (Petrochelidon pyrrhonota) population nesting and feeding on the bridge. Each summer in 2017 and 2018, nest distribution on the bridge was determined. Timing of bird activity was also measured at different times during the day. The impact of the illuminated section of the bridge was compared to the non-illuminated sections. Results have shown that there was an increase in nest abundance and activity intensity in the illuminated section of the bridge compared to the non-illuminated sections. Furthermore, increased activity was seen in the evening, but this increase was not limited to the illuminated zone. Therefore, the illumination of the bridge has a positive impact on the distribution of bird nests and bird activity. The illumination has no notable impact on the timing of bird activity. Impacts were only seen on the second year of this study, the year following the installation of the artificial lights. Continued follow-up on this bird population is necessary to confirm the tendency seen in this only two-year study.

36

2.3 Introduction

Artificial light at night is known to have multiple consequences on organisms exposed to it. Organisms from all taxonomic groups can be affected, like plants, fish, mammals, insects and others (Gaston and Bennie 2014). In birds, artificial light at night can modify the timing of the reproduction and change the size of the reproductive organs (Dominoni et al. 2013, Dominoni et al. 2015, Kempenaers et al. 2010, Rowan 1925, Rowan 1937). Songbirds can also experience a delay in their singing period (Longcore and Rich 2004, Gaston et al. 2013, Miller 2006, Silva et al. 2016, Kempenaers et al. 2010, WSP 2016). Sleep patterns can be modified, decreasing the amount of sleep birds get and negatively affecting their life expectancy (Sun et al. 2017, Raap et al. 2017, Yorzinski et al. 2015). Nocturnal migrating birds can be disturbed by artificial lights and die from collisions with structures or other birds (Longcore et Rich 2004, Stone 2018, Kociolek et al. 2011, Squires et Hanson 1918, Merkel et Johansen 2011, Avery et al. 1976, Poot et al. 2008, WSP 2016).

The organisms observed in this study are cliff swallows (Petrochelidon pyrrhonota). This bird species is migratory and diurnal. Individuals are insectivorous. They make their nests directly on concrete structures like bridges using their saliva to collect and stick together small amounts of mud. Nests are often built next to each other to form colonies. Nest building is done from the end of April to mid-May. For the rest of the summer until July, swallows lay their eggs, incubate them and rear their juveniles (Hémisphère 2011, Molina et al. 2012, Molina et al. 2016). There are ten thousand individuals in the province of (Hémisphère 2011). However, there has been an 81% decrease in their abundance between 1970 and 2014 (ICOAN 2012, Québec Oiseaux 2017).

The Jacques Cartier bridge in Montreal, Canada is an important nesting site for the Montreal P. pyrrhonota population. In fact, cliff swallows have been nesting there for many generations. On May 17, 2017, multiple artificial lights were added on a small area of the bridge and are turned on every night ever since (Figure 5). The primary goal of this article is to determine the impact of this artificial light. More precisely, the impact measured is one of supplemental artificial light on birds living in an environment already plentiful with anthropic lights. In fact, the Jacques Cartier bridge connects the cities of Montreal and which are highly populated and therefore emit high amounts of artificial lighting at night. The importance of this nesting site explains the need for such a study, considering that some swallow individuals nest right on the section of the bridge which contains the artificial light. Our research hypothesis is that the potential impact of the illumination will be negative, decreasing the number of nests detected. The artificial light will also have an impact on the birds’ activity potentially increasing its occurrence later in the evening as literature has often suggested.

37

Figure 5. Picture of the section of the Jacques Cartier bridge illuminated at night (https://jacquescartierchamplain.ca/community- heritage/structures-and-projects/illumination-of-jacques-cartier-bridge/?lang=en).

2.4 Methods

The Jacques Cartier bridge is separated in different sections: 2, 3, 4, 5, 6, 7 and 8. Section 7 is the one with the illumination. The other sections are at various distances from this artificial lighting (Figure 6). The illumination consists of multiple LED spotlights and light strips glowing at intensities and colours that vary throughout the night.

All bird observations were done in the summer (being migratory birds, cliff swallows are not present in Montreal in the winter) in 2017 and 2018 from the end of April to mid-August. The timeframe for observations was between 6am to nighttime (usually around 9pm depending on the day). Observations were made at anytime in this timeframe.

The indicators used to determine the impact of the illumination were the abundance and distribution of cliff swallow nests on the bridge and on each section for each study year (two (2) in total), the activity in individual nests at different periods of the day and the change and evolution of these two indicators between the two (2) study years.

38

Figure 6. Map of the Jacques Cartier bridge (Montréal, Canada) with its sections (2, 3, 4, 5, 6, 7 and 8) (sourced from Jacques Cartier and Champlain Bridges Incorporated (JCCBI)).

39

Three (3) sites were delimited within the bridge. Their locations are shown on Figure 7. The first site was the control site. The nests at this site were slightly or not at all affected by the illumination on section 7 due to being located at a fair distance from it. There were no further disturbances at this site. It was situated in section 4 of the bridge. The second site was the intermediate site. This site was relatively affected by the bridge’s illumination since it was located fairly close to it. Some bridge construction and maintenance were potentially impacting the nests in this zone. It was also located in the fourth section. The third site was the illuminated site. At this site, nests were directly impacted by the illumination since they were located right under.

Control site

Intermediate site Illuminated site

Figure 7. Location of the three (3) sites used to observe cliff swallows nests on the Jacques Cartier bridge. Locations were changed between the two (2) years to ensure that active nests were present in each zone. Orange circles represent the locations of the zones in 2017 and blue circles the locations of the zones in 2018. 2.4.1 Nest abundance and distribution

The total number of nests on the bridge was determined by walking under the bridge and manually detecting and counting the number of available nests for swallows. Moreover, each nest detected was assessed to determine if it was active or not. This was done by observing the nest for a maximum of 30 minutes; if activity was seen within this delay (a swallow entering or leaving the nest) then the nest was determined as active. Otherwise, the nest was counted as inactive (SEF 2017b). This was done twice each year.

2.4.2 Nest activity

At each of the three (3) sites identified earlier (Figure 9), three (3) nests were selected and bird activity in these nests was measured. The exact times of entrances and exits of all the individuals in each nest was written down. Therefore, the number of entrances and exits at each nest was recorded. These observations were done at any

40

time during the day for one (1) hour from May to August in 2017 and 2018. Meteorological data was also recorded at every observation.

Temporal differentiation of nest activity was also measured to determine how illumination can affect cliff swallow differences in behavior. Bird activity can reflect different behaviors like nest search, nest construction or repair, hunting, juvenile birds learning to fly, etc. The number of movements was found by adding the number of entrances and exists at each selected nest. A temporal observation of cliff swallow movements was done to determine preferential moments of the day for activity and the potential impact of the illumination on these. Days were separated in three periods: morning from 6am to 11am, afternoon from 11am to 4pm and evening from 4pm to 9pm.

Previous observations (from 2012 to 2016) were made by Services Environnementaux Faucons (SEF) and were used in this article to make comparisons between results found in 2017 and 2018.

2.5 Results

2.5.1 Nest abundance and distribution

Figure 8 shows the number of nests detected on the Jacques Cartier bridge for each of the two (2) years of this experiment and past years as well.

Figure 8. Total abundance of cliff swallow nests on the Jacques Cartier bridge from 2012 to 2018 regardless of sections. The white columns represent the past data and the dark columns represent the data collected in this study.

From 2012 to 2015, the number of cliff swallow nests on the Jacques Cartier bridge stays constant, varying between 78 and 64. After 2015, the number of nests increases to reach the highest value in 2018: 138 nests. Even though the first year of the study shows a higher number of nests than the previous year (87 in 2017 versus 77 in 2016), a Mann-Kendall statistical test (5% significance level) shows that there is no significant upwards or downwards tendency in the number of nests from 2012 to 2017 and that 2017 does not represent a significant

41

increase in the number of nests since 2012. The number of nests is therefore stable throughout the years 2012 to 2017. Variation in total nest abundance between these years can be attributed to natural fluctuations in population numbers. However, a statistical Student’s T-test (5% significance level) shows that the number of nests found in 2018 is a significant increase compared to the previous years, proposing that there are in fact more cliff swallow nests in 2018 than in any other years before. Considering that the illumination started in 2017, a high number of nests in the following year suggests that the lights might be partially responsible for this increase.

Abundance of cliff swallow nests was also assessed for each section of the Jacques Cartier bridge. Figure 9 shows the sections with the most significant changes in nest abundance.

a) b)

Figure 9. Abundance of cliff swallow nests in a) section 6 and b) section 7 of the Jacques Cartier bridge. These sections are the closest to the bridge’s lights. No observations were made before 2016 in section 7. The blue column shows the data collected in the first year of this study and the orange column the data in the second year of this study.

Sections 6 and 7 are subjected to the bridge’s illumination. Section 7 is the one containing the lights and section 6 is located right next to the illumination. Both sections show a significant increase in their number of cliff swallow nests in 2018. In section 6, the number of nests before 2017 was relatively constant throughout the years, varying between 6 and 9 (figure 11a). In section 7, the first observation ever made showed 20 nests in 2016 (figure 11b). The values found in 2018 highly overcast the previous values.

2.5.2 Nest activity

Acknowledging the abundance of nests is not enough to determine population fluctuations (even though the increased number of nests in 2018 shows the appearance of new nests), nest activity needs to be measured. In fact, there are often much more nests than birds since some of the nests stay unused due to the presence of parasites or because they are not repaired. Bird activity in all of the nests detected above was determined to understand the distribution of cliff swallow individuals on the bridge.

42

The total number of nests on the bridge was separated between active and inactive. This is shown in Table 3. Nest activity was only previously measured in 2012. Therefore, comparison could only be made between the years 2012, 2017 and 2018.

Tableau 3. Abundance of active and inactive nests on the whole Jacques Cartier bridge in 2012, 2017 and 2018. The blue line shows the data collected in the first year of this study and the orange line the data from the second year of this study.

Number of cliff swallow nests

Year Active nests Inactive nests Total

2012 76 2 78 2017 63 24 87 2018 99 39 138

In 2012 and 2017, the number of active cliff swallow nests is relatively the same, with only around a 10 nests difference between the two years. The number of inactive nests however is much higher in 2017. In 2018, the number of active nests increases greatly, with a 30 nests difference from 2017. The number of inactive nests is also higher. The highest abundance of active nests in 2018, the year following the beginning of the illumination, suggests that the lights have an impact on the number of swallows using the nests located near the illumination.

The next figure (Figure 10) shows the separation of active nests on the Jacques Cartier bridge into each section of the bridge.

43

Figure 10. Percentage of activity and abundance in parentheses of active cliff swallow nests in each section of the Jacques Cartier bridge for the two years of the study.

In 2017, the section with the highest proportion of active swallow nests is section 4 (which contains the control site), followed by section 5. These sections also have the highest abundance of active nests. The section with the illumination, section 7, has fewer active nests than sections 4 and 5. Section 6, which is right next to section 7, has the lowest proportion and number of active nests. The availability of shallow water ponds in proximity to section 4 could explain this distribution of active nests, since cliff swallows need mud to build and repair their nests.

In 2018, section 7 becomes the section with the most active nests. Section 4 is the second section with the most active nests. The percentage of active nests shows an important increase from 2017 to 2018 in sections 6 and 7, passing from 4.8% to 14.1% in section 6 and 6.3% to 35.4% in section 7. These results observed specifically in 2018 suggest that the illumination is in part responsible for this shift.

Section 2 has no active nests in 2017 and 2018. Nests were seen for the first time in section 3 in 2018. For sections 4 and 5, it is possible to notice that their proportions of active nests are lower in 2018 than in 2017. However, when looking at the abundance of nests, their values stay similar between the two years. This further supports that the increase in the number of active nests is located solely in the illuminated section of the bridge suggesting that the illumination is in part responsible for it.

44

Results of the temporal differentiation of nest activity are shown in Figure 11a and b. In 2017, the median value for cliff swallow activity is similar between morning and afternoon, respectively 18 and 19.3 movements. The evening period shows a lower activity rate: 10.7 movements/hour (Figure 11a).

In 2018, the pattern is reversed. The highest median value for bird movements is seen in the evening (16,7 movements). There is therefore an increase between 2017 and 2018 in movements during the evening. Bird movements in the morning and the afternoon are slightly lower than the year before, respectively 14 and 13.5 (Figure 11b).

A separation of the temporal distribution of bird movements into each period (morning, afternoon and evening) between the three observation sites determined earlier (illuminated, intermediate and control) is necessary to determine where this increase in activity is located on the bridge. This is shown in Figure 11c and d.

45

100 100

90 Median 90 Median 25%-75% 25%-75% 80 2017 Min-Max 80 2018 Min-Max Mean Mean 70 70

60 60

50 50

40 40

Numbermovementsof 30 Numbermovementsof 30

20 20

10 10

0 0 Morning Afternoon Evening Morning Afternoon Evening a) Period of the day b) Period of the day

100 100

90 Median 90 Median 2017 25%-75% 2018 25%-75% Min-Max Morning Min-Max 80 Mean 80 Mean Morning Afternoon 70 Afternoon 70

60 60 Evening 50 50 Evening 40 40

Number of movements Number of movements 30 30

20 20

10 10

0 0 Illuminated Control Illuminated Control Illuminated Control Illuminated Control Illuminated Control Illuminated Control Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate c) Observation sites d) Observation sites

Figure 11. Abundance of cliff swallow movements to and from nests separated by the period of the day (morning, afternoon and evening) in a) 2017 and b) 2018, and number of cliff swallow movements to and from nests separated by the period of the day (morning, afternoon and evening) and by study sites (illuminated, intermediate and control) in c) 2017 and d) 2018.

46

In the illuminated site, the highest median value for swallow movements is seen in the morning in 2017: 15 movements. In 2017, most bird movements are seen in the morning, followed by the afternoon and finally the evening, respectively 15, 12.5 and 6 (Figure 11c). In 2018, all periods show very similar median values: 10 for the morning, 13 for the afternoon and 12.5 for the evening. It is possible to notice that the mean number of movements in the evening shows an increase of 6.5 movements from 2017 to 2018 (Figure 11d). There is a high variation in the values found in the morning in 2018.

In the intermediate zone, the median number of movements in the morning stays the same between 2017 and 2018: 18 and 17 movements. The afternoon period shows a small decrease in the median number of movements: 23 in 2017 and 15 in 2018. On the opposite, there is an increase in median bird movements in the evening period between the two study years. 2017 showed 10 movements whereas 2018 shows 18 movement/hour (Figure 11).

At the control site, the median number of movements decreases between 2017 and 2018. In the morning, it goes from 46 to 14, showing a large decrease. In the afternoon, it goes from 22 to 16. In the evening, it goes from 29 to 18. In the second year of this study, all periods show a similar median number of movements (14 for the morning, 16 for the afternoon and 18 for the evening) (Figure 11d).

Data seems to suggest that there is a slight tendency for the median number of bird movements to increase between 2017 and 2018 in the evening specifically in the illuminated and the intermediate sites. The control site shows a decrease in movements in the evening. Although the illuminated site is located right where the artificial lights are, the intermediate site is positioned in section 4 which is farther away from the illuminated section of the bridge. In that case, the illumination might not be the only explanation for this observed tendency. Moreover, it is also possible to see that there seems to be much more movements in the illuminated sites in 2018, reaching a maximum of 89 in the morning, the highest value obtained in the course of this study.

2.6 Discussion

Results from this two-year study seem to show that the Jacques Cartier bridge illumination did not have a negative impact on cliff swallows in 2017 since the birds were already installed on the bridge when the illumination started (this species nests at the end of April and the illumination started in mid-May). However, with the illumination already present in 2018, cliff swallows were potentially impacted in a positive way. Observations seem to show a positive impact of the illumination on nest abundance and spatial distribution of bird activity. In fact, more nests were detected in the sections closer to the illumination in 2018 and a larger proportion of these nests were actively used by swallows.

47

Higher abundance and activity in the bird nests located close to the bridge’s illumination can be explained by an abundance of food resources: insects. Insects are well-known to be attracted to light sources at night (Longcore and Rich 2004, Owens and Lewis 2018) and the presence of the added illumination on the bridge could potentially attract more insects than it used to and therefore encourage swallows to nest in the sites where this particular phenomenon is happening. Rao and Koli (2017) found that many bird species will nest near light sources to profit from their insect attraction.

Cliff swallows depend heavily on aerial insects to survive. Any factors like pollution or pesticide use decreasing the availability of insects could greatly deplete cliff swallow populations (ICOAN 2012). Therefore, an increase in insect abundance can lead to an increase in cliff swallow individuals highlighting the importance of insects as a food source.

Observations of cliff swallows on other bridges in the Montreal region have shown that the P. pyrrhonota population of Montreal is on the rise. Cliff swallow population numbers are known to vary in time (Brown et al. 2016). Therefore, the high abundance of nests on the Jacques Cartier bridge could be a direct consequence of natural population variations. However, the increase seen on the study bridge is concentrated at the sections close to or containing the illumination (section 6 and 7) which suggests that the illumination is potentially responsible for this increase.

A study by Brown (1986) explores how cliff swallows are able to observe individuals of the same species and determine which ones are more successful in their foraging. They follow these individuals in order to increase their own hunting success. This intraspecific visual communication can explain how the number of birds nesting near the illumination increases over the years of this study and will likely increase further.

Insect availability could also encourage swallows to be more active at times where insects are most easily captured, usually at night. Literature has shown that artificial lights are often a sign of high insect availability. Therefore, multiple insectivorous bird species will be attracted to these lights to forage. An article by Robertson et al. (2010) has shown that birds preyed on polarotactic insects which were attracted to tall glass buildings appearing like water surfaces. The birds in this study took advantage of that fact and learned to forage on these structures. Another article by van Tets et al. (1969) discovered there was a high mortality rate in birds close to airport runway lights, possibly caused by their attraction to the insects swarming around said lights.

In terms of the temporal distribution of cliff swallow activity, results only show a slight impact of the bridge’s illumination. In fact, there was an increase in bird activity in the evening, but this increase wasn’t specific to the location of the illumination. The illuminated and the intermediate sites were seen to have an increased activity rate in the evening period in 2018. Although this increase was seen in section 7 (the one containing the new

48

artificial lights), it was also seen in section 4, which is much farther from the lights. This proposes that the added illumination might not be the only explanation for this tendency because if it was, the increase in activity would only have been seen at the illuminated site. Moreover, the spatial range of the illumination might reach section 4, explaining the impact seen on this section as well.

Multiple studies have found that exposure to artificial light can encourage birds to have a higher activity rate later in the evening and delay their entry to their nest for the night (Gaston et al. 2013, Russ et al. 2015, Ciach and Fröhlich 2017, Sun et al. 2017).

Artificial light is known to encourage birds to wake up at an earlier time to begin daily activities like foraging earlier than usual and start singing earlier as well (Miller 2006, Kempenaers et al. 2010, Gaston et al. 2013, Silva et al. 2016, Raap et al. 2017, Sun et al. 2017, Jong et al. 2016). Indeed, in 2018 in the morning period at the illuminated site, the highest number of movements was seen. This may have been caused by the artificial lights, but more observations would need to be done to confirm this hypothesis.

The proposed consequences of the illumination on cliff swallow temporal shift in activity might also be caused by traffic noise rather than light exposure. Studies have found that urban noise can encourage birds to sing at a later hour in the evening or at night (Fuller et al. 2007, Nordt and Klenke 2013). Traffic is indeed very high on the Jacques Cartier bridge and this hypothesis might explain the impacts seen in this study. However, they would have been noticeable before the added illumination was installed (in 2017) and that is not the case.

The distribution of increased evening activity from the illuminated site to a non-illuminated site could be explained by birds avoiding artificial light. An experiment by Raap et al. (2017) showed that placing LED lights inside nest boxes caused birds to avoid entering these boxes. Yorzinski et al. (2015) have also observed that some birds preferred to sleep away from light sources especially when the intensity was high. These observations could explain why some birds although active at night, chose to be located at areas away from the artificial light.Cliff swallows are urban animals. Although animals living in urban settings are known to be capable of rapid adaptation to environmental changes, the fast change caused by exposure to artificial light could potentially limit their coping mechanisms and have irreparable consequences on the ecosystem (Swaddle et al. 2015). Light exposure at night can encourage diurnal animals to be active later in the evening causing competition for resources between nocturnal and diurnal species. This can be detrimental to the survival of nocturnal species (Dominoni and Partecke 2015, Hölker et al. 2010, Gaston et al. 2013, Lustick 1973, Russ et al. 2015, Jong et al. 2016, WSP 2016). Increase in insect density near light sources can lead to an increase in bird density. Moreover, the lights could attract new species of insects and therefore new species of birds in the near area, completely changing the community’s composition (Robertson et al. 2010). Birds feeding on nocturnal lights can begin feeding on exclusively nocturnal species which could lead to an increase of the diurnal species of insects.

49

Exposure to artificial light can also induce earlier egg laying, causing juveniles to hatch earlier than usual. This can cause an imbalance between prime juvenile feeding time and high food availability, potentially causing baby birds to be malnourished which can lead to their death (Kempenaers et al. 2010). Urban lighting causing sleep deprivation can reduce individual fitness and reproductive success (Dominoni et al. 2016). Moreover, presence of light at night can encourage birds to survey their surroundings to avoid predators that wouldn’t normally see them at night. Although a benefit at first, it can cause sleep deprivation after some time and potentially decrease in the bird population (Yorzinski et al. 2015). Similarly, light attraction to insects can render them vulnerable to birds therefore decreasing their abundance and potentially causing a lack of food for birds.

The ever-expanding presence of urban light can favor birds that are light-tolerant, to the detriment of night- tolerant species which could be negatively affected in their foraging and reproductive success.

The scope of the study was too short to be able to observe most of these effects. The continuation of cliff swallow observation on the Jacques Cartier bridge will determine if impacts from artificial light will manifest themselves or if the birds will adapt to the new lights and return to their previous state. This study shows similar patterns to those observed in the literature but at a much lesser degree. This is because most studies use artificial light in a natural environment which has no light to begin with at night. This study was done in an already illuminated area (close to Montreal). Cliff swallows are therefore constantly exposed to artificial light and the impact of adding an extra light source is lesser than shown in other studies since birds are accustomed to some degree of artificial light exposure.

Although the intermediate site could have been disturbed by bridge maintenance work, no impact of the latter was found. No important construction was seen in close proximity to the nests studied in 2017 and 2018.

No significant correlation was found between weather conditions and bird activity although research has shown that weather can influence adaptive changes in bird morphology (Brown and Brown 1998, Brown and Brown 2011, Brown et al. 2013).

2.7 Conclusion

In the first year of the study, the illumination of the Jacques Cartier bridge did not seem to have a significant impact on the cliff swallow population. This is likely considering that the birds had already installed their nests when the illumination started. Data collected from 2017 bore similar tendencies to the data found in earlier years (2012 to 2016).

After the second year of the study (2018), potential correlations with the illumination were observed. The illumination was already in place when the birds arrived from their Southern migration. 2018 was a record year

50

in terms of cliff swallow nests and this high value was mostly concentrated to areas in or close to the illumination. The fact that this increase was located mostly at illuminated areas suggests that the illumination had an important role to play. Attraction could potentially be caused by the rising abundance of insects attracted to the lights. No significant impact was seen regarding the temporal variations of activity. Although swallow activity was higher during the evening in 2018, this observation was not specific to the illuminated site, confirming that the illumination might not be the only explanation for this increase.

Continued surveillance of the cliff swallow population on the Jacques Cartier bridge is needed to determine if tendencies observed in this study will continue in a similar direction. The importance of doing so is highlighted by the fact that the Jacques Cartier bridge is an important nesting site for P. pyrrhonota and that the illumination is scheduled to continue for the next 10 years. Considering that consequences of exposure to urban light at night can have detrimental consequences on the individuals and the ecosystem they live in, follow-up studies would be valuable to understand how the cliff swallow population will change.

2.8 Acknowledgements

The authors wish to thank Jacques Cartier and Champlain Bridges Incorporated (JCCBI) for their financial and technical support, as well as their assistance for accessing the study sites.

2.9 Literature Cited

Avery, M., P. F. Springer and J. F. Cassel. (1976). The effects of a tall tower on nocturnal bird migration: a portable ceilometer study. American Ornithological Society 93: 281-291.

Brown, C. R. (1986). Cliff swallow colonies as information centers. Science 234(4772): 83-85.

Brown, C. R. and M. B. Brown. (1998). Intense natural selection on body size and wing and tail asymmetry in cliff swallows during severe weather. Evolution 52(5): 1461-1475.

Brown, C. R. and M. B. Brown. (2013). Where has all the road kill gone? Current Biology 23(6): R233-R234.

Brown, M. B. and C. R. Brown. (2011). Intense natural selection on morphology of cliff swallows (Petrochelidon pyrrhonota) a decade later: did the population move between adaptive peaks? The Auk 128(1): 69-78.

Brown, C. R., M. B. Brown and E. A. Roche. (2013). Fluctuating viability selection on morphology of cliff swallows is driven by climate. Journal of Evolutionary Biology 26(5): 1129-1142.

51

Brown, C. R., M. B. Brown, E. A. Roche, V. A. O’Brien and C. E. Page. (2016). Fluctuating survival selection explains variation in avian group size. Proceedings of the National Academy of Sciences 113(18): 5113-5118.

Ciach, M. and A. Fröhlich. (2017). Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosystems 20: 547-559.

Cook, M. O., M. J. Weaver, P. Hutton, and K. J. McGraw. (2017). The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus). Behavioral Ecology and Sociobiology 71. DOI: 10.1007/s00265-017-2304-6

Dominoni, D., M. Quetting and J. Partecke. (2013). Artificial light at night advances avian reproductive physiology. Proceedings of the Royal Society of London B 280.

Dominoni, D. M. and J. Partecke. (2015). Does light pollution alter daylength? A test using light loggers on free- ranging European blackbirds (Turdus merula). Philosophical Transactions of the Royal Society B 370.

Dominoni, D. M., T. J. V. t. Hof and J. Partecke. (2015). Social cues are unlikely to be the single cause for early reproduction in urban European blackbirds (Turdus merula). Physiology & Behavior 142: 14-19.

Dominoni, D. M., J. C. Borniger, and R. J. Nelson. (2016). Light at night, clocks and health: from humans to wild organisms. Biology Letters 12.

Fuller, R. A., P. H. Warren and K. J. Gaston. (2007). Daytime noise predicts nocturnal singing in urban robins. Biology Letters 3: 368-370.

Gaston, K. J. and J. Bennie. (2014). Demographic effects of artificial nighttime lighting on animal populations. Environmental Reviews 22(4): 323–30.

Gaston, K. J., T. W. Davies, J. Bennie and J. Hopkins. (2013). Reducing the ecological consequences of night- time light pollution: options and developments. Journal of Applied Ecology 49: 1256-1266.

Hémisphère, G. (2011). Potentiel de nidification et inventaire estival de l'avifaune utilisant les habitats des propriétés de PJCCI. Rapport produit pour Les Ponts Jacques Cartier et Champlain Inc.

Initiative de conservation des oiseaux de l’Amérique du Nord (ICOAN). (2012). État des populations d’oiseaux du Canada, 2012. Environnement Canada, Ottawa, Canada. 36 pages.

52

Jong, M. d., L. Jeninga, J. Q. Ouyang, K. v. Oers, K. Spoelstra and M. E. Visser. (2016). Dose-dependent responses of avian daily rhythms to artificial light at night. Physiology & Behavior 155: 172-179.

Kempenaers, B., P. Borgström, P. Loës, E. Schlicht and M. Valcu. (2010). Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Current Biology 20: 1735-1739. DOI: 10.1016/j.cub.2010.08.028

Kociolek, A. V., A. P. Clevenger, C. C. St. Clair and D. S. Proppe. (2011). Effects of road networks on bird populations. Conservation Biology 25(2): 241-249. DOI: 10.1111/j.1523-1739.2010.01635.x

Longcore, T. and C. Rich. (2004). Ecological Consequences of Artificial Night Lighting. Frontiers in Ecology and the Environment 2: 191-198.

Lustick, S. (1973). The effects of intense light on bird behavior and physiology. Bird Control Seminars Proceedings 119: 171-186.

Merkel, F. R. and K. L. Johansen. (2011). Light-induced bird strikes on vessels in Southwest Greenland. Marine Pollution Bulletin 62: 2330-2336. DOI: 10.1016/j.marpolbul.2011.08.040

Molina, P., M. G. Skelling, M. Allard, L. Graham-Sauvé and J. Pépin. (2012). Rapport d'activités de 2012 suite à la mise en place du plan de gestion de l'Hirondelle à front blanc en nidification sur les structures de PJCCI. Rapport produit pour Les Ponts Jacques-Cartier et Champlain Inc.

Molina, P., M. G. Skelling, L. Graham-Sauvé, M. Fiola, A. Belzile and M. Allard. (2016). État de la nidification du Faucon pèlerin et de l'Hirondelle à front blanc en 2016 sur les structures de PJCCI et recommandations de gestion pour 2017. Rapport produit pour Les Ponts Jacques-Cartier et Champlain Inc.

Miller, M. W. (2006). Apparent effects of light pollution on singing behavior of American Robins. The Condor 108: 130-139.

Nordt, A. and R. Klenke. (2013). Sleepless in town – drivers of the temporal shift in dawn song in urban European blackbirds. PLoS ONE 8.

Owens, A. C. S. and S. M. Lewis. (2018). The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecology and Evolution 8(22): 11337-11358.

Partecke, J., T. J. V. t. Hof, and E. Gwinner. (2005). Underlying physiological control of reproduction in urban and forest-dwelling European blackbirds Turdus merula. Journal of Avian Biology 36: 295-305.

53

Poot, H., B. J. Ens, H. d. Vries, M. A. H. Donners, M. R. Wernand and J. M. Marquenie. (2008). Green light for nocturnally migrating birds. Ecology and Society 13.

Québec Oiseaux. (2017). Connaître et protéger l'hirondelle à front blanc.

Raap, T., J. Sun, R. Pinxten and M. Eens. (2017). Disruptive effects of light pollution on sleep in free-living birds: season and/or light intensity-dependent? Behavioural Processes 144: 13-19.

Rao, S. and Koli, V. K. (2017). Edge effect of busy high traffic roads on the nest site selection of birds inside the city area: Guild response. Transportation Research Part D 51: 94-101.

Robertson, B., G. Kriska, V. Horváth and G. Horváth. (2010). Glass buildings as bird feeders: urban birds exploit insects trapped by polarized light pollution. Acta Zoologica Academiae Scientiarum Hungaricae 56: 283-293.

Rowan, W. (1925). Relation of light to bird migration and developmental changes. Nature 115: 494-495.

Rowan, W. (1937). Effects of traffic disturbance and night illumination on London starlings. Nature 122: 11-12.

Russ, A., A. Rüger and R. Klenke. (2015). Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. Journal of Ornithology 156: 123-131. DOI: 10.1007/s10336-014- 1105-1

Services Environnementaux Faucon (SEF). (2017). Suivi de l’hirondelle à front blanc en nidification. Services Environnementaux Faucon, St-Lazare, Québec (Canada), 3 pages.

Silva, A. D., M. Valcu and B. Kempenaers. (2016). Behavioural plasticity in the onset of dawn song under intermittent experimental night lighting. Animal Behaviour 117: 155-165.

Squires, W. A. and H. E. Hanson. (1918). The destruction of birds at the lighthouses on the coast of California. The Condor 20: 6-10.

Stone, T. (2018). The value of darkness: a moral framework for urban nighttime lighting. Science and Engineering Ethics 24(2): 607-628.

Sun, J., T. Raap, R. Pinxten and M. Eens. (2017). Artificial light at night affects sleep behaviour differently in two closely related songbird species. Environmental Pollution 231: 882-889.

Swaddle, J. P., C. D. Francis, J. R. Barber, C. B. Cooper, C. C. M. Kyba, D. M. Dominoni, G. Shannon, E. Aschehoug, S. E. Goodwin, A. Y. Kawahara, D. Luther, K. Spoelstra, M. Voss, and T. Longcore. (2015). A

54

framework to assess evolutionary responses to anthropogenic light and sound. Trends in Ecology and Evolution 30: 550-560.

Tets, G. v., W. Vestjens and E. Slater. (1969). Orange runway lighting as a method for reducing bird strike damage to aircraft. CSIRO Wildlife Research 14: 129-151.

Yorzinski, J. L., S. Chisholm, S. D. Byerley, J. R. Coy, A. Aziz, J. A.Wolf and A. C. Gnerlich. (2015). Artificial light pollution increases nocturnal vigilance in peahens. PeerJ 3. DOI: 10.7717/peerj.1174

WSP. (2016). Mise en lumière du pont Jacques-Cartier : évaluation des effets environnementaux, Montréal, Québec. Rapport produit pour Les Ponts Jacques Cartier et Champlain Incorporée. No projet : 151-11367-00. 166 pages et annexes.

55

Chapitre 3 « The impact of the Jacques Cartier bridge illumination on the food chain: from insects to predators »

3.1 Résumé

La lumière artificielle utilisée la nuit peut avoir un impact important sur de nombreuses espèces diurnes en influençant leur répartition et leurs habitudes de vie. Dans cette étude, les impacts des lumières artificielles installées sur le pont Jacques-Cartier à Montréal, Canada ont été évaluées sur les populations d’insectes, d’oiseaux insectivores et de faucons pèlerins. L'impact a été mesuré l'année de l'installation de l’illumination (2017) et l'année suivante (2018), pour un total de deux ans. La distribution et l'abondance des insectes à trois sites différents autour du pont ont été mesurées. L'abondance et l'activité des oiseaux insectivores ont été évaluées en observant l'hirondelle à front blanc comme indicateur indirect. La présence du faucon pèlerin et son comportement de nidification sur le pont ont été évalués. Les insectes (aériens et aquatiques) se sont révélés plus abondants dans la partie éclairée du pont, particulièrement en 2018. De la même façon, les hirondelles à front blanc étaient plus abondantes sur le pont après le début de l'éclairage et leur activité était plus importante à proximité de la section éclairée. Les faucons pèlerins n'étaient présents sur le pont qu’à l’année suivant le début de l’illumination (2018) et plus précisément à la section illuminée du pont. Cependant, aucune nidification n'a été observée. Il semble que ces trois groupes forment une chaîne alimentaire dans laquelle l'abondance d'insectes a un impact sur l'abondance des oiseaux insectivores, qui a un impact sur la présence du faucon pèlerin. L’illumination a donc un impact positif sur ces trois groupes et contribue à la mise en place d’une chaîne alimentaire à trois niveaux. Cette recherche montre l’importance de la surveillance des populations d’oiseaux et d’insectes au pont Jacques-Cartier et suggère la continuation des suivis afin de confirmer les observations faites dans cette étude.

3.2 Abstract

Artificial light at night can impact numerous diurnal species by influencing their distribution and habits. In this study, artificial lights placed on the Jacques Cartier bridge in Montreal, Canada were evaluated to determine their impact on insects, insectivorous birds and peregrine falcons. The impact was measured the year the illumination begun and the year following (two years in total). Insect distribution and abundance at three different sites around the bridge was measured. Insectivorous bird abundance and activity were evaluated by observing the cliff swallow as a proxy. Peregrine falcon presence and nesting behavior at the bridge was measured. Insects (aerial and aquatic) were found to be more abundant closer to the illuminated part of the bridge and particularly

56

in the year following the illumination’s beginning. Similarly, cliff swallows were more abundant at the bridge the year following the start of the illumination and their activity was more important closer to the illuminated section. Peregrine falcons were only present at the bridge in the year following the beginning of the illumination and specifically at the illuminated part of the bridge. No nesting was detected. These three groups are connected to each other through a food chain in which insect abundance impacts insectivorous bird abundance, which in turn impacts peregrine falcon presence. The illumination therefore positively impacts these three groups separately and together through their food chain. This research highlights the importance of monitoring bird and insect population close to the bridge and further continuation of these observations are necessary to determine if the observed tendency will continue to develop throughout the years.

3.3 Introduction

In May 2017, artificial lights of multiple colours and shapes were added on the Jacques Cartier bridge in Montreal, Canada. This urban light is susceptible to have impacts on the organisms that live close to the bridge or use it for nesting or hunting. Insects are an integral part of this group. They form the largest taxonomic group in the world in terms of species and biomass and there are 25 000 species in Quebec of which only 13 000 have been identified (Bélanger 1991). Quebec insects mostly live in forests, wetlands and lakes but an important abundance of insects is often seen in urban environments due to the presence of artificial light (Robinson 2005, Bélanger 1991). Exposure to artificial light can have important detrimental effects on insects. Artificial light can hinder the detection of light signals sent between individuals for reproduction, reducing their ability to detect each other and potentially hindering their reproductive success (Eisenbeis et Hänel 2009, Owens and Lewis 2018). Moreover, attraction to light sources at night increases their chance of being preyed upon and their risk of being tired or burned, both of which can result in their deaths (Eisenbeis et Hänel 2009, WSP 2016, Owens and Lewis 2018).

Exposure to artificial light can have important detrimental effects on insects. Artificial light can hinder the detection of light signals sent between individuals for reproduction, reducing their ability to detect each other and potentially hindering their reproductive success (Eisenbeis et Hänel 2009, Owens and Lewis 2018). Moreover, attraction to light sources at night increases their chance of being preyed upon and their risk of being tired or burned, both of which can result in their deaths (Eisenbeis et Hänel 2009, WSP 2016, Owens and Lewis 2018, Egri et al. 2017).

The present article evaluates the impact of artificial light on insects living close to the Jacques Cartier bridge in terms of their distribution and their abundance at different distances from the bridge. Moreover, a predator species, the peregrine falcon (Falco peregrinus), was also observed. Data collection was used to determine its presence at the bridge, its nesting habit and its different observed behaviors (hunting, nesting, feeding, etc.).

57

The cliff swallow (Petrochelidon pyrrhonota) was similarly observed to determine its abundance and distribution on the bridge to use as a proxy for insectivorous bird presence. These three organisms were then connected to each other to conclude that they are part of a food chain in which predators feed on insectivorous birds which in turn feed on insects.

The predator species studied in this research is the peregrine falcon. It is one of the most studied bird species in the world (Davis 2008). In Quebec, its presence is noted from Montreal to the North of the province (Brûlotte 2000). The falcon is a migratory bird that feeds on birds and small mammals (CRFPQ 2002). In natural environments, it nests on high and rocky mountain surfaces. In urban environments, individuals nest on top of high buildings and bridges (COSEPAC 2007, Hémisphère 2011, Brûlotte 2000). Their nesting period lasts from mid-March to August (Molina et al. 2016). Large open spaces are preferred to facilitate hunting. Tall buildings are ideal nesting areas for falcons since there is often an important presence of prey birds like pigeons. (Davis 2008). The falcon is a diurnal bird (COSEPAC 2007).

This study focused on a short (2 years) temporal and spatial comparison in insect and bird abundance on the Jacques Cartier bridge since only little past data is available for peregrine falcons and no data is available for insects.

3.4 Methods

All observations (for falcons, swallows and insects) were done during the summer from April to August, anytime during the day, in 2017 and 2018.

3.4.1 Insects

Three sample sites for measuring insect abundance were chosen for their varying distances from the Jacques Cartier bridge’s illuminated section. The three sites are shown in Figure 12.

The first site is the control zone. At this site, the illuminated section of the bridge is not visible. Insects at this site should therefore not be affected by the artificial lights. This site is located close to the Marie-Victorin Park in Longueuil. The second site is the intermediate zone. This site was changed location between 2017 and 2018 due to theft and breakage of insect traps. In the first year of the study, it was located behind the police station at 977 Pierre-Dupuy street in Longueuil. In 2018, the site was located on the North of Saint Helen’s Island in the La Ronde amusement park parking lot. The illuminated section of the bridge is visible at this site, but the distance (more than 1 km) allows only a limited impact on the insect population. The last site is the illuminated zone. This zone is located right under the illuminated portion of the bridge and insects in this area are expected to be highly

58

influenced by the artificial lights. It is located on the Western shore of Saint Helen’s Island, next to the La Ronde amusement park.

Control zone

Montreal

Intermediate zone Longueuil

Legend Illuminated zone 2017 Jacques Cartier bridge 2018

Figure 12. Location of the three sites for insect capture in proximity to the Jacques Cartier bridge. The light gray circles represent the study sites in 2017 and the black ones in 2018.

Six insect traps were installed at each site: three for capturing flying terrestrial insects and three for catching emerging aquatic insects (Figure 13).

a) b)

Figure 13. Pictures of the two types of insect traps used in this experiment: a) Aerial trap (MegaView Science Co. SLAM Trap Large BT1005 and b) Emergence trap (MegaView Science Co. Amphibious Emergence Trap BT2008).

59

All traps were installed and kept on location for a week (from Monday to Friday). This was done twice each summer: in July and August. In total, 18 traps were installed each week and insects were collected from the traps every two days. Samples were kept in propylene glycol until analysis. Insect were placed in petri dishes and were counted manually by totalling the number of intact cephalothoraxes.

3.4.2 Cliff swallows

Cliff swallow abundance and distribution was determined by counting the number of nests on the bridge and evaluating the number of active and inactive nests. Nests were manually counted on the complete bridge and at each section of the bridge. Evaluation of nest activity was done by observing each detected nest until bird activity was detected inside the nest (maximum 30 minutes).

3.4.3 Peregrine falcons

Thrice each week for the whole summer, pillars 24 and 25 (Section 7) of the Jacques Cartier bridge were observed to detect any falcon presence (Figure 14). Each observation lasted three hours and every behavior exhibited by the falcon individuals were recorded as well as their frequency. Behaviors included among others: grooming, resting, flying, hunting and communication. Observations were lengthened to four hours when nesting was suspected (SEF 2017).

60

Montreal Longueuil

Section 7 Section 6 Section 5 Section 4 Section 3 Section 2

Figure 14. Location of the sections on the Jacques Cartier bridge. The peregrine falcon observation site is located in section 7 (sourced from Jacques Cartier and Champlain Bridges Incorporated (JCCBI)).

61

3.5 Results

All data collected following the observation of insects, cliff swallows and peregrine falcons at the bridge were analysed. The results for each group of organisms studied are presented in the following figures.

3.5.1 Insects

Figure 15 demonstrates insect abundance at each study site for the two study years (2017 and 2018). Abundance was measured by totalling the number of insects present in each sample and dividing this total by the area/volume covered by each trap.

On the first collection week of 2017, there is a highest abundance of insects at the control site for both terrestrial and aquatic insects: around 700 for aerial traps and 2100 for aquatic traps. The intermediate site follows closely with 400 insects for terrestrial traps and 1500 for aquatic traps. Finally, the illuminated site has the lowest insect abundance: around 200 insects for aerial traps and 1000 for aquatic traps.

On the second week of 2017, the number of captured insects at the intermediate site decreases slightly whereas it increases slightly at the illuminated site. The control site remains the one with the highest abundance for the aquatic traps. However, for the aerial traps, the illuminated site is the one with the highest insect abundance (300 insects compared to 100 at the intermediate site and 200 at the control site).

Results for the second year of the study greatly differ from 2017. The highest insect abundance is found at the illuminated site for aerial traps: around 500 on the first week and 800 on the second. As for aquatic traps, the first week of 2018 shows that the control site has a higher insect abundance (around 900 insects compared to 600 at the illuminated site). However, the illuminated site contains the most insects on the second week of 2018 with an abundance value of 1200 insects per m2.

62

2017 2018 2017 2018 2017 2018

a) b) c)

2017 2018 2017 2018 2017 2018

d) e) f)

Figure 15. Insect abundance at the Jacques Cartier bridge in 2017 and 2018 per m3 for aerial traps at a) the control site, b) the intermediate site and c) the illuminated site, as well as insect abundance per m2 for aquatic traps at d) the control site, e) the intermediate site and f) the illuminated site. Loss and breakage of traps might cause discrepancies in the data.

63

Figure 15a, b and c clearly demonstrate the increasing abundance of terrestrial insects at the illuminated site over the two study years. Furthermore, the decrease in insects at the control site is also highlighted. The tendency detected at the illuminated site could potentially result from the exposure to artificial light since abundance increases following the second half of the summer of 2017, right after the illumination begun in May 2017. An ANOVA statistical test reveals that insect abundance in 2017 is not significantly different from one site to another (p-value = 0.732 ˃ 0.05). However, insect abundance in 2018 is significantly different between sites (p-value = 0.035 < 0.05), confirming that the illumination might be responsible for this tendency since the most significant impact is seen in the year following the installation of the artificial lights. The same observation can be seen for the aquatic traps (Figure 15d, e and f), but the intensity is lesser than for the aerial traps. In fact, an ANOVA statistical test reveals that there is no significant difference between insect abundances at the three different sites for either study year (2017: p-value = 0.451 ˃ 0.05 and 2018: p-value = 0.363 ˃ 0.05). Boat passage and high wind at the illuminated site caused most aquatic traps to often fall, which could have lessened the number of insects captured at this site. This could explain why aquatic insect abundance did not show the same impact from light as terrestrial insects.

3.5.2 Cliff swallows

Results from cliff swallow observations are summarized in the following figures.

Figure 16 shows that the abundance of cliff swallow nests was highest in the second year of the study (2018). Although the number of nests seems to continually increase since 2015, nest abundance is significantly higher in 2018, the year following the beginning of the illumination. This observation supposes that the illumination had a positive impact on cliff swallow abundance on the bridge.

Figure 16. Cliff swallow nest abundance from 2012 to 2018. The first year of the study (2017) is shown in yellow and the second year (2018) is shown in green. Results from 2012 to 2016 were taken from Services Environnementaux Faucons (SEF). 64

a)

b) Figure 17. Percentage of activity and abundance in parentheses of cliff swallow nests at each section (2, 3, 4, 5, 6 and 7) of the Jacques Cartier bridge in a) 2017 and b) 2018.

Figure 17 demonstrates that nest activity has increased from 2017 to 2018 at the sections closest to the bridge’s illumination. In fact, sections 6 and 7 had low abundance and percentage of active nests in 2017 but these values highly increased in 2018, the year following the installation of the lights. This suggests that the illumination had a positive impact on cliff swallow activity and nest distribution on the illuminated section of the bridge.

3.5.3 Peregrine falcons

In 2017, two falcons were seen hunting in section 7 of the Jacques Cartier bridge. This was the only notable observation of peregrine falcons in the first year of the study.

In 2018, two falcons were seen on a daily basis on pillar 25 of the Jacques Cartier bridge. Multiple hunting and flying behaviors were detected reinforcing the idea that the bridge was part of their territory. Communication between the two birds suggested that they were a breeding couple. Later in the summer juvenile birds were

65

seemingly heard on the Eastern side of the bridge, between pillars 23 and 24. However, an inspection of the area showed no nest. Predation traces were however detected (discarded food items for future consumption).

Therefore, no nesting behavior was detected in 2017 nor 2018. Figure 18 summarizes the main results of the second study year in terms of falcon behaviors (limited data was collected in the first year since no significant falcon presence was detected).

Figure 18. Percentage occurrence of peregrine falcon behaviors observed in 2018 at the Jacques Cartier bridge.

Data shows that the most important behavior noticed in the bird couple was resting (seen 40.6% of the time) followed closely by flying (31.9%). These behaviors are signs that the Jacques Cartier bridge was part of the falcons’ territory. Behaviors like grooming, communication, hunting, feeding, vocalisations and aggression were also detected at lower percentages than flying and resting. Copulation and brooding behaviors were not observed, confirming that no nesting occurred in 2018. Falcons were furthermore never seen threatening.

3.6 Discussion

Insect abundance data shows that for aquatic traps, abundance is highest at the control site than at the illuminated site for the first and second collection weeks of 2017 and the first week of 2018. For the second week of 2018, insect abundance is highest at the illuminated site. This doesn’t allow for any conclusion on the impact of the illumination since high insect abundance near the illumination was only seen once. Moreover, this spatial

66

comparison (compared to a preferable temporal comparison, which was impossible considering the lack of past data on insect populations in Montreal) is too limited to make a precise conclusion.

Terrestrial traps show a gradually increasing insect abundance at the illuminated site from the first to last collection week. From the second week of 2017, the number of captured insects at the illuminated site increases more and more at each collection week. This tendency could suggest that the illumination is partly responsible for this increase in abundance. Moreover, the first reproduction cycle of insects in 2017 (every three months) took place before the artificial lights were installed in May. Therefore, this explains why the impact of the illumination would only be seen after this period, on the second week of 2017.

Insects are known to be attracted to artificial light sources. Studies have shown that insects are highly attracted to incandescent lights: sodium or mercury (McDonnell et al. 2015, Justice and Justice 2016). These two types of light are used as lamp posts on the bridge. The added artificial lights are LEDs, which can in some cases have a more important attractive power than incandescent lights (Pawson and Bader 2014, Egri et al. 2017). Moreover, the added attraction could have intensified the insect response and therefore increased abundance close to the bridge.

This attraction could have encouraged insectivorous birds like cliff swallows to nest in proximity to areas of high insect attractiveness. Cliff swallows depend highly on aerial insects to feed and any decrease in their abundance can lead to catastrophic population declines (ICOAN 2012). Habitat destruction and fragmentation (especially in wetlands), excessive pesticide usage and pollution are responsible for the present decline in insect populations (Arnett 2000). Therefore, an increase in their abundance could lead to an increase in cliff swallows in the same area. Moreover, a brief identification of trapped insects showed that the most common insect order found in aerial and aquatic traps was Diptera. This insect begins its life in an aquatic state and emerges as an adult to become a terrestrial insect. As an adult individual, it is an important part of the diet of insectivorous birds, which might have encouraged the latter to be more present at areas where it is found.

Observations seem to confirm this. This suggests that an increase in insect abundance might be the cause for the cliff swallow distribution on the bridge. Since there are many other insectivorous birds present on the bridge other than P. pyrrhonota (the common starling Sturnus vulgaris, the Northern rough-winged swallow Stelgidopteryx serripennis, the Common grackle Quiscalus quiscula as well as the feral pigeon Columba livia domestica) (WSP 2016), the same hypothesis can be applied to these species: a greater insect abundance will lead to an increase in bird abundance. The peregrine falcon, in the same way as these species, can profit from this increase in prey and be more present at the bridge.

67

Falcon nests were previously detected on the Jacques Cartier bridge in 2005, 2008, 2009, 2010 and 2011. Although no nests were detected between 2011 and 2016, falcons were still seen on several occasions flying and hunting around the bridge (Molina et al. 2015, Molina et al. 2016). In the first year of this study, one falcon was seen flying with a prey in its claws. 2018 was the most significant year in terms of falcon presence since a couple was seen every observation day on the illuminated section of the bridge. Moreover, behaviors like flying and hunting were seen very often, confirming that the falcons might take advantage of its position at the bridge to hunt.

This observation seems to coordinate with a highest number of preys at the bridge, translated from a higher abundance of cliff swallows which are not part of a falcon’s diet but mirror the effect of increased abundance of insectivorous birds at the bridge.

Literature has shown that falcons take advantage of artificial light to facilitate their prey catch. Multiple nocturnal migratory birds can be disoriented by the presence of artificial light sources and fly around them in circles, making them more vulnerable to predation (Longcore and Rich 2004, Stone 2018, Kociolek et al. 2011, Squires and Hanson 1918, Merkel and Johansen 2011, Avery et al. 1976, Poot et al. 2008). DeCandido and Allen (2006) have shown that in New York, peregrine falcons benefit from this vulnerability to hunt on these specific preys. Tall buildings are an important component of their hunting location since they can easily perch themselves above migratory birds and hunt them more easily. The presence of falcons at the Jacques Cartier bridge is understandable considering that the bridge is also very high. Other studies have shown falcons are often seen hunting at night in areas where there is artificial light (Marconot 2003, Wendt et al. 1991, Drewitt and Dixon 2008). The artificial light on the bridge could therefore encourage falcons to hunt.

It is difficult to precisely determine whether the illumination is responsible for this increased presence of falcons at the bridge since it was only detected once (in 2018). However, a high presence of preys could potentially explain this observation. Predation traces were found on the bridge, confirming that the falcons use this area to hunt. This evidence was not found in 2017. Therefore, the illumination could be indirectly responsible for the falcons’ presence.

As mentioned previously, there was no nesting on the Jacques Cartier bridge in 2017 nor 2018. This could be the consequence of different factors. The presence of a common raven (Corvus corax) nest on the bridge between pillars 10 and 11 on Notre-Dame Island could discourage falcons from nesting at this area since competition could arise between the two species. Although artificial nests were installed and used in previous years by other peregrine couples, an evaluation done by Molina et al. (2011) found multiple problems that could discourage falcons from using the nests now. First, there are no rocks on the floor of the nest which are important for the female to lay her eggs on. Without rocks, the female could be deterred from using the nest. Second, the 68

mat installed at the front of the artificial nest is not secured. This means that the corners of the mat can move with the wind and scare any bird wanting to enter the nest. Third, rain events can trigger water to drip inside the nest and mold can form (Molina et al. 2015).

The peregrine falcon population of Canada had greatly decreased due to the usage of pesticides like DDT. The pesticide was since banned and efforts were done to increase population numbers. Multiple artificial nests were installed in Montreal to encourage nesting and some individuals raised in captivity were released (Hémisphère 2011, Vuilleumier 2009, CRFPQ 2002). In 2010, 59% of falcon nests found in Quebec were found in natural habitats, 19% in quarries, 10.5% on buildings and 11.5% on bridges (Tremblay et al. 2012). Falcons will reuse the same nests many years in a row (COSEPAC 2007, Davis 2008). Juveniles will also come back to the place they were born to nest (Bird 1997). This shows the importance of encouraging peregrine falcons to nest on the Jacques Cartier bridge and to protect their nesting area to insure the survival of the Montreal population. At the moment, the falcon population is stable (Davis 2008, Vuilleumier 2009).

Therefore, the illumination has a potentially positive impact on the presence of peregrine falcons in proximity to the bridge but its impact on nesting behavior is still unknown.

The data collected in the two years of this study have shown an increase in insect and cliff swallow abundance, and peregrine falcon presence close to the illuminated section of the Jacques Cartier bridge. These observations can potentially be linked to each other by considering that these three species are part of the same food chain in this ecosystem (Figure 19). In fact, as hypothesized previously, the artificial lights can attract more insects towards the bridge, which in turn attract more insectivorous birds to the bridge (the cliff swallow, among others). This abundance of birds can encourage the presence of the peregrine falcon at the bridge.

69

Figure 19. Diagram of the food chain connecting insects, insectivorous birds (including the cliff swallow) and peregrine falcons (the top predator species). Full arrows show a direct impact and dotted arrows show an indirect impact.

This hypothesis is not confirmed considering that no past data is available on insect distribution before the illumination started and that this study only lasted two years. Further continuation of the study needs to be done to confirm this tendency. Further observations could show that birds get accustomed to artificial light and impacts seen in this study disappear after a few years of light exposure. In fact, most studies focus on short-term impacts of artificial light and lack the long-term response of birds. Studies that do observe long-term impacts in the laboratory show that the impacts observed (for example, increase in heart rate) tend to be less pronounced after prolonged exposure (Lustick 1973, Yorzinski et al. 2017). In this study, bird distribution and activity could return to normal, that is, to a distribution of cliff swallow nests on the bridge or an activity rate that has nothing to do with the presence of artificial lights on Section 7.

Results for insects have shown an increase in abundance closer to the bridge and a decrease farther from the bridge. This could suggest that a displacement of insect populations around the Jacques Cartier bridge was happening due to light exposure. In other words, insects far from the bridge could be moving towards it and from one generation to another, insect abundance has grown closest to the bridge. This decreased abundance could be detrimental to animals relying on insects in the sites farthest from the bridge. This hypothesis would need to be confirmed after long-term light exposure.

70

3.7 Conclusion

The first year of the study has shown little to no impact on the studied species. This is to be expected since the illumination was not in place when the peregrine falcon or the insects arrived at the bridge. There is a slight increase in aerial insects at the end of 2017.

Following the second year of the study, effects of the illumination were visible on insects and falcons alike. The artificial lights were already in place when the species arrived from their migration. Data has shown that a record number of cliff swallow nests was detected in 2018 and that this increase is mostly located in areas close to the illumination of the bridge. Although other factors might be responsible for this observation, the artificial lights on the bridge could play an important role. This tendency for cliff swallows to choose to nest close to the illumination might be explained by a high abundance of insects attracted to the lights. This was confirmed with this study as a higher abundance of flying insects was found in the site closest to the illumination compared to farther sites. This increase in cliff swallows can potentially show that insectivorous birds are more abundant close to the bridge’s artificial lights. This amplified presence seems to encourage top predators like the peregrine falcon to hunt in this area. This was also confirmed with this study since a notable falcon presence was noted in 2018 compared to 2017.

These observations suggest that the presence of the illumination on the bridge reinforce the trophic chain linking insects, insectivorous birds and top predators.

Further observations need to be done in order to confirm both the increase in insect abundance and the presence of peregrine falcons close to the artificial lights of the Jacques Cartier bridge. The conclusions found in this study are preliminary considering that observations were only made for two years and no previous data is available on insect distribution.

3.8 Acknowledgements

The authors wish to thank Jacques Cartier and Champlain Bridges Incorporated (JCCBI) for their financial and technical support, as well as their assistance for accessing the study sites.

3.9 Literature Cited

Arnett, R. H. 2000. American Insects: a handbook of the insects of America North of Mexico. CRC Press. 2nd Edition. Boca Raton.

Avery, M., P. F. Springer and J. F. Cassel. 1976. The effects of a tall tower on nocturnal bird migration: a portable ceilometer study. AOS 93: 281-291.

71

Bélanger, P. 1991. Analyse de 50 espèces d’insectes en situation précaire au Québec et problématique de gestion. Société d’entomologie du Québec. Ministère du Loisir, de la Chasse et de la pêche du Québec. Direction de la gestion des espèces et des habitants. 80 pages.

Bird, D. M. 1997. Rapport sur la situation de faucon pèlerin (Falco peregrinus) au Québec. Ministère de l’Environnement et de la Faune, Direction de la faune et des habitats. 76 pages.

Brûlotte, S. 2000. Les oiseaux du Québec : guide d’initiation. Broquet Inc. 2e édition. Ottawa. 287 pages.

Comité de rétablissement du faucon pèlerin au Québec (CRFPQ). 2002. Plan d’action pour le rétablissement du faucon pèlerin anatum (Falco peregrinus anatum) au Québec. Société de la faune et des parcs du Québec. 28 pages.

COSEPAC. 2007. Évaluation et Rapport de situation du COSEPAC sur le Faucon pèlerin (Falco peregrinus) de la sous-espèce pealei (Falco peregrinus pealei) et anatum/tundrius (Falco peregrinus anatum/tundrius) au Canada - Mise à jour. Comité sur la situation des espèces en péril au Canada, Ottawa.

Davis, K. 2008. Falcons of North America. Mountain Press Publishing Company. Missoula, Montana. 226 pages.

DeCandido, R. and D. Allen. 2006. Nocturnal hunting by peregrine falcons at the Empire State Suilding, New York City. Wilson J Ornithol 118(1): 53–58.

Drewitt, E. J. A. and N. Dixon. 2008. Diet and prey selection of urban-dwelling Peregrine Falcons in southwest England. Brit Birds 101(2): 58-67.

Egri, Á., D. Száz, A. Farkas, Á. Pereszlényi, G. Horváth and G. Kriska. 2017. Method to improve the survival of night-swarming mayflies near bridges in areas of distracting light pollution. R Soc Open Sci 4: 171166.

Eisenbeis, G. and Andreas H. 2009. Light pollution and the impact of artificial night lighting on insects. In Ecology of Cities and Towns: A Comparative Approach. Cambridge: Cambridge University Press. Pages 243–263.

Hémisphère, G. 2011. Potentiel de nidification et inventaire estival de l'avifaune utilisant les habitats des propriétés de PJCCI. Rapport produit pour Les Ponts Jacques Cartier et Champlain Inc.

Initiative de conservation des oiseaux de l’Amérique du Nord (ICOAN). 2012. État des populations d’oiseaux du Canada, 2012. Environnement Canada, Ottawa, Canada. 36 pages.

Justice, M. J. and Justice, T. C. 2016. Attraction of insects to incandescent, compact fluorescent, halogen, and LED lamps in a light trap: implications for light pollution and urban ecologies. Entomol News 125: 315-326.

Kociolek, A. V., A. P. Clevenger, C. C. St. Clair and D. S. Proppe. 2011. Effects of road networks on bird populations. Conserv Biol 25(2): 241-249. DOI: 10.1111/j.1523-1739.2010.01635.x

72

Longcore, T. and C. Rich. 2004. Ecological Consequences of Artificial Night Lighting. Front Ecol Environ 2: 191- 198.

Lustick, S. 1973. The effects of intense light on bird behavior and physiology. Bird Control Seminars Proceedings 119: 171-186.

Marconot, B. 2003. Comportement de chasse nocturne du Faucon pèlerin Falco peregrinus à Belfort. Ornithos 10(5): 207-211.

McDonnell, M. J., A. H. Hahs and J. H. Breuste. 2015. Ecology of Cities and Towns. Cambridge University Press, Cambridge.

Merkel, F. R. and K. L. Johansen. 2011. Light-induced bird strikes on vessels in Southwest Greenland. Mar Pollut Bull 62: 2330-2336. DOI: 10.1016/j.marpolbul.2011.08.040

Molina, P., Skelling, M. G., Lecours, J. and A. Laperrière. 2011. Rapport sur l’évaluation des nids de Faucon pèlerin sur les ponts fédéraux et les recommandations en vue d’amélioration. Services Environnementaux Faucons Inc., Montréal, Québec (Canada), 33 pages.

Molina, P., Skelling, M. G., Allard, M. and Graham-Sauvé, L. 2015. État de la nidification du faucon pèlerin et de l’hirondelle à front blanc en 2014 sur les structures de PJCCI et recommandations de gestion pour 2015. Services Environnementaux Faucon Inc., Montréal, Québec (Canada), 69 pages.

Molina, P., M. G. Skelling, L. Graham-Sauvé, M. Fiola, A. Belzile and M. Allard. 2016. État de la nidification du Faucon pèlerin et de l'Hirondelle à front blanc en 2016 sur les structures de PJCCI et recommandations de gestion pour 2017. Rapport produit pour Les Ponts Jacques-Cartier et Champlain Inc.

Owens, A. C. S. and S. M. Lewis. 2018. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecol Evol 8(22): 11337-11358.

Pawson, S. M. and M. K.-F. Bader. 2014. LED lighting increases the ecological impact of light pollution irrespective of color temperature. Ecol Appl 24(7): 1561-1568.

Poot, H., B.J. Ens, H. d. Vries, M.A.H. Donners, M.R. Wernand and J.M. Marquenie. 2008. Green light for nocturnally migrating birds. Ecol. Soc. 13(2): 47.

Robinson, W. H. 2005. Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press. Cambridge, Angleterre. 472 pages.

Services Environnementaux Faucon. 2017. Protocole d’observation du Faucon pèlerin. Services Environnementaux Faucon, St-Lazare, Québec (Canada), 4 pages.

73

Squires, W. A. and H. E. Hanson. 1918. The destruction of birds at the lighthouses on the coast of California. Condor 20: 6-10.

Stone, T. 2018. The value of darkness: a moral framework for urban nighttime lighting. Sci Eng Ethics 24(2): 607-628.

Tremblay, J., P. Fradette, F. Shaffer and I. Gauthier. 2012. Inventaire quinquennal 2010 du faucon pèlerin au Québec méridional : état de la population québécoise. Nat Can 136(3): 88-93.

Vuilleumier, F. 2009. Birds of North America. DK Publishing. 1e edition. New York. 744 pages.

Wendt, A., Septon, G. and J. Moline. 1991. Juvenile urban hacked peregrine falcons (Falco peregrinus) hunt at night. J Raptor Res 25(3): 94-95.

WSP. 2016. Mise en lumière du pont Jacques-Cartier : évaluation des effets environnementaux, Montréal, Québec. Rapport produit pour Les Ponts Jacques Cartier et Champlain Incorporée. No projet : 151-11367-00. 166 pages et annexes.

Yorzinski, J. L., K. A. Ordonez and K. T. Chema. 2017. Does artificial light pollution impair problem-solving success in peafowl? Ethology 123: 854-860.

74

Chapitre 4 « Insect relative mortality rate of different types of urban lights »

4.1 Résumé

La lumière artificielle causée par l'éclairage urbain de nuit peut avoir des effets néfastes sur les populations d'insectes. Plusieurs études ont observé l'effet de la lumière artificielle sur les taux de mortalité des insectes en utilisant différents types de lumière artificielle et en mesurant l'attraction des insectes. Alors que la plupart des études comparent des lumières très néfastes comme le mercure ou les ultraviolets (UV) à des lampes moins dangereuses comme le sodium, cette étude décide de mesurer le taux de mortalité relatif de quatre types de lampes urbaines qui sont normalement moins nuisibles: un lampadaire à sodium, un projecteur (spot) à DEL, une bande de lumière (réglette) à DEL et un lampadaire à DEL, afin de déterminer laquelle de celles-ci est la plus nocive pour les insectes. Les résultats montrent que le lampadaire à sodium est celui qui cause la mortalité du plus grand nombre d'insectes, suivi du projecteur à DEL. Les deux autres lumières à DEL montrent un faible taux de mortalité. Les implications de ces observations sont discutées en relation avec l'effet de la mortalité sur les populations d'insectes et les écosystèmes et l'impact non anticipé de l'homme sur l'environnement.

4.2 Abstract

Artificial light caused by urban lighting at night is known to have detrimental impacts on insect populations. Multiple studies observe the effect of artificial light on insect mortality rates by using different types of artificial light and measuring insect attraction. While most studies compare very detrimental lights like mercury or UV to less impactful lights like sodium, this study decides to measure the relative mortality rate in relation to four less detrimental types of urban lights: a sodium lamp post, an LED lamp post, an LED spot light and an LED light strip, as well as determine which of these is the most harmful to insects. Results show that the sodium lamp post is the one causing the most insect deaths followed by the LED spot light. The other two LED lights show a low mortality rate. Implications of these observations are discussed in relation to the effect of mortality on insect populations and ecosystems and the unanticipated human impact on the environment.

4.3 Introduction

Insect attractiveness to light is well documented. Many studies demonstrate that light attraction depends on the type of light source (mercury, UV or sodium) and the type of insect (moths are well-known to be highly attracted to lights at night) (Frank 1988, Eisenbeis and Hassel 2000, Kolligs 2000, Longcore and Rich 2004, Owens and Lewis 2018, Shimoda and Honda 2013, Longcore et al. 2015). For example, research from Nabli et al. (1999)

75

shows that ladybugs are more attracted to blacklight, insects from the Ophion species favor blacklight blue, individuals from the Chrysopa species are attracted equally to cool white light, blacklight and aquarium light and damsel bugs do not have a preference. Moreover, mosquitoes prefer UV, blue and green light and house flies are attracted to green and red lights as well as UV (Green 1985, Bishop et al. 2004). The general finding supports that UV light is the most attractive to insects. This is due to the fact insects have a peak visual sensibility to UV spectra. V content in a lamp increases its visibility to insects and it can be a sign of clear flight passage (Blomberg et al. 1976, Barghini and Medeiros 2012, Shimoda and Honda 2013, Perkin et al. 2014, Barghini and Medeiros 2012). Moreover, blue and white coloured lights have a high attractiveness for insects compared to yellow lights (Barghini and Medeiros 2012).

Urban artificial light, that is the lighting used by humans during the night, has been the focus of multiple studies considering its usage has increased tremendously in the previous years and its reach continues to expand (Longcore and Rich 2004). A study by Robertson et al. (2010) has shown that reflection of light on tall glass buildings in cities can attract polarotactic insects because they see the structures as water surfaces. Van Tets et al. (1969) discovered that the attraction of insects to runway lights in airports was responsible for multiple bird casualties. Other researchers have found that insect attraction to streetlights was important enough to encourage birds to nest in close proximity to these areas (Rao and Koli 2017, De Molenaar et al. 2000). The same behaviour was observed in bats (Rydell 1992). Attraction to urban lights can have important consequences for insects as well as for the organisms feeding on these insects, the ecosystem they inhabit, and humans living in proximity to these lights. Research on this subject is crucial considering that around 30 to 40% of insects that come close to streetlights die due to collisions, burns or predation (Eisenbeis 2006, Yoon et al. 2010, Owens and Lewis 2018).

The impact or urban artificial light on insect populations is increasing and can be detrimental. Insects have an important role in ecosystems as they are necessary for pollination and serve as a food source for many animals. Disruption in their migration patterns due to urban light attraction can result in negative impacts on their population abundance. Moreover, congregation around urban lights can ease their predation by other organisms (Robinson 2005). Impacts on these organisms can result in a change from diurnal to nocturnal species having important consequences on the ecosystem (Longcore and Rich 2004, Schwartz and Henderson 1991). Artificial light at night can disrupt insect biorhythms of day-night cycles (Owens and Lewis 2018). Any decrease in insect populations can have great impacts on the environment.

The present technical note further advances this field of research by determining insect mortality rate caused by four (4) different types of urban light sources: a LED spotlight and LED light strip normally used for illuminating a bridge, and a sodium lamp post and a LED lamp post normally used for municipal street lighting. While most

76

studies often find that UV or mercury light sources are more destructive than sodium-type lights (Robinson 2005), this study aims to compare sodium- and LED-type of urban lights, the latter at different intensities and shapes. The main goal of this research is to determine the mortality rate of insects (the number of individuals that die when attracted to the light source) of these different types of lights used in an urban context and which is potentially the most detrimental to insects.

4.4 Methodology

The four (4) types of urban lights used in this research are shown in figure 20:

• A custom-made LED spotlight (type A, model LBX-HO-208-RGB-NF-NF-NF-SI-DMX/RDM-SY- CRC3GV-SPL006012A, built by Lumenpulse Comm.), • A custom-made LED light strip (iColor Accent MX Powercore, type K (poste 1), product number 123- 000018-01, built by Philips), • A municipally used LED lamp post (used in Quebec City, Canada), • A municipally used sodium lamp post (used in Quebec City, Canada).

The four (4) urban lights were installed in an exterior enclosure at Laval University in Quebec City, Canada (figure 21). They were separated by a minimum of 8 meters to restrain each other’s influence and ensure insects were attracted to only one light source at a time (Blomberg et al. 1976, Justice and Justice 2016). The lights were placed facing down to limit illumination impacts to the sky and to facilitate insect collection. Traps were built under each light to collect insects that died when close to or in contact with the light source (Justice and Justice 2016). They were turned on during the night and insects were collected the next morning. Insects were preserved in water in a refrigerator until they were counted. Insect counting was done by placing them in a petri dish and counting the number of cephalothoraxes in the sample.

Other data collected included: the duration of the night (hours), the percentage illumination of the moon during the night, the maximum temperature during the day, the maximum and minimum temperature during the night, the humidity at night, the windspeed at night, the atmospheric pressure, the weather during the insect collection (sunny, cloudy, etc.), precipitation the day of the collection, precipitation two (2) days before collection and precipitation seven (7) days before collection (Justice and Justice 2016). Most of this information was collected using the Environment Canada website1.

1 http://climat.meteo.gc.ca/historical_data/search_historic_data_f.html

77

a) e)

b) f)

c) g)

d) h)

Figure 20. Pictures of the four (4) types of urban lights used in this experiment: a) the custom-made LED spotlight b) the custom-made LED light strip c) the LED lamp post and d) the sodium lamp post and the custom-made wood supporting apparatus for e) the LED spotlight f) the LED light strip g) the LED lamp post h) the sodium lamp post.

78

Figure 21. Experimental protocol for the determination of the insect mortality rate in relation to the type of urban light used.

The mortality rate was measured by considering the total number of deceased insects from all light sources as 100% and the number of deceased insects per light source as a part of that 100% (van Grunsven et al. 2014). This way, the different lights could be compared relative to each other. This was done because measuring a mortality rate would suppose that we know how many insects came close to or in contact with the light source without dying, something that this research was unable to measure (Blomberg et al. 1976, Nabli et al. 1999, Rich and Longcore 2006, van Grunsven et al. 2014, Justice and Justice 2016).

4.5 Results

Results from insect catches on each collection day are shown in Table 4. Disparities between insect abundance can be due to meteorological conditions.

The sodium lamp post shows a higher mortality rate on most days followed closely by the LED spotlight. On the 7th and 9th days, the number of deceased insects is around 18 insects for the sodium lamp post, but this quantity increases to 600 individuals on the 13th day of the experiment. In fact, on day 13 of the experiment, all urban light types show a highly increased mortality rate. The LED lamp post and the LED light strip both show similarly lower insect mortality rate.

79

Tableau 4. Insect mortality rates for each collection day, total mortality rate and mean mortality rate for the four (4) different types of urban lights.

LED spotlight LED light strip Sodium lamp post LED lamp post July 4th 2018 36 15 115 56 July 5th 2018 241 65 329 209 July 6th 2018 164 47 184 100 July 10th 2018 62 83 63 38 July 11th 2018 67 33 68 9 July 12th 2018 113 53 96 25 July 13th 2018 16 21 18 7 July 18th 2018 29 73 51 14 July 19th 2018 27 33 18 13 July 20th 2018 35 30 97 39 July 25th 2018 88 42 74 37 July 26th 2018 79 24 65 42 July 27th 2018 543 325 600 145 Total 1500 844 1778 734 Mean 115,4 64,9 136,7 56,5

The mean mortality rate is similar between the LED light strip and the LED lamp post, respectively 64,9 and 56,5 insects per catch. The same pattern is seen for the sodium lamp post and the LED spotlight, with the sodium lamp post having the highest mortality rate of all light types. It is possible to notice the disparity between the LED lamp post and the sodium lamp post. The mean number of deceased individuals for the LED lamp is 56,5 insects whereas it is 136,7, almost triple the abundance, for the sodium lamp post. The 5th and 13th days of the experiment show the highest insect mortality rate. The values for the total number of deceased insects per light source show the same tendencies as the mean.

Figure 22 shows the proportionate representation of the mortality rates of each urban light type. The sodium lamp post is the one that has the highest relative mortality rate. It represents 37% of all the deceased insects in this experiment. The LED spotlight is the second most damaging light type, with 31% of the insect mortality rate. The LED light strip and the LED lamp post have very similar proportions, respectively 17% and 15%.

80

Figure 22. Relative mortality rate of the four (4) types of urban light sources.

Strong correlations can be established between the number of deceased individuals and the meteorological conditions at night. Two main observations can be made visible when comparing the data to the environmental conditions observed. Precipitation two (2) days before insect collection and percentage of moon light during the night seem to be highly related to the number of deceased insects collected. Other meteorological data were not found to have any important influence on the abundance of deceased insects.

Figure 23 shows the precipitation two (2) days before collection and percentage of moon illumination in relation to insect abundance on each collection day. High precipitation on the 11th day of the experiment seems to correlate with a high abundance of deceased insects on the 13th day, two (2) days later. This figure also shows that a high percentage of moon light during the night seems to correlate with a high abundance of deceased insects on the next morning. This relation is visible for the 2nd and the 13th days of the experiment. In fact, the 13th collection day shows a much higher abundance than all of the other days, probably due to the fact that both precipitation two (2) days before and moonlight percentage the night before were very high.

81

Figure 23. Precipitation data in millimeters two (2) days before insect collection and percentage of moon light the night before insect collection in relation to insect abundance on each collection day (some precipitation data was not available). 4.6 Discussion

One of the main observations in this study determined that the sodium lamp post was the one that attracted the most insects which means that is the most detrimental to insect population. This observation is in concordance with conclusions from other studies that support that long wavelength light sources like sodium-type lights (as the lamp post used in this experiment) attract the most insects (van Grunsven et al. 2014). A study by Barghini and Medeiros (2012) observed that within all the lights they tested, their second most insect-attracting light was a sodium vapor bulb (the first most attractive being a mercury bulb, a type of light which was not used in this study). This confirms our results that sodium lamps are highly attractive to insects. This could be due to a high UV content in the light of the sodium lamp post which is often responsible for insect attractiveness (van Grunsven et al. 2014, Eisenbeis 2006, Barghini and Medeiros 2012, Blomberg et al. 1976). However, the UV content was not measured in this experiment. A study done by Wakefield et al. (2017) contradicts this main finding by showing that the difference between insect abundance between a LED and a sodium light is not significant. 82

The second most damaging urban light source was the LED spotlight. Between the three (3) LED types, the spotlight is the one that attracted the most insects since it is the brightest in terms of the number of light bulbs in it and it potentially emits a substantial amount of heat when it is turned on, causing insect death. The LED lamp post is slightly less attractive to insects than the LED light strip even though the LED light strip has the lowest brightness, but the difference in abundance is small. In the literature, LED lights are known to be less attractive to insects as they are short wavelength lights (van Grunsven et al. 2014). In a study by Longcore et al. (2015), LED lamps tested attracted less insects than fluorescent lights. Moreover, they give off less heat therefore reducing the risk of insect mortality (Justice and Justice 2016). However, other studies contradict this finding by suggesting that short-wavelengths emitting lights like LEDs are the most attractive to insects, especially moths (van Langevelde et al. 2011, Eisenbeis and Eick 2010, Robinson and Robinson 1950, Somers- Yeates et al. 2013). The shapes of the different LED lights did not seem to impact insect mortality rates.

Differences between studies on similar observations and this research can be due to multiple factors. Considering that this study took place on a university campus, some artificial lights were present near the site of the experiment (around 50 meters). Most studies done on insect attractiveness to lights are done in natural environments where no artificial light is present to begin with (Barghini and Medeiros 2012, Perkin et al. 2014, van Grunsven et al. 2014). This considerable difference could affect the results. Moreover, the LED light strip and the LED spotlight were used at their brightest in this experiment (using white light which is the brightest colour possible) further increasing their impact on insect populations. In reality, when they are used in an urban context (for example, when illuminating a bridge) these two lights are never used to their full brightness. It is therefore plausible to suppose that the LED light strip is less damaging than the LED lamp post unlike what the results of this experiment shows. Moreover, this decreases the real impact the LED spotlight and light strip have on insect mortality to a much lesser extent then in this experiment.

The meteorological impacts on insect abundance in this experiment are also seen in other studies. In fact, studies have shown that environmental conditions can have a higher impact on the abundance of insects collected at a light source than the impact of the light source itself (Southwood 1968, Mikkola 1972). Blomberg et al. (1976) determined that weather conditions including rain can affect insect catch. An article by Bidlingmayer (1964) shows that females of the Aedes taeniorhynchus insect species are highly active on full moon nights. This would correspond to the night before the 13th collection day of this study at which insect mortality was its highest. Some studies contradict this observation finding instead that moon light has no effect on insect catch at a light source (Nabli et al. 1999, Blomberg et al. 1976) or has the opposite effect: a high percentage of moon light corresponds to a low insect catch (Williams 1936). The same variation in insect attraction to different types of lights was seen in other studies and was also suspected to be caused by moon phase (Barghini and Medeiros 2012, van Grunsven et al. 2014).

83

While many studies determine the different types of insects (families or orders) attracted to the different urban lights tested, this study did not. This information could be useful in further experiments.

4.7 Conclusion

This study determined that within the four (4) types of urban light tested, the sodium lamp post is the most detrimental to insects because it was the one that attracted and killed the most insects. The second most dangerous light type was the LED spotlight, followed by the LED light strip and the LED lamp post, both latter at similar mortality rates. Furthermore, this study determines that the two (2) urban light sources used to illuminate several urban structures, the LED spotlight and the LED light strip, are capable of attracting insects, meaning that they have a certain impact on insect population distribution, but this impact is lesser than the one caused by municipal lighting (the LED and sodium lamp posts) because the brightness at which they are used in a normal context is much less than the one in this study.

The present experiment further advances the research on insect mortality rate in relation to different types of urban light used for human activities. The observations made suggest that sodium lamp posts are the most detrimental to insect populations compared to LED-type lights. This shows that using LED-type lights for urban lighting in roads for example can greatly reduce the impact illumination can have on insect populations. Even though praises were made towards sodium lamp posts compared to mercury lamp posts, this study shows that they are not without fault. More research needs to be done on this field of research to confirm these results and further determine which insect groups are more or less attracted to these different light types.

4.8 Compliance with ethical standards

Conflict of interest

The authors thank Les Ponts Jacques-Cartier et Champlain Incorporée (PJCCI), Canada for funding this research contract (contract #90002). The support included contributions in kind and in nature.

4.9 Literature Cited

Barghini, A. and B. A. Souza de Medeiros. (2012). UV radiation as an attractor for insects. LEUKOS 9(1): 47- 56.

Bidlingmayer, W. L. (1964). The effect of moonlight on the flight activity of mosquitoes. Ecology 45(1): 87-94.

Bishop, A. L., R. Worrall, L. J. Spohr, H. J. McKenzie and I. M. Barchia. (2004). Response of Culicoides spp. (Diptera: Ceratopogonidae) to light-emitting diodes. Australian Journal of Entomology 43: 184-188.

84

Blomberg, O., J. Itämies and K. Kuusela. (1976). Insect catches in a blended and a black light-trap in northern Finland. Oikos 27: 57-63.

De Molenaar, J. G., D. A. Jonkers and M. E. Sanders. (2000). Road illumination and nature 3. Local influence of road lights on a black-tailed godwit (Limosa l. limosa) population. Alterra, Wageningen, The Netherlands.

Eisenbeis, G. (2006). Artificial night lighting and insects: Attraction of insects to streetlamps in a rural setting in Germany from Rich, C. & Longcore, T. Ecological consequences of artificial night lighting. Island Press. Washington, D.C. Pages 281–304.

Eisenbeis, G. and F. Hassel. (2000). Attraction of nocturnal insects to street lights – a study of municipal lighting systems in a rural area of Rheinhessen (Germany). Natur und Landschaft 75: 145-56.

Eisenbeis, G. and K. Eick. (2010). Attraction of nocturnal insects to street lights with special regard to LEDs. Abstracts of the Society for Conservation Biology, 24th Annual Meeting, Edmonton, Alberta.

Frank, K. D. (1988). Impact of outdoor lighting on moths: an assessment. The Lepidopterists’ Society 42: 63-93.

Green, C. H. (1985). A comparison of phototactic responses to red and green light in Glossina morsitans morsitans and Musca domestica. Physiological Entomology 10: 165-172.

Justice, M. J. and Justice, T. C. (2016). Attraction of insects to incandescent, compact fluorescent, halogen, and LED lamps in a light trap: implications for light pollution and urban ecologies. Entomological News 125: 315-326.

Kolligs, D. (2000). Ecological effects of artificial light sources on nocturnally active insects, in particular on moths (Lepidoptera). Faunistisch-Ökologische Mitteilungen Suppl 28: 1-136.

Longcore, T. and C. Rich. (2004). Ecological light pollution. Frontiers in Ecology and the Environment 2(4): 191- 198.

Longcore T., H. L. Aldern, J. F. Eggers, S. Flores, L. Franco, E. Hirshfield-Yamanishi, L. N. Petrinec, W. A. Yan and A. M. Barroso. (2015). Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philosophical Transactions of The Royal Society B: Biological Sciences 370.

Mikkola, K. (1972). Behavioural and electrophysiological responses of night-flying insects, especially Lepidoptera, to near- ultraviolet and visible light. Annales Zoologici Fennici 9: 225-254.

Nabli, H., W. C. Bailey and S. Necibi. (1999). Beneficial insect attraction to light traps with different wavelengths. Biological Control 16: 185-188. 85

Owens, A. C. S. and S. M. Lewis. (2018). The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecology and Evolution 8(22): 11337-11358.

Perkins, E. K., F. Hölker and K. Tockner. (2014). The effects of artificial lighting on adult aquatic and terrestrial insects. Freshwater Biology 59: 368-377

Rich, C., and T. Longcore. (2006). Ecological consequences of artificial night lighting. Island Press.

Rao, S., and V. K. Koli. (2017). Edge effect of busy high traffic roads on the nest site selection of birds inside the city area: guild response. Transportation Research Part D 51: 94-101.

Robertson, B., G. Kriska, V. Horvath, and G. Horvath. (2010). Glass buildings as birds feeders: urban birds exploit insects trapped by polarized light pollution. Acta Zoologica Academiae Scientiarum Hungaricae 56: 283- 293.

Robinson, W. H. (2005). Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press, United Kingdom. 472 pages.

Robinson H. S. and P. J. M. Robinson. (1950). Some notes on the observed behaviour of lepidoptera in the vicinity of light-sources together with a description of a light-trap designed to take entomological samples. Entomologist’s Gazette 11: 121–132.

Rydell, J. (1992). Exploitation of insects around streetlamps by bats in Sweden. Functional Ecology 6(6): 744- 750.

Schwartz, A. and R. W. Henderson. (1991). Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history. University of Florida Press. Gainesville, United States.

Shimoda, M. and K. Honda. (2013). Insect reactions to light and its applications to pest management. Applied Entomology and Zoology 48:413-421

Somers-Yeates R., D. Hodgson, P. K. McGregor, A. Spalding and R. H. FrenchConstant. (2013). Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biology Letters 9(4).

Southwood, T. R. (1968). Ecological methods. 3rd edition. Blackwell Science Ltd. London. 574 pages. van Grunsven, R. H. A., M. Donners, K. Boekee, I. Tichelaar, K. G. v. Geffen, D. Groenendijk, F. Berendse, and E. M. Veenendaal. (2014). Spectral composition of light sources and insect phototaxis, with an evaluation of existing spectral response models. Journal of Insect Conservation 18: 225-231. 86

van Langevelde, F., J. A. Ettema, M. Donners, M. F. WallisDeVries and D. Groenendijk. (2011). Effect of spectral composition of artificial light on the attraction of moths. Biological Conservation 144(9): 2274–2281. van Tets, G., W. Vestjens, and E. Slater. (1969). Orange runway lighting as a method for reducing bird strike damage to aircraft. CSIRO Wildlife Research 14: 129-151.

Wakefield, A., M. Broyles, E. L. Stone, S. Harris and G. Jones. (2017). Quantifying the attractiveness of broad- spectrum street lights to aerial nocturnal insects. Journal of Applied Ecology 55(2): 714-722.

Williams, C. B. (1936). The influence of moonlight on the activity of certain nocturnal insects, particularly of the family Noctuidae, as indicated by a light trap. Philosophical Transactions of the Royal Society of London B 226(537): 357-389.

Yoon, T. J., D. G. Kim, S. Y. Kim, S. I. Jo and Y. J. (2010). Light‐attraction flight of the giant water bug, Lethocerus deyrolli (Hemiptera: Belostomatidae), an endangered wetland insect in East Asia. Aquatic Insects 32: 195-203.

87

Conclusion

Le tableau 5 résume les différentes conclusions émises par rapport aux résultats obtenus pour les espèces aviaires et les insectes à proximité de l’illumination.

Tableau 5. Impact de l’illumination sur chaque groupe animal observé au pont Jacques-Cartier en 2017 et 2018.

Impact Symbole potentiel de 2017 2018 l’illumination ̸ Aucun ̶ Négatif Avril-Mai Juin-Juillet Août-Septembre Avril-Mai Juin-Juillet Août-Septembre + Positif

Insectes aquatiques ̸ ̸ ̸ ̸ ̸ ̸

Insectes aériens ̸ ̸ + ̸ ++ +++ Début de l’illumination Hirondelle à front blanc ̸ ̸ ̸ ++ ++ ++

Faucon pèlerin ̸ ̸ ̸ + + +

Période de Période de

nidification nidification

L’engoulevent d’Amérique et le martinet ramoneur ne sont pas présents sur ce tableau puisqu’ils n’ont pas été détectés en 2017 ni en 2018. Ainsi, l’impact de l’illumination est supposé nul.

L’illumination ne semble pas avoir d’impact sur les populations d’insectes aquatiques. L’abondance ne varie pas de 2017 à 2018 ou de sites en sites. Pour les insectes aériens, l’illumination n’a pas eu d’impact sur les populations de juin et juillet 2017 puisqu’elles étaient déjà installées lorsque l’illumination a débuté. Cependant, les populations d’août et septembre (nouveau cycle de reproduction) montrent une augmentation vers les zones illuminées, suggérant que l’illumination pourrait potentiellement avoir un impact sur l’abondance. En 2018, l’impact de l’illumination semble favorable lors des deux (2) semaines, puisque l’illumination est présente à ce moment-ci. L’impact s’intensifie de la 1e semaine à la 2e, avec une abondance très élevée en août.

88

L’illumination n’a pas d’impact sur les hirondelles en 2017 lorsque l’illumination a débuté en mai 2017 puisqu’elles avaient déjà fait leur nid en avril/mai. Cependant, un impact potentiel semble se manifester en 2018 sur le nombre de nids et l’activité des hirondelles lorsque l’illumination est présente.

Le faucon n’est pas affecté par l’illumination en 2017 puisqu’il n’a pas été détecté au pont lors du 1e suivi. Cependant, sa présence a été observée en 2018. Puisque l’illumination était présente à ce moment, il est possible de penser que celle-ci a pu indirectement impacter son retour.

L’illumination ne montre aucun impact négatif sur les espèces à l’étude.

Recommandations

Des recommandations sont suggérées dans le rapport émit par WSP (2016) sur les précautions à prendre afin de limiter les impacts de l’illumination sur, entre autres, l’avifaune et les insectes.

Dans ce rapport, il avait été reporté qu’aucune nidification d’hirondelles n’a été vu à la section 7 en 2015 et qu’ainsi, l’illumination ne devrait pas avoir d’effets négatifs sur celles-ci. Après nos deux (2) années de suivi, il y a maintenant des nids sur la section 7. Ainsi, une poursuite du suivi pour cette espèce est encore plus importante puisque la nidification est confirmée à cet endroit pour deux (2) années de suite. Le pont Jacques-Cartier reste un endroit prisé par l’hirondelle; l’espèce y revient tous les étés pour sa période de nidification. Il est donc important de préserver cet environnement pour assurer sa pérennité (Molina et al. 2016).

Le suivi sur le faucon pèlerin devrait être poursuivi pour confirmer et valider la tendance observée au cours de ces deux (2) dernières années, qui montre un retour potentiel du faucon au pont Jacques-Cartier.

Pour les prochaines années, les suivis de l’engoulevent d’Amérique et du martinet ramoneur devraient être poursuivis afin de déterminer si une présence plus importante d’insectes encourage leur retour à proximité du pont. La méthodologie sur le suivi de l’engoulevent pourrait être exploitée davantage afin de faciliter la détection de l’espèce, qui est la principale difficulté. Un suivi d’une plus grande zone autour du pont pourrait aussi être effectué. Une comparaison temporelle pourra être mise au point afin de comparer la distribution des engoulevents dans la région agrandie du pont à travers les années. Pour ce qui est du martinet, un suivi ponctuel devra être effectué à chaque été pour confirmer leur présence ou leur absence et pour faire une comparaison spatiale avec les précédents sites de détection déjà répertoriés.

Il n’y a pas de données antérieures sur les populations d’insectes aux alentours du pont Jacques-Cartier. Ce rapport constitue la 1e base de données sur ce sujet. Un suivi temporel pourrait ainsi être fait dans les prochaines années pour complémenter le suivi spatial effectué en 2017 et 2018. De plus, le suivi temporel pourrait permettre de déterminer la dispersion des insectes à proximité du pont, c’est-à-dire si l’abondance faible à élevée observée

89

respectivement du site témoin à illuminé est induite par un déplacement des insectes vers la section illuminée du pont et l’impact potentiel de ce déplacement sur les chaînes trophiques locales.

Récapitulatif des conclusions

Suite à l’illumination du pont Jacques-Cartier, un suivi de deux (2) ans a été mis en place afin d’évaluer l’impact de celle-ci sur quatre espèces aviaires (le faucon pèlerin, le martinet ramoneur, l’engoulevent d’Amérique et l’hirondelle à front blanc), ainsi que sur les populations d’insectes.

Lors de la 1e année de suivi, plusieurs espèces comme l’hirondelle à front blanc avaient déjà sélectionnés leurs sites de nidifications. L’illumination n’a donc pas eu d’effet sur celles-ci en 2017. Les populations sont restées stables par rapport aux suivis effectués les années précédentes. Il n’y a donc pas eu d’impact significatif de l’illumination sur les quatre espèces aviaires. Malgré tout, les populations d’insectes aériens ont eu tendance à augmenter vers le site illuminé vers la fin août, principalement ceux de l’ordre des Diptera, ceux-ci étant une source privilégiée de nourriture pour de nombreuses espèces aviaires insectivores.

En 2018, l’illumination du pont était déjà en place lors de la venue des espèces. Un niveau record de population d’hirondelles à front blanc a été atteint en 2018, ce qui n’avait jamais été observé depuis le début des suivis en 2012 par SEF. De plus, on remarque que cette augmentation se concentre dans les zones illuminées. L’augmentation de la population d’hirondelles à front blanc pourrait être induite par une tendance générale d’augmentation des populations au sein de la métropole montréalaise. Cependant, l’augmentation de nids actifs proche de la zone illuminée suggère un impact potentiel de celle-ci sur le choix des sites de nidifications. Ce choix proche de la zone illuminée peut être induit par des ressources alimentaires plus importantes. Ceci a été confirmé par une augmentation des populations d’insectes aux sites illuminés par rapport aux relevés effectués sur les autres sites. Ainsi, la présence de lumière semble avoir un effet sur la distribution spatiale des populations d’insectes à proximité du pont Jacques-Cartier. Ceci demeure une hypothèse, car il n’existe pas de base de données pré-illumination pour appuyer nos conclusions. Cependant, la différence de répartition spatiale des populations suppose une attraction des insectes par la lumière du pont. Il est d’ailleurs à noter que cette étude a permis de construire la 1e base de données sur les populations d’insectes présentes autour du pont Jacques- Cartier. Cette base sera donc la référence établie pour de futures études entomologiques dans ce secteur.

L’illumination a potentiellement permis de renforcer la chaîne alimentaire des espèces présentes dans le secteur du pont. En effet, il est raisonnable de croire qu’à la suite de l’illumination du pont Jacques-Cartier, les populations d’insectes aériens ont augmentées. Cette zone est donc devenue un site de choix pour les insectivores comme l’hirondelle à front blanc, pour qui l’accès à une source alimentaire est facilité. La multiplicité d’oiseaux insectivores entraîne une présence plus importante de prédateurs, comme le faucon pèlerin, qui peuvent considérer ce site comme un secteur de chasse privilégié. En effet, la présence du faucon pèlerin a été

90

notée lors de la 2e année de suivi, soit l’année suivant l’installation de l’illumination. L’illumination semble être un facteur qui, soit encourage la présence du faucon au pont, soit ne la décourage pas puisque sa présence a été notée en 2018.

Avec ce suivi sur deux (2) ans, il est possible d’émettre l’hypothèse d’un impact de l’illumination sur plusieurs espèces aviaires et les populations d’insectes. Il est à noter qu’aucun impact négatif n’a été observé.

L’expérience sur la mortalité des insectes a démontré que l’illumination du pont a la capacité d’attirer les insectes, mais l’impact des deux (2) types de lumière utilisés sur le pont ont un effet moindre que les lampadaires à sodium qui sont utilisé pour éclairer les endroits publics.

Finalement, deux (2) espèces n’ont pas été observés en 2018 : le martinet ramoneur et l’engoulevent d’Amérique. Cependant, ces espèces n’ont pas été répertoriées sur le site avant l’illumination. Ainsi, l’illumination n’a eu aucun effet sur ces espèces, n’impactant ni leur présence, ni leur absence. Cette absence serait plutôt induite par un manque de sites de nidification plutôt que par une perturbation lumineuse.

Les tendances potentiellement positives de l’illumination qui ont été relevées dans ce rapport seront à confirmer au moyen d’un suivi régulier des espèces concernées dans les prochaines années.

91

Bibliographie

Ali, A., S. R. Stafford, R. C. Fowler et B. H. Stanley. (1984). Attraction of adult Chironomidae (Diptera) to incandescent light under laboratory conditions. Environ. Entomol. 13 : 1004-1009.

Ali, A., B. H. Stanley et P. K. Chaudhuri. (1986). Attraction of some adult midges (Diptera: Chironomidae) of Florida to artificial light in the field. The Florida Entomologist 69 : 644-650.

Allen, M. C. et Peters, K. A. (2012). Nest survival, phenology, and nest-site characteristics of common nighthawks in a New Jersey Pine Barrens grassland. The Wilson Journal of Ornithology 124(1) : 113118.

Armstrong, J. T. (1965). Breeding home range in the nighthawk and other birds: its evolutionary and ecological significance. Ecology 46(5) : 619-629.

Arnett, J. R. H. (2000). American insects: a handbook of the insects of America North of Mexico. 2e edition. CRC Press LLC. États-Unis d’Amérique. 1003 pages.

Audet, J.-N., S. Ducatez, et L. Lefebvre. (2016). The town bird and the country bird: problem solving and immunocompetence vary with urbanization. Behavioral Ecology 27 : 637-644.

Avery, M., P. F. Springer, et J. F. Cassel. (1976). The effects of a tall tower on nocturnal bird migration: a portable ceilometer study. American Ornithological Society 93 : 281-291.

Barghini, A. et B. A. Souza de Medeiros. (2012). UV radiation as an attractor for insects. LEUKOS 9(1) : 47-56.

Bélanger, P. (1991). Analyse de 50 espèces d’insectes en situation précaire au Québec et problématique de gestion. Société d’entomologie du Québec. Ministère du Loisir, de la Chasse et de la pêche du Québec. Direction de la gestion des espèces et des habitants. 80 pages.

Belton, P. et A. Pucat. (1967). A comparison of different lights in traps for Culicoides (Diptera: Ceratopogonidae). Can. Ent. 99 : 267-272.

Bidlingmayer, W. L. (1964). The effect of moonlight on the flight activity of mosquitoes. Ecology 45(1) : 87-94.

Bird, D. M. (1997). Rapport sur la situation de faucon pèlerin (Falco peregrinus) au Québec. Ministère de l’Environnement et de la Faune, Direction de la faune et des habitats. 76 pages.

92

Bishop, A. L., R. Worrall, L. J. Spohr, H. J. McKenzie et I. M. Barchia. (2004). Response of Culicoides spp. (Diptera: Ceratopogonidae) to light-emitting diodes. Australian Journal of Entomology 43 : 184-188.

Blackwell, B. F. (2002). Understanding avian vision: the key to using light in bird management. USDA APHIS Wildlife Research Center - Staff Publications 465.

Bliss-Ketchum, L. L., C. E. d. Rivera, B. C. Turner, et D. M. Weisbaum. (2016). The effect of artificial light on wildlife use of a passage structure. Biological Conservation 199 : 25-28.

Blomberg, O., J. Itämies et K. Kuusela. (1976). Insect catches in a blended and a black light-trap in northern Finland. Oikos 27 : 57-63.

Böhm, F., J. Brückner, D. Eichhorn, R. Geiger, B. Johl, S. Kahl, I. Kleudgen, K. Köhler, V. Kreifelts, K. Metschke, M. Meyer, A.-C. Richter, B. Schulze, R.-M. Stecker, P. O. M. Steinhoff, M. Winter, et K. Fischer. (2016). Cloud cover but not artificial light pollution affects the morning activity of Wood Pigeons. Ornis Fennica 93 : 246-252.

Brady, R. (2009). Wisconsin Nightjar Survey (November).

Brigham, R. M. (1989). Roost and nest sites of Common Nighthawks: are gravel roofs important? The Condor 91 : 722-724

Brown, C. R. (1986). Cliff swallow colonies as information centers. Science 234(4772) : 83-85.

Brown, C. R. et M. B. Brown. (1998). Intense natural selection on body size and wing and tail asymmetry in cliff swallows during severe weather. Evolution 52(5) : 1461-1475.

Brown, C. R. et M. B. Brown. (2013). Where has all the road kill gone? Current Biology 23(6) : R233-R234.

Brown, M. B. et C. R. Brown. (2011). Intense natural selection on morphology of cliff swallows (Petrochelidon pyrrhonota) a decade later: did the population move between adaptive peaks? The Auk 128(1) : 69-78.

Brown, C. R., M. B. Brown et E. A. Roche. (2013). Fluctuating viability selection on morphology of cliff swallows is driven by climate. Journal of Evolutionary Biology 26(5) : 1129-1142.

Brown, C. R., M. B. Brown, E. A. Roche, V. A. O’Brien et C. E. Page. (2016). Fluctuating survival selection explains variation in avian group size. Proceedings of the National Academy of Sciences 113(18) : 5113-5118.

Brûlotte, Suzanne. (2000). Les oiseaux du Québec : guide d’initiation. Broquet Inc. 2e édition. Ottawa. 287 pages.

93

Ciach, M. et A. Fröhlich. (2017). Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosystems 20 : 547-559.

Cochran, W. W., H. Mouritsen et M. Wikelski. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304 : 405-408. DOI: 10.1126/science.1095844

Comité de rétablissement du faucon pèlerin au Québec (CRFPQ). (2002). Plan d’action pour le rétablissement du faucon pèlerin anatum (Falco peregrinus anatum) au Québec. Société de la faune et des parcs du Québec. 28 pages.

Cook, M. O., M. J. Weaver, P. Hutton, et K. J. McGraw. (2017). The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus). Behavioral Ecology and Sociobiology 71. DOI: 10.1007/s00265-017-2304-6

Cooperation, C. f. E. (2000). Biodiversity Conservation: Conservation of Migratory and Transboundary Species.

COSEPAC. (2007). Évaluation et Rapport de situation du COSEPAC sur le Faucon pèlerin (Falco peregrinus) de la sous-espèce pealei (Falco peregrinus pealei) et anatum/tundrius (Falco peregrinus anatum/tundrius) au Canada - Mise à jour. Comité sur la situation des espèces en péril au Canada, Ottawa.

COSEWIC. (2007a). COSEWIC Assessment and Status Report on the Chimney Swift Chaetura pelagica in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa.

COSEWIC. (2007b). COSEWIC Assessment and Status Report on the Common Nighthawk Chordeiles minor in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa.

Davies, N. B., J. R. Krebs, et S. A. West. (2014). An introduction to behavioural ecology. 4th edition edition. Wiley-Blackwell.

Davis, K. (2008). Falcons of North America. Mountain Press Publishing Company. Missoula, Montana. 226 pages.

Dawson, A., V. M. King, G. E. Bentley, et G. F. Ball. (2001). Photoperiodic control of seasonality in birds. Journal of Biological Rythms 16 : 365-380.

DeCandido, R. et D. Allen. (2006). Nocturnal hunting by peregrine falcons at the Empire State Suilding, New York City. The Wilson Journal of Ornithology 118(1) : 53–58.

94

De Molenaar, J. G., D. A. Jonkers et M. E. Sanders. (2000). Road illumination and nature 3. Local influence of road lights on a black-tailed godwit (Limosa l. limosa) population. Alterra, Wageningen, The Netherlands.

Ditchkoff, S. S., S. T. Saalfeld, et C. J. Gibson. (2006). Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosystems 9 : 5-12. DOI: 10.1007/s11252-006-3262-3

Dominoni, D., M. Quetting et J. Partecke. (2013). Artificial light at night advances avian reproductive physiology. Proceedings of the Royal Society of London B 280.

Dominoni, D. M. et J. Partecke. (2015). Does light pollution alter daylength? A test using light loggers on free- ranging European blackbirds (Turdus merula). Philosophical Transactions of the Royal Society B 370.

Dominoni, D. M., T. J. V. t. Hof et J. Partecke. (2015). Social cues are unlikely to be the single cause for early reproduction in urban European blackbirds (Turdus merula). Physiology & Behavior 142 : 14-19.

Dominoni, D. M., J. C. Borniger, et R. J. Nelson. (2016). Light at night, clocks and health: from humans to wild organisms. Biology Letters 12.

Drewitt, E. J. A. et N. Dixon. (2008). Diet and prey selection of urban-dwelling Peregrine Falcons in southwest England. British Birds 101(2) : 58-67.

Eisenbeis, G. (2006). Artificial night lighting and insects: Attraction of insects to streetlamps in a rural setting in Germany from Rich, C. & Longcore, T. Ecological consequences of artificial night lighting. Island Press. Washington, D.C. Pages 281–304.

Eisenbeis, G. et F. Hassel. (2000). Attraction of nocturnal insects to street lights – a study of municipal lighting systems in a rural area of Rheinhessen (Germany). Natur und Landschaft 75 : 145-56.

Eisenbeis, G., et Andreas Hänel. (2009). Light pollution and the impact of artificial night lighting on insects. In Ecology of Cities and Towns: A Comparative Approach. Cambridge: Cambridge University Press. Pages 243– 263.

Eisenbeis, G. et K. Eick. (2010). Attraction of nocturnal insects to street lights with special regard to LEDs. Abstracts of the Society for Conservation Biology, 24th Annual Meeting, Edmonton, Alberta.

Falchi, F., P. Cinzano, D. Duriscoe, C. C. Kyba, C. D. Elvidge, K. Baugh et al. (2016). The new world atlas of artificial night sky brightness. Science Advances 2(6) : 1-25.

Fisk, E. (1978). The growing use of roofs by nesting birds. Bird-Banding 49(2) : 134-141. 95

Fonken, L. K., J. L. Workman, J. C. Walton, Z. M. Weil, J. S. Morris, A. Haim, et R. J. Nelson. (2010). Light at night increases body mass by shifting the time of food intake. PNAS 107 : 18664-18669.

Frank, K. D. (1988). Impact of outdoor lighting on moths: an assessment. The Lepidopterists’ Society 42 : 63- 93.

Fuller, R. A., P. H. Warren et K. J. Gaston. (2007). Daytime noise predicts nocturnal singing in urban robins. Biology Letters 3 : 368-370.

Gaston, K. J. et J. Bennie. (2014). Demographic effects of artificial nighttime lighting on animal populations. Environmental Reviews 22 (4) : 323–30.

Gaston, K. J., T. W. Davies, J. Bennie et J. Hopkins. (2013). Reducing the ecological consequences of night- time light pollution: options and developments. Journal of Applied Ecology 49 : 1256-1266.

Gauthier, I., F. Shaffer, P. Fradette et M. Poulin. (2007). Huitième inventaire quinquennal du faucon pèlerin, Falco peregrinus, au Québec (2005). Le Naturaliste Canadien 131 : 70-74.

Gorenzel, W. P., et T. P. Salmon. (1995). Characteristics of American crow urban roosts in California. The Journal of Wildlife Management 59 : 638-645.

Green, C. H. (1985). A comparison of phototactic responses to red and green light in Glossina morsitans morsitans and Musca domestica. Physiological Entomology 10 : 165-172.

Grimaldi, D. et M. S. Engel. (2005). Evolution of the insects. Cambridge University Press. New York, United States. 738 pages.

Gwinner, E. (1996). Circadian and circannual programmes in avian migration. The Journal of Experimental Biology 199 : 39-48.

Hallmann, C. A., M. Sorg, E. Jongejans, H. Siepel, N. Hofland, H. Schwan, W. Stenmans, A. Müller, H. Sumser, T. Hörren, D. Goulson and H. de Kroon. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12(10) : e0185809.

Hart, N. S., et D. M. Hunt. (2007). Avian visual pigments: characteristics, spectral tuning, and evolution. The American Naturalist 169 : S7-S26.

Hebert, P. D. N., S. Ratnasingham et J. R. deWaard. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B 270 : S96-S99. 96

Hémisphère, G. (2011). Potentiel de nidification et inventaire estival de l'avifaune utilisant les habitats des propriétés de PJCCI. Rapport produit pour Les Ponts Jacques Cartier et Champlain Inc.

Hering, C. (2012). Differential attraction of insect orders to different wavelengths of light. Summer Ventures in Science and Mathematics. University of North Carolina.

Hölker, F., C. Wolter, E. K. Perkin et K. Tockner. (2010). Light pollution as a biodiversity threat. Trends in Ecology and Evolution 25(12) : 681-682.

Horváth, G., G. Kriska, P. Malik et B. Robertson. (2009). Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment 7(6) : 317-325. DOI: 10.1890/080129

Hunt, P. D., M. B. Watkins et R. W. Suomala. (2011). The State of New Hampshire's birds: a conservation guide. Concord, NH.

Initiative de conservation des oiseaux de l’Amérique du Nord (ICOAN). (2012). État des populations d’oiseaux du Canada, 2012. Environnement Canada, Ottawa, Canada. 36 pages.

Jackson, C., B. J. McCabe, A. U. Nicol, A. S. Grout, M. W. Brown, et G. Horn. (2008). Dynamics of a memory trace: effects of sleep on consolidation. Current Biology 18 : 393-400. DOI: 10.1016/j.cub.2008.01.062

Jaganmohan, M., L. S. Vailshery et H. Nagendra. (2013). Patterns of insect abundance and distribution in urban domestic gardens in Bangalore, India. Diversity 5 : 767-778.

Jones, J., et C. M. Francis. (2003). The effects of light characteristics on avian mortality at lighthouses. Journal of Avian Biology 34 : 328-333.

Jong, M. d., J. Q. Ouyang, A. D. Silva, R. H. A. v. Grunsven, B. Kempenaers, M. E. Visser, et K. Spoelstra. (2015). Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philosophical Transactions of the Royal Society B 370.

Jong, M. d., L. Jeninga, J. Q. Ouyang, K. v. Oers, K. Spoelstra et M. E. Visser. (2016). Dose-dependent responses of avian daily rhythms to artificial light at night. Physiology & Behavior 155 : 172-179.

Julien, M. (2015). Programme de suivi québécois des engoulevents : guide du participant. Regroupement Québec Oiseaux, Montréal, Québec (Canada), 15 pages.

97

Justice, M. J. et Justice, T. C. (2016). Attraction of insects to incandescent, compact fluorescent, halogen, and LED lamps in a light trap: implications for light pollution and urban ecologies. Entomological News 125 : 315- 326.

Kempenaers, B., P. Borgström, P. Loës, E. Schlicht et M. Valcu. (2010). Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Current Biology 20 : 1735-1739. DOI: 10.1016/j.cub.2010.08.028

Kociolek, A. V., A. P. Clevenger, C. C. St. Clair et D. S. Proppe. (2011). Effects of road networks on bird populations. Conservation Biology 25 (2) : 241-249. DOI: 10.1111/j.1523-1739.2010.01635.x

Kolligs, D. (2000). Ecological effects of artificial light sources on nocturnally active insects, in particular on moths (Lepidoptera). Faunistisch-Ökologische Mitteilungen Suppl 28 : 1-136.

Krebs, C. J. (2009). Ecology. 6th edition edition. Pearson.

Krištín A. et J. Patočka. (1997). Birds as predators of Lepidoptera: selected examples. Biologia 52(2) : 319-326.

Kyba, C. C. M., T. Ruhtz, J. Fischer, et F. Hölker. (2011). Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6. DOI: 10.1371/journal.pone.0017307

Kyba, C. C. M., K. P. Tong, J. Bennie, I. Birriel, J. J. Birriel, A. Cool, A. Danielsen, T. W. Davies, P. N. d. Outer, W. Edwards, R. Ehlert, F. Falchi, J. Fischer, A. Giacomelli, F. Giubbilini, M. Haaima, C. Hesse, G. Heygster, F. Hölker, R. Inger, L. J. Jensen, H. U. Kuechly, J. Kuehn, P. Langill, D. E. Lolkema, M. Nagy, M. Nievas, N. Ochi, E. Popow, T. Posch, J. Puschnig, T. Ruhtz, W. Schmidt, R. Schwarz, A. Schwope, H. Spoelstra, A. Tekatch, M. Trueblood, C. E. Walker, M. Weber, D. L. Welch, J. Zamorano, et K. J. Gaston. (2015). Worldwide variations in artificial skyglow. Scientific Reports 5. DOI: 10.1038/srep08409

Kyle, P. D. (2005). Chimney Swift Towers: New Habitat for America's Mysterious Birds. College Station: Texas A&M University Press.

Longcore, T. et C. Rich. (2004). Ecological Consequences of Artificial Night Lighting. Frontiers in Ecology and the Environment 2 : 191-198.

Longcore T., H. L. Aldern, J. F. Eggers, S. Flores, L. Franco, E. Hirshfield-Yamanishi, L. N. Petrinec, W. A. Yan et A. M. Barroso. (2015). Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philosophical Transactions of The Royal Society B: Biological Sciences 370.

98

Loxdale, H. D., J. Hardie, S. Halbert, R. Foottit, N. A. C. Kidd et C. I. Carter. (1993). The relative importance of short- and long-range movement of flying aphids. Biological Reviews 68(2) : 291-311.

Lunt, D. H., D.-X. Zhang, J. M. Szymura et O. M. Hewitt. (1996). The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5(3) : 153-165.

Lustick, S. (1973). The effects of intense light on bird behavior and physiology. Bird Control Seminars Proceedings 119 : 171-186.

Lyytimäki, J., P. Tapio, et T. Assmuth. (2012). Unawareness in environmental protection: The case of light pollution from traffic. Land Use Policy 29 : 598-604. DOI: 10.1016/j.landusepol.2011.10.002

Maddocks, S. A., A. R. Goldsmith, et I. C. Cuthill. (2002). Behavioural and physiological effects of absence of ultraviolet wavelengths on European starlings Sturnus vulgaris. Journal of Avian Biology 33 : 103-106.

Maier, E. J. (1992). Spectral sensitivities including the ultraviolet of the passeriform bird Leiothrix lutea. Journal of Comparative Physiology A 170 : 709-714.

Marconot, B. (2003). Comportement de chasse nocturne du Faucon pèlerin Falco peregrinus à Belfort. Ornithos 10(5) : 207-211.

Maurice, C. (2016). Protocole de suivi des Martinets ramoneurs aux dortoirs. Environnement Canada, Service canadien de la faune, Québec, Québec (Canada), 3 pages.

McDonnell, M. J., A. H. Hahs et J. H. Breuste. (2015). Ecology of Cities and Towns. Cambridge University Press, Cambridge.

Merkel, F. R. et K. L. Johansen. (2011). Light-induced bird strikes on vessels in Southwest Greenland. Marine Pollution Bulletin 62 : 2330-2336. DOI: 10.1016/j.marpolbul.2011.08.040

Mikkola, K. (1972). Behavioural and electrophysiological responses of night-flying insects, especially Lepidoptera, to near- ultraviolet and visible light. Annales Zoologici Fennici 9 : 225-254.

Miller, M. W. (2006). Apparent effects of light pollution on singing behavior of American Robins. The Condor 108 : 130-139.

Molina, P., Skelling, M. G., Lecours, J. et A. Laperrière. (2011). Rapport sur l’évaluation des nids de Faucon pèlerin sur les ponts fédéraux et les recommandations en vue d’amélioration. Services Environnementaux Faucons Inc., Montréal, Québec (Canada), 33 pages. 99

Molina, P., M. G. Skelling, M. Allard, L. Graham-Sauvé et J. Pépin. (2012). Rapport d'activités de 2012 suite à la mise en place du plan de gestion de l'Hirondelle à front blanc en nidification sur les structures de PJCCI. Rapport produit pour Les Ponts Jacques-Cartier et Champlain Inc.

Molina, P., Skelling, M. G., Allard, M. et Graham-Sauvé, L. (2015). État de la nidification du faucon pèlerin et de l’hirondelle à front blanc en 2014 sur les structures de PJCCI et recommandations de gestion pour 2015. Services Environnementaux Faucon Inc., Montréal, Québec (Canada), 69 pages.

Molina, P., M. G. Skelling, L. Graham-Sauvé, M. Fiola, A. Belzile et M. Allard. (2016). État de la nidification du Faucon pèlerin et de l'Hirondelle à front blanc en 2016 sur les structures de PJCCI et recommandations de gestion pour 2017. Rapport produit pour Les Ponts Jacques-Cartier et Champlain Inc.

Morgan, K. N., et C. T. Tromborg. (2007). Sources of stress in captivity. Applied Animal Behaviour Science 102 : 262-302. DOI: 10.1016/j.applanim.2006.05.032

MRNF. 2008-2009. Rapport annuel de gestion. Ministère des Ressources naturelles et de la Faune.

Nabli, H., W. C. Bailey et S. Necibi. (1999). Beneficial insect attraction to light traps with different wavelengths. Biological Control 16 : 185-188.

Nankoo, S., Raymond, S. et Galvez, R. (2018). Rapport final: Mise en lumière du pont Jacques-Cartier, impact de l’installation sur le milieu biologique. Département de génie civil et génie des eaux, Université Laval, Québec (Canada), 86 pages.

Navara, K. J. et J. N. Nelson. (2007). The dark side of light at night: physiological, epidemiological, and ecological consequences. Journal of Pineal Research 43 : 215-224. DOI: 10.1111/j.1600-079X.2007.00473.x

Nordt, A. et R. Klenke. (2013). Sleepless in town – drivers of the temporal shift in dawn song in urban European blackbirds. PLoS ONE 8.

O'Donoghue, M., S. Boutin, C. J. Krebs, et E. J. Hofer. (1997). Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80 : 150-162.

Ogden, L. J. E. (1996). Collision course: the hazards of lighted structures and windows to migrating birds. Fatal Light Awareness Program (FLAP) 3.

Owens, A. C. S. et S. M. Lewis. (2018). The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecology and Evolution 8(22) : 11337-11358.

100

Partecke, J., T. J. V. t. Hof, et E. Gwinner. (2005). Underlying physiological control of reproduction in urban and forest-dwelling European blackbirds Turdus merula. Journal of Avian Biology 36 : 295-305.

Pérez, L. 2017. Étude de l'impact de l'illumination du pont Jacques-Cartier sur le Martinet ramoneur (Chaetura pelagica). Montréal, Québec.

Perkins, E. K., F. Hölker et K. Tockner. (2014). The effects of artificial lighting on adult aquatic and terrestrial insects. Freshwater Biology 59 : 368-377

Ponts Jacques Cartier et Champlain Incorporé (PJCCI). (2017a). Fiche d’information : Mise en lumière du pont Jacques-Cartier.

Ponts Jacques Cartier et Champlain Incorporé (PJCCI). (2017b). Pont Jacques-Cartier : Le premier pont connecté au monde.

Poot, H., B. J. Ens, H. d. Vries, M. A. H. Donners, M. R. Wernand and J. M. Marquenie. (2008). Green light for nocturnally migrating birds. Ecology and Society 13.

Preiszner, B., S. Papp, I. Pipoly, G. Seress, E. Vincze, A. Liker, et V. Bókony. (2017). Problem-solving performance and reproductive success of great tits in urban and forest habitats. Animal Cognition 20 : 53-63. DOI: 10.1007/s10071-016-1008-z

Price, J. et P. Glick. (2002). The birdwatcher's guide to global warming. National Wildlife Federation and American Bird Conservancy.

Qiagen. (2006). Protocol: purification of total DNA from animal tissues. Qiagen, DNeasy Blood and Tissue Handbook, Austin, Texas (États-Unis), 62 pages.

Québec Oiseaux. (2017a). Connaître et protéger l'hirondelle à front blanc.

Québec Oiseaux. (2017b). Connaître et protéger l’engoulevent d’Amérique.

Raap, T., G. Casasole, D. Costantini, H. AbdElgawad, H. Asard, R. Pinxten et M. Eens. (2016a). Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: an experimental study. Scientific Reports 6.

Raap, T., G. Casasole, R. Pinxten et M. Eens. (2016b). Early life exposure to artificial light at night affects the physiological condition: an experimental study on the ecophysiology of free-living nestling songbirds. Environmental Pollution 218 : 909-914. DOI: 10.1038/srep35626 101

Raap, T., J. Sun, R. Pinxten et M. Eens. (2017). Disruptive effects of light pollution on sleep in free-living birds: season and/or light intensity-dependent? Behavioural Processes 144 : 13-19.

Rao, S. et Koli, V. K. (2017). Edge effect of busy high traffic roads on the nest site selection of birds inside the city area: Guild response. Transportation Research Part D 51 : 94-101.

Raymond, S., B. Constantin, S. Loiselle-Prince, S. Venegas, et R. Galvez-Cloutier. (2017). Rapport I : Mise en lumière du pont Jacques-Cartier – état de référence du milieu biologique. Rapport produit pour Les Ponts Jacques Cartier et Champlain Incorporée. Département de Génie Civil et Génie des Eaux, Université Laval, Québec (Canada), 60 pages.

Rich, C., et T. Longcore. (2006). Ecological consequences of artificial night lighting. Island Press.

Robertson, B., Kriska, G., Horváth, V. et Horváth, G. (2010). Glass buildings as bird feeders: urban birds exploit insects trapped by polarized light pollution. Acta Zoologica Academiae Scientiarum Hungaricae 56 : 283-293.

Robinson, W. H. (2005). Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press. Cambridge, Angleterre. 472 pages.

Robinson H. S. et P. J. M. Robinson. (1950). Some notes on the observed behaviour of lepidoptera in the vicinity of light-sources together with a description of a light-trap designed to take entomological samples. Entomologist’s Gazette 11 : 121–132.

Rowan, W. (1925). Relation of light to bird migration and developmental changes. Nature 115 : 494-495.

Rowan, W. (1937). Effects of traffic disturbance and night illumination on London starlings. Nature 122 : 11-12.

Russ, A., A. Rüger et R. Klenke. (2015). Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. Journal of Ornithology 156 : 123-131. DOI: 10.1007/s10336-014- 1105-1

Rydell, J. (1992). Exploitation of insects around streetlamps by bats in Sweden. Functional Ecology 6(6) : 744- 750.

Sandilands, A. (2010). Birds of Ontario: Habitat requirements, limiting factors, and status. UBC Press. Vancouver.

Schneider, T., H.-P. Thalau, P. Semm et W. Wiltschko. (1994). Melatonin is crucial for the migratory orientation of pied flycatchers (Ficedula hypoleuca pallas). Journal of Experimental Biology 194 : 255-262. 102

Schwartz, A. et R. W. Henderson. (1991). Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history. University of Florida Press. Gainesville, United States.

Services Environnementaux Faucon. (2017a). Protocole d’observation du Faucon pèlerin. Services Environnementaux Faucon, St-Lazare, Québec (Canada), 4 pages.

Services Environnementaux Faucon. (2017b). Suivi de l’hirondelle à front blanc en nidification. Services Environnementaux Faucon, St-Lazare, Québec (Canada), 3 pages.

Shimoda, M. et K. Honda. (2013). Insect reactions to light and its applications to pest management. Applied Entomology and Zoology 48 : 413-421

Silva, A. D., M. Valcu et B. Kempenaers. (2016). Behavioural plasticity in the onset of dawn song under intermittent experimental night lighting. Animal Behaviour 117 : 155-165.

Somers-Yeates R., D. Hodgson, P. K. McGregor, A. Spalding et R. H. FrenchConstant. (2013). Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biology Letters 9(4).

SOS-POP. (2017). Banque de Données Sur Les Populations D’oiseaux En Situation Précaire Au Québec (version du 13 janvier 2017). Montréal, Canada : Regroupement Québec Oiseaux.

Southwood, T. R. (1968). Ecological methods. 3e édition. Blackwell Science Ltd. Londres. 574 pages.

Squires, W. A. et H. E. Hanson. (1918). The destruction of birds at the lighthouses on the coast of California. The Condor 20 : 6-10.

Steeves, T. K., S. B. Kearney-McGee, M. A. Rubega, C. L. Cink et C. T. Collins. (2014). Chimney Swift (Chaetura pelagica), The Birds of North America (P. G. Rodewald, Ed.). Ithaca: Cornell Lab of Ornithology. Récupéré de Birds of North America: https://birdsna.org/Species-Account/bna/species/chiswi

Stone, T. (2018). The value of darkness: a moral framework for urban nighttime lighting. Science and Engineering Ethics 24(2) : 607-628.

Stringer, I. A. N. et V. B. Meyer-Rochow. (1994). Attraction of flying insects to light of different wavelengths in a Jamaican cave. Mémoires de Biospéologie 21 : 133-139.

Sun, J., T. Raap, R. Pinxten et M. Eens. (2017). Artificial light at night affects sleep behaviour differently in two closely related songbird species. Environmental Pollution 231 : 882-889.

103

Swaddle, J. P., C. D. Francis, J. R. Barber, C. B. Cooper, C. C. M. Kyba, D. M. Dominoni, G. Shannon, E. Aschehoug, S. E. Goodwin, A. Y. Kawahara, D. Luther, K. Spoelstra, M. Voss, et T. Longcore. (2015). A framework to assess evolutionary responses to anthropogenic light and sound. Trends in Ecology and Evolution 30 : 550-560.

Swaisgood, R. R. (2007). Current status and future directions of applied behavioral research for animal welfare and conservation. Applied Animal Behaviour Science 102 : 139-162. DOI: 10.1016/j.applanim.2006.05.027

Thomas, R. J., T. Szekely, I. C. Cuthill, D. G. C. Harper, S. E. Newson, T. D. Frayling, et P. D. Wallis. (2002). Eye size in birds and the timing of song at dawn. Proceedings of the Royal Society of London B: 831-837. DOI: 10.1098/rspb.2001.1941

Tremblay, J., P. Fradette, F. Shaffer et I. Gauthier. (2012). Inventaire quinquennal 2010 du faucon pèlerin au Québec méridional : état de la population québécoise. Le Naturaliste Canadien 136(3) : 88-93. van Grunsven, R. H. A., M. Donners, K. Boekee, I. Tichelaar, K. G. v. Geffen, D. Groenendijk, F. Berendse, et E. M. Veenendaal. (2014). Spectral composition of light sources and insect phototaxis, with an evaluation of existing spectral response models. Journal of Insect Conservation 18 : 225-231. van Langevelde, F., J. A. Ettema, M. Donners, M. F. WallisDeVries et D. Groenendijk. (2011). Effect of spectral composition of artificial light on the attraction of moths. Biological Conservation 144(9) : 2274–2281. van Tets, G., W. Vestjens, et E. Slater. (1969). Orange runway lighting as a method for reducing bird strike damage to aircraft. CSIRO Wildlife Research 14 : 129-151.

Viel, J. M. (2014). Habitat Preferences of the Common Nighthawk (Chordeiles minor) in Cities and Villages in Southeastern Wisconsin.

Vuilleumier, F. (2009). Birds of North America. DK Publishing. 1e edition. New York. 744 pages.

Wakefield, A., M. Broyles, E. L. Stone, S. Harris et G. Jones. (2017). Quantifying the attractiveness of broad- spectrum street lights to aerial nocturnal insects. Journal of Applied Ecology 55(2) : 714-722.

Wendt, A., Septon, G. et J. Moline. (1991) Juvenile urban hacked peregrine falcons (Falco peregrinus) hunt at night. Journal of Raptor Research 25(3) : 94-95.

104

Williams, C. B. (1936). The influence of moonlight on the activity of certain nocturnal insects, particularly of the family Noctuidae, as indicated by a light trap. Philosophical Transactions of the Royal Society of London B 226(537) : 357-389.

WSP. (2016). Mise en lumière du pont Jacques-Cartier : évaluation des effets environnementaux, Montréal, Québec. Rapport produit pour Les Ponts Jacques Cartier et Champlain Incorporée. No projet : 151-11367-00. 166 pages et annexes.

Yoon, T. J., D. G. Kim, S. Y. Kim, S. I. Jo et Y. J. (2010). Light‐attraction flight of the giant water bug, Lethocerus deyrolli (Hemiptera: Belostomatidae), an endangered wetland insect in East Asia. Aquatic Insects 32 : 195-203.

Yorzinski, J. L., S. Chisholm, S. D. Byerley, J. R. Coy, A. Aziz, J. A.Wolf et A. C. Gnerlich. (2015). Artificial light pollution increases nocturnal vigilance in peahens. PeerJ 3. DOI: 10.7717/peerj.1174

Yorzinski, J. L., K. A. Ordonez et K. T. Chema. (2017). Does artificial light pollution impair problem-solving success in peafowl? Ethology 123 : 854-860.

Yoshimura, T., S. Yasuo, M. Watanabe, M. Iigo, T. Yamamura, K. Hirunagi et S. Ebihara. (2003). Light-induced hormone conversion of T4 tp T3 regulates photoperiodic response of gonads in birds. Nature 426 : 178-181. DOI: 10.1038/nature02117

Zymo Research. (2001). DNA clean and concentrator-5 (200 preps). Zymo Research Corp. (D4014). Page 5.

105

Annexe A Suivi du martinet ramoneur et de l’engoulevent d’Amérique

A.1 Introduction

Le chapitre suivant explique les observations faites pour évaluer la présence de deux des espèces identifiées dans le cadre du projet : le martinet ramoneur (Chaetura pelagica) et l’engoulevent d’Amérique (Chordeiles minor). Les méthodologies pour chaque espèce sont expliquées en détails et les résultats des observations effectuées lors des deux années de suivi sont discutés.

A.1.1 Le martinet ramoneur

Le martinet ramoneur (Chaetura pelagica) est une espèce d’oiseau migrateur (figure 24). Il est entièrement gris et ses ailes sont minces et pointues (Brûlotte 2000). Il est insectivore (COSEWIC 2007a, Maurice 2016, WSP 2016, Sandilands 2010). Il est actif durant le jour (activités de quête de nourriture) et revient au nid peu avant le coucher du soleil (Maurice 2016).

Le martinet a un vol rapide qui ressemble à celui d’une chauve-souris. Il effectue des battements d’ailes rapides, suivi d’un vol plané (Brûlotte 2000).

Figure 24. Martinet ramoneur perché (http://www.thewoodthrushshop.com/news/2016/9/8/bird-bio-chimney-swifts-common- nighthawks).

Cette espèce est retrouvée en Amérique du Nord, du Sud du Québec jusqu’au Sud des États-Unis (Brûlotte 2000, Vuilleumier 2009). En hiver, elle peut même migrer jusqu’en Amérique Centrale (Sandilands 2010).

Chez le martinet ramoneur, il existe deux types d’habitats : les sites de nidification et les dortoirs. Le site de nidification est généralement une cheminée, mais peut également se retrouver à l'intérieur d'un bâtiment, un

106

puits ou une cavité dans un arbre. Un site de nidification est utilisé par un seul couple. Il est possible de voir des individus de cette espèce pendant la période d’alimentation des jeunes, soit de la mi-juin à la fin-juillet environ, lors de laquelle les adultes font des allers-retours réguliers en journée pour le transport de la nourriture. Un dortoir, généralement une grosse cheminée, est un lieu où un groupe d’oiseaux, de quelques individus jusqu'à plusieurs centaines, trouvent refuge pour la nuit ou par mauvais temps. Les oiseaux en migration s'y regroupent avant et après la période de nidification. Les martinets ramoneurs tournoient au-dessus du dortoir peu avant le coucher du soleil et pénètrent soudainement dans le dortoir peu après. L’utilisation de dortoirs se fait en fin mai- début juin (COSEWIC 2007a, Maurice 2016).

La période de nidification du martinet ramoneur s’étend du début mai à la fin août (Kyle 2005). Chaque couple pond 4 ou 5 œufs. La couvaison dure de 19 à 21 jours (Brûlotte 2000). La période d’élevage des juvéniles s’étend de la mi-juin à la fin juillet (Maurice 2016) (tableau 6).

Tableau 6. Calendrier du cycle de nidification de l’engoulevent d’Amérique.

Mars Avril Mai Juin Juillet Août Ponte des œufs Incubation des œufs Élevage des juvéniles

Les sites de nidification choisis par les martinets sont sombres et protégés de la pluie ou du vent. De plus, ces oiseaux préfèrent installer leur nid à proximité d’un point d’eau pour profiter de l’abondance d’insectes dans ces environnements (Sandilands 2010, COSEWIC 2007a, Maurice 2016, WSP 2016). À chaque nouvelle saison de reproduction, les martinets ont tendance à retourner au même site de nidification que les années antérieures (Sandilands 2010). Les nids, en forme de coupole, sont faits de brindilles collées à l’aide de salive sur les parois intérieures des cheminées (Vuilleumier 2009).

Une des importantes causes du déclin de la population de martinets est due à la disparition de leur site de nidification. La fermeture de cheminées inutilisées dans la grande majorité des habitations empêche les martinets de s’y installer. Ainsi, il y a de moins en moins de sites de nidification possible pour cette espèce. De plus, l’utilisation excessive de pesticides a entraîné le déclin des populations d’insectes, causant ainsi une importante diminution des ressources alimentaires pour cette espèce (Sandilands 2010).

Le martinet ramoneur est une espèce susceptible d’être désignée menacée ou vulnérable selon les normes du Québec alors qu’il est déjà considéré menacé au Canada en vertu de la LEP (2002) et auprès du COSEPAC (2007). La loi fédérale interdit de tuer un individu de cette espèce, de lui nuire, de le harceler ou de le capturer.

107

A.1.2 L’engoulevent d’Amérique

L’engoulevent d’Amérique (Chordeiles minor) est une espèce d’oiseau migrateur (figure 25). Il est brun et arbore une gorge blanche. Ses ailes sont traversées d’un large trait blanc. Au vol, il bat des ailes lentement (Brûlotte 2000).

Figure 25. Engoulevent d’Amérique au repos (https://www.canada.ca/fr/environnement-changement-climatique/services/oiseaux- canada/celebrons-100-ans-conservation-internationale/on-est-aux-oiseaux/coralie-daigle-bruno-drolet.html).

L’engoulevent se trouve en Amérique du Nord, Centrale et du Sud (Vuilleumier 2009). Il passe la saison de reproduction en Amérique du Nord ou en Amérique Centrale et passe l’hiver en Amérique du Sud (COSEWIC 2007b). Il est très difficile à repérer visuellement. On le détecte alors plus facilement à l’aide de son cri.

L’engoulevent ne forme pas de nids; il pond ses œufs directement sur les surfaces comme les sols nus dans les forêts découvertes ou même les toits couverts de gravier en milieu urbain. La femelle pond deux œufs à chaque pondaison (Brûlotte 2000). C’est une espèce territoriale. Les femelles ont tendance à nicher au même endroit plusieurs années de suite (Sandilands 2010). Cette espèce est nocturne et se nourrit d’insectes en vol au crépuscule (COSEWIC 2007b). La période de nidification de l’engoulevent d’Amérique est présentée au tableau 7 (COSEWIC 2007b).

Tableau 7. Calendrier du cycle de nidification de l’engoulevent d’Amérique.

Mars Avril Mai Juin Juillet Août Ponte des œufs Incubation des œufs Élevage des juvéniles

Cette espèce possède le statut d’espèce menacée au Canada en vertu de la LEP et est en danger d’extinction selon le COSEWIC (2007b). Par conséquent, il est interdit de tuer un individu de cette espèce, de lui nuire, de le harceler ou de le capturer. D’autre part, l’engoulevent d’Amérique est susceptible d’être désigné menacée ou

108

vulnérable au Québec. L’utilisation des pesticides est une des causes influençant le déclin de cette espèce (Sandilands 2010).

A.2 Méthodologie

A.2.1 Martinet ramoneur

La méthodologie suivante vise à évaluer si l’illumination du pont Jacques-Cartier peut affecter le comportement de nidification du martinet ramoneur. Cette évaluation a été effectuée en repérant la présence de martinets aux sites de nidification possibles à proximité du pont.

Un inventaire des lieux de nidification possibles a été effectué afin de déterminer à quel endroit les martinets ramoneurs pourraient nicher. Les bâtiments situés sur l’Île Ste-Hélène (à proximité de l’illumination) ont été parcourus afin de déterminer si les cheminées présentes sont utilisables pour l’espèce.

Le protocole utilisé pour les observations est inspiré du protocole d’Environnement Canada (Maurice 2016). Le suivi s’est concentré sur les cheminées du bâtiment Hélène-de-Champlain (figure 26).

En 2017, le regroupement Québec Oiseaux et l’Université Laval ont procédé à un inventaire des martinets sur une zone plus élargie autour du pont (Pérez 2017). Des zones dans un rayon de 1 et 3 km autour du pont ont été établies et le nombre de cheminées permettant un accès à l’espèce a été recensé. Durant le jour, les cheminées ont été observées pendant 30 minutes afin de déterminer si elles étaient occupées par des martinets. Si les cheminées étaient occupées, les observations se sont poursuivies afin de noter l’heure des mouvements des oiseaux. Le soir, les observations ont été effectuées 30 minutes avant le coucher du soleil, et se terminaient à l’entrée du dernier martinet au nid ou lorsque l’obscurité empêchait l’observation. Le nombre de martinets entrant ou sortant du nid ainsi que les données météorologiques ont également été notés.

109

Figure 26. Cheminées se trouvant sur le bâtiment Hélène-de-Champlain sur l’Île Ste-Hélène observées pour leur potentiel de servir de sites de nidification pour les martinets ramoneurs.

En 2017, toutes les observations ont été faites entre le 13 et le 20 juin. En 2018, elles ont été faites entre le 18 et le 26 juin.

A.2.2 Engoulevent d’Amérique

La méthodologie choisie vise à déterminer si l’illumination du pont peut affecter le comportement de nidification de l’engoulevent d’Amérique. Ceci a été fait en déterminant les endroits où l’espèce pourrait être détectée.

Le protocole utilisé est inspiré du protocole de Wisconsin Nightjar Survey et de New Hampshire Audubon’s Project Nighthawk survey protocols (Brady 2009, Hunt et al. 2011, Viel 2014) ainsi que celle de Québec Oiseaux (Julien 2015).

Dans le but de repérer où il y a affluence de populations d’engoulevents, deux (2) parcours ont été prévus. Ceux-ci sont présentés à la figure 27 ainsi que les numéros associés à chacun des stations d’observations. Le 1e parcours est composé de 10 arrêts et le 2e est composé de 8 arrêts. Ces arrêts sont séparés d’une distance de 1,5 à 2 km.

110

Figure 27. Carte des deux (2) routes suivies lors de l’observation de l’engoulevent d’Amérique aux alentours du pont Jacques-Cartier. Les chiffres montrent l’ordre dans lequel les stations ont été parcourues.

Trente minutes avant le coucher du soleil, chaque arrêt a été observé pendant six minutes afin de détecter des engoulevents visuellement ou par leur chant. À chaque fois qu’un engoulevent était détecté, sa localisation était répertoriée et les données météorologiques aussi. Lors de précipitations, vents forts ou brouillard, les observations ont été annulées.

Les deux (2) routes ont été parcourues deux fois chacune entre le 18 et le 21 juin 2018.

A.3 Résultats

A.3.1 Martinet ramoneur

Lors du suivi réalisé par le regroupement Québec Oiseaux, en partenariat avec l’Université Laval, en 2017, 44 sites d’importance pour les martinets ramoneurs ont été répertoriés (figure 28) :

111

• 9 (20%) cheminées étaient inaccessibles pour le martinet (cheminées fermées, bâtiment ou structure détruite); • 10 (23%) cheminées étaient utilisées par le martinet, dont 8 potentiellement comme sites de nidification et trois (3) comme dortoirs; • 25 (57%) sites considérés comme inoccupés en 2017 pourraient tout de même accueillir des martinets.

Figure 28. Cheminées propices au martinet ramoneur visitées lors des inventaires réalisés en 2017 (Pérez 2017).

Le tableau 8 montre les différents sites répertoriés par Québec Oiseaux et par l’Université Laval en 2017 et 2018.

À la suite des observations résumé dans le tableau 5, il est difficile de déterminer si l’illumination du pont a un effet sur la nidification du martinet ramoneur. Aucun individu n'a été observé proche du pont Jacques-Cartier lors des suivis de 2017 et 2018. L’espèce étant diurne et sa présence étant limitée, on peut émettre l’hypothèse que l’impact de l’illumination du pont est négligeable, voir nul.

112

Tableau 8. Sites possibles de nidification du martinet ramoneur observés en 2017 et 2018. Emplacement du site d’observation Nombre de État des cheminées Type d’occupation par l’espèce Nombre de martinets cheminées détectés Centre d’hébergement Émilie-Gamelin 1 Indéterminé Aire de concentration 0 Église Très-Saint-Rédempteur 1 Indéterminé Nidification 0 Église Notre-Dame-Czestochowa 1 Indéterminé Nidification 0 École Le Vitrail 1 Indéterminé Nidification 0 Chapelle de la maison de la Providence 1 Indéterminé Aire de concentration 0 Église Notre-Dame-de-Guadalupe 1 Indéterminé Aire de concentration 0 Église Saint-Brigide 1 Indéterminé Site utilisé, mais indéterminé 0 Pavillon au nord de l’Église Sacré-Cœur-de-Jésus 1 Indéterminé Site utilisé, mais indéterminé 0 Église Saint-Boniface 1 Indéterminé Indéterminé 0 Église Saint-James 1 Indéterminé Indéterminé 0 Académie du Sacré-Cœur 1 Indéterminé Site non-utilisé et indéterminé 0 Église Saint-Casimir 1 Indéterminé Site non-utilisé et indéterminé 0 Église Saint-Pierre-Apôtre 1 Indéterminé Site non-utilisé et indéterminé 0 Maison Charles-Simon-Delorme I 6 Indéterminé Site non-utilisé et indéterminé 0 Vieux-Séminaire-de-Saint-Sulpice 3 Indéterminé Indéterminé 0 Musée Stewart 5 Fermé Indéterminé 0 Édifice sur la rue Sainte-Hélène 1 Indéterminé Indéterminé 0 Immeuble sur la rue McGill 1 Probablement fermé Nidification Non inventorié Église Saint-Eusèbe-de-Verceil 1 Probablement fermé Nidification Non inventorié Église La-Nativité-de-la-Sainte-Vierge 1 Fermé Indéterminé Non inventorié

113

A.3.2 Engoulevent d’Amérique

En 2017, aucune observation n’a été recensée concernant la présence d’engoulevent. En 2018, à la suite du suivi effectué pour détecter les engoulevents, aucun oiseau n’a été entendu ni vu dans les routes parcourues. La figure 29 montre la zone dans laquelle la présence de l’engoulevent est supposée nulle.

Il serait donc possible d’affirmer que l’absence de l’engoulevent d’Amérique n’est pas induite par l’illumination. Cette dernière n’aurait donc aucun impact sur cette espèce.

Figure 29. Carte de la zone autour du pont Jacques-Cartier sans la présence d’engoulevents. A.4 Discussion

L’absence du martinet ramoneur et de l’engoulevent d’Amérique dans la zone du pont Jacques-Cartier a été confirmée lors des deux (2) dernières années. La base de données SOS-POP (2017) recense les aires de concentration du martinet ramoneur se situant dans un rayon d’un (1) kilomètre du pont, soit à l’église Saint- Vincent-de-Paul, au Centre d’hébergement Émilie-Gamelin et à la piscine Quintal. Ces aires de concentration sont généralement occupées pendant la nuit ou par mauvais temps à l’extérieur de la période de nidification, ou bien par des individus non reproducteurs pendant la période de nidification. Des individus ont également été recensés à la chapelle Notre-Dame-de-Sept-Douleurs, à 800 m du pont : deux (2) en 2014 et cinq (5) en 2016.

114

L’église Saint-Vincent-de-Paul est un site d’importance puisqu’entre 200 et 650 individus y ont été observés en 2015 et 2016. Les récentes observations de 2017 et 2018 ne montrent pas de martinets à proximité du pont.

D’après la même base de données (SOS-POP 2017), l’engoulevent a été observé aux studios de Télé-Québec, à 600 m du pont. Il s’agit d’un potentiel site de nidification où un (1) individu a été recensé en 2013. Cependant, aucun engoulevent n’a été repéré aux alentours du pont depuis au moins deux (2) ans.

Le martinet ramoneur ainsi que l’engoulevent d’Amérique ont subi d'importants déclins durant les dernières années. La population canadienne de martinets ramoneurs a diminué de 90 % (COSEWIC 2007a). De plus, l’engoulevent d’Amérique fait partie des espèces insectivores se reproduisant au Canada qui montrent un déclin très alarmant de leur population (ICOAN 2012). La population d’engoulevents au Canada a subi un déclin de 1,41% par année entre 2005 et 2015 et la population au Québec, un déclin de 2,34%. Il y aurait maintenant environ 900 000 individus de l’espèce (Québec Oiseaux 2017b).

L’illumination pourrait potentiellement avoir un effet positif sur les martinets (en attirant plus d’insectes, la ressource alimentaire des martinets). Cette observation a déjà été faite chez des individus en quête de nourriture sous des lampadaires et à proximité des bâtiments durant la nuit (Steeves et al. 2014). Cependant, l’illumination pourrait aussi être néfaste en augmentant le nombre de collision. En effet, un individu normalement diurne, qui est en vol nocturne, peut être désorienté par la lumière artificielle (Eisenbeis et Hänel 2009).

Il est peu probable que l’illumination soit responsable de l’absence de martinets à proximité du pont. En effet, la diminution du nombre de cheminées disponibles à la nidification est une cause majeure du déclin de l’espèce. Plusieurs des cheminées inutilisées sont bloquées, ce qui empêche l’accès au martinet ramoneur (COSEWIC 2007a). Au Québec, 201 (19,32%) des cheminées utilisées par l’espèce sur 1040 ont été détruites ou fermées au cours des dernières années (SOS-POP 2017). Les cheminées à proximité du pont en font parties.

De plus, l’intensité changeante des lumières du pont (de faible intensité en début de soirée à plus forte à la tombée de la nuit) coïncide avec une activité nulle chez les martinets puisqu’ils sont déjà au repos dans les cheminées (Pérez 2017).

L’engoulevent d’Amérique est une espèce nocturne qui pourrait être potentiellement touchée par l’illumination du pont Jacques-Cartier. Une augmentation de l’abondance d’insectes aux alentours du pont pourrait encourager l’engoulevent à s’y installer, et son comportement de nidification en serait ainsi modifié.

L’absence de l’engoulevent au pont peut être expliquée par le manque de sites de nidification. En effet, une étude de Brigham en 1989 a permis de déterminer les sites préférentiels de nidification des engoulevents en Colombie-Britannique. Selon l’auteur, les oiseaux se sont installés dans les champs plutôt que sur les toits. Des

115

sites naturels peu dérangés par des activités humaines augmentent la présence d’engoulevent. Cette caractéristique ne s’applique pas aux parcs autour du pont Jacques-Cartier, puisque ceux-ci sont des sites avec une forte activité estivale (La Ronde, Grand prix de la Formule 1, festivals musicaux, etc.) et par conséquent une forte fréquentation.

En milieu urbain, l’espèce préfère les toits plats recouverts de gravier qui sont des zones calmes où ils peuvent se camoufler durant la journée (Québec Oiseaux 2017b). De plus, une étude sur des engoulevents dans les Pine Barrens au New Jersey montre que les oiseaux préfèrent nicher dans des espaces ouverts non végétalisés. Les sites avec de la végétation comme les parcs aux alentours du pont seraient donc moins favorisés par l’espèce (Allen and Peters 2012). Fisk (1978) explique que certains oiseaux, comme les engoulevents d’Amérique, préfèrent les toits aux sites naturels parce qu’ils sont des endroits tranquilles avec généralement peu de prédation.

Une étude sur les engoulevents au Michigan a montré que les oiseaux avaient une plus grande chance de s’installer aux endroits avec une forte concentration de toits plats, contrairement aux endroits où la présence de toits est faible (Armstrong 1965). Comme il y a une faible quantité de toits sur les Îles Ste-Hélène et Notre-Dame contrairement à Montréal et à Longueuil, l’absence d’engoulevent sur les Îles en question est justifiable.

Il est possible d’affirmer que l’illumination du pont Jacques-Cartier n’a pas d’impact sur la présence du martinet ramoneur aux alentours du site. Le martinet a un comportement diurne, il est donc déjà en phase de repos lorsque les illuminations commencent. L’illumination n’a pas d’impact non plus sur l’engoulevent d’Amérique, puisque celui-ci n’est plus observé à proximité du pont depuis 2013, donc bien avant l’illumination. De plus, les sites préférentiels de nidification de l’espèce ne correspondent pas aux caractéristiques du pont et de ses environs. Ainsi, l’absence de ces deux (2) espèces serait principalement due à un manque de site de nidification plutôt qu’à l’illumination du pont.

A.5 Conclusion

À la suite des deux années d’observation du martinet ramoneur et de l’engoulevent d’Amérique, aucune présence des deux espèces n’a été notée. L’illumination n’a donc potentiellement aucun impact sur la présence ni la nidification de ces oiseaux. Le manque de sites de nidification semble être un des majeurs facteurs qui explique l’absence de ces espèces à proximité du pont.

A.6 Références

Allen, M. C. et Peters, K. A. (2012). Nest survival, phenology, and nest-site characteristics of common nighthawks in a New Jersey Pine Barrens grassland. The Wilson Journal of Ornithology 124(1) : 113118.

116

Armstrong, J. T. (1965). Breeding home range in the nighthawk and other birds: its evolutionary and ecological significance. Ecology 46(5) : 619-629.

Brady, R. (2009). Wisconsin Nightjar Survey (November).

Brigham, R. M. (1989). Roost and nest sites of Common Nighthawks: are gravel roofs important? The Condor 91 : 722-724

COSEWIC. (2007a). COSEWIC Assessment and Status Report on the Chimney Swift Chaetura pelagica in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa.

Eisenbeis, G., et Andreas Hänel. (2009). Light pollution and the impact of artificial night lighting on insects. In Ecology of Cities and Towns: A Comparative Approach. Cambridge: Cambridge University Press. Pages 243– 263.

Fisk, E. (1978). The growing use of roofs by nesting birds. Bird-Banding 49(2) : 134-141.

Hunt, P. D., M. B. Watkins et R. W. Suomala. (2011). The State of New Hampshire's birds: a conservation guide. Concord, NH.

Initiative de conservation des oiseaux de l’Amérique du Nord (ICOAN). (2012). État des populations d’oiseaux du Canada, 2012. Environnement Canada, Ottawa, Canada. 36 pages.

Julien, M. (2015). Programme de suivi québécois des engoulevents : guide du participant. Regroupement Québec Oiseaux, Montréal, Québec (Canada), 15 pages.

Maurice, C. (2016). Protocole de suivi des Martinets ramoneurs aux dortoirs. Environnement Canada, Service canadien de la faune, Québec, Québec (Canada), 3 pages.

Pérez, L. 2017. Étude de l'impact de l'illumination du pont Jacques-Cartier sur le Martinet ramoneur (Chaetura pelagica). Montréal, Québec.

Québec Oiseaux. (2017b). Connaître et protéger l’engoulevent d’Amérique.

SOS-POP. (2017). Banque de Données Sur Les Populations D’oiseaux En Situation Précaire Au Québec (version du 13 janvier 2017). Montréal, Canada : Regroupement Québec Oiseaux.

117

Steeves, T. K., S. B. Kearney-McGee, M. A. Rubega, C. L. Cink et C. T. Collins. (2014). Chimney Swift (Chaetura pelagica), The Birds of North America (P. G. Rodewald, Ed.). Ithaca: Cornell Lab of Ornithology. Récupéré de Birds of North America: https://birdsna.org/Species-Account/bna/species/chiswi

Viel, J. M. (2014). Habitat Preferences of the Common Nighthawk (Chordeiles minor) in Cities and Villages in Southeastern Wisconsin.

118

Annexe B Analyse visuelle et génétique de l’entomofaune

B.1 Introduction

Les échantillons d’insectes récoltés lors de l’analyse de l’abondance et de la distribution de l’entomofaune ont été analysés afin d’identifier les différents types d’insectes capturés. En effet, les objectifs de cette recherche étaient de déterminer les ordres présents et leurs abondances selon les sites à proximité du pont Jacques- Cartier. Cette partie du rapport comprend une première analyse des insectes de façon visuelle et une deuxième de façon génétique pour confirmer et préciser les résultats de la première analyse.

B.2 Méthodologie

Chaque échantillon d’insectes a été séparé manuellement en sous-échantillons d’insectes semblables. Tous les sous-échantillons ont été pesés et le nombre d’insectes dans chacun, comptabilisé. Un individu de chaque sous- échantillon a été photographié avec une précision suffisante pour permettre l’identification de l’insecte (figure 30). Les photos ont ensuite été envoyées à un entomologiste pour valider l’identification des insectes.

Figure 30. Photographie d’un insecte de l’ordre Trichoptera pour l’analyse visuelle.

Les échantillons ont ensuite été utilisés pour l’analyse génétique. La méthodologie utilisée pour l’identification génétique des insectes est une adaptation des travaux du Dr Jacques Corbeil du Centre hospitalier de l’Université Laval (CHUL) à Québec.

Les étapes suivies ont été les suivantes :

1. Le matériel génétique a été extrait des insectes en suivant le protocole développé par Qiagen (2006) décrit à l’annexe C;

119

2. Un dosage a été fait afin de déterminer la quantité de matériel génétique disponible dans chaque échantillon extrait à l’étape 1. Cette étape s’est faite à la station de dosage du CHUL; 3. Une PCR (Polymerase Chain Reaction, Réaction de polymérisation en chaîne) a été faite sur chaque échantillon pour augmenter la quantité d’ADN spécifique à l’identification de l’insecte. Cette étape dépend de la quantité de matériel génétique mesuré en 2. Un exemple des manipulations est présenté à l’annexe D; 4. Les échantillons ont ensuite été purifiés afin d’éliminer tout ce qui ne correspond pas à l’ADN cible pour l’identification. Cette étape est issue du protocole de Zymo Research (2001) décrit à l’annexe E; 5. Un dosage a été refait afin de finalement déterminer la quantité d’ADN dans chaque échantillon; 6. Les séquences d’ADN dans chaque échantillon ont été déterminées à l’aide du séquençage SANGER. Le protocole de préparation des échantillons est présenté à l’annexe F; 7. Les séquences ADN ont été clarifiées à l’aide du logiciel BioEdit; 8. Les séquences ADN ont ensuite été comparées à des séquences connues d’insectes à l’aide du site web BLAST2 afin de déterminer à quels espèces, genres ou familles elles appartiennent.

La méthode de séquençage choisie afin d’identifier les insectes récoltés lors des suivis est le séquençage SANGER. Cette technique est couramment utilisée pour l’identification génétique d’échantillons. Elle fonctionne en isolant la séquence génétique qui est la plus exprimée dans l'échantillon. Ici, la séquence du gène de la « cytochrome c oxydase I » a été amplifiée par réaction de polymérase en chaîne (PCR) afin de permettre une identification précise. Selon la littérature, cette séquence est très efficace pour différencier l’ADN (Hebert et al. 2003, Lunt et al. 1996).

Ensuite, cette même séquence est comparée à des banques de données internationales afin de pouvoir l'associer à un gène de référence particulier. Un pourcentage d'identité est alors affecté et la séquence inconnue peut être identifiée au gène de référence présentant la plus grande homologie.

B.3 Résultats

L’identification visuelle des insectes a été réalisée par le Dr Matteo Montagna, entomologiste à l’Université de Milan, Italie. Le tableau 9 présente les résultats pour la détermination des espèces de l’échantillonnage du mois d’août. Des informations sur chaque ordre d’insectes sont présentées à l’annexe G.

2 https://blast.ncbi.nlm.nih.gov/Blast.cgi

120

L’analyse se focalise sur la comparaison entre le site témoin et le site illuminé puisqu’au niveau du site intermédiaire, les résultats sont difficilement exploitables à la suite des nombreux bris et vols que les structures ont subis.

Tableau 9. Identification et dénombrement des populations d’insectes lors de la collecte d’échantillonnage in-situ d’août 2017.

Collecte d’échantillonnage d’août 2017 Site témoin Site intermédiaire Site illuminé Ordre Pièges Pièges Pièges Pièges Pièges Pièges aériens aquatiques aériens aquatiques aériens aquatiques Inconnu 565 843 778 17 1790 527 Diptera 2286 6834 1227 98 4247 1729 Coleoptera 72 29 39 1 56 9 Trichoptera 568 120 959 8 1625 575 Hymenoptera 77 12 21 0 129 13 Araneae 11 7 5 0 6 0 Lepidoptera 0 0 0 0 3 0 Hemiptera 21 43 18 0 75 4 Odonata 2 1 0 0 0 0 Neuroptera 1 0 2 0 5 2 Thysanoptera 4 1 0 0 1 1 Acarina/Acariformes 278 61 1 0 68 0 Mecoptera 0 0 0 0 1 0 Total 3885 7951 3050 124 8006 2866

Lors de la collecte d’échantillonnage du mois d’août, on observe au niveau du site témoin une diversité importante avec au moins 11 ordres représentés au niveau aérien et au moins dix (10) ordres au niveau aquatique. Dans le compartiment aquatique, l’abondance d’insectes est supérieure (7951 individus), où domine à 86% l’ordre des Diptera. Pour ce qui est des insectes aériens, les Diptera sont toujours les plus abondants avec 60% de la population totale d’insectes, mais l’abondance est plus faible (3885 individus). L’ordre des Trichoptera et des Acarina représentent respectivement 15% et 7% de la population.

Au niveau du site illuminé, la diversité demeure importante au niveau aquatique, avec au moins huit (8) ordres représentés, et au niveau aérien, avec au moins 12 ordres représentés. En termes d’abondance, la population d’insectes aériens se compose de 8006 individus, où les Trichoptera représentent 20 % de la population et les

121

Diptera, 53%. L’ordre des Diptera et des Trichoptera demeurent les plus dominants au niveau des insectes aquatiques.

Les résultats de l’analyse génétique ont permis d’élaborer la 1e base de données sur les insectes et leur génétique au niveau du pont Jacques-Cartier. Ces résultats serviront de référence pour de futures études entomologiques à Montréal.

Les échantillons d’insectes sélectionnés ont été identifiés au niveau de la famille, du genre et de l’espèce, si possible. Le tableau 10 résume l’identification des insectes récoltés ainsi que la biomasse associée pour les trois sites à l’étude. Les résultats complets pour les identifications sont présentés à l’annexe H.

Une partie non négligeable variant de 30% à 60% selon les échantillons n’a pu être identifiée même de façon génétique. Plusieurs hypothèses pourraient expliquer ces chiffres :

• Quantité de matériel génétique insuffisant dans les échantillons (nombre d’individus faible) : o Efficacité de l’extraction diminuée o Efficacité de la PCR diminuée • Optimisation plus précise de la PCR nécessaire • Potentielle difficulté de l’hybridation à la séquence du gène de la « cytochrome c oxydase I » dû au choix des oligonucléotides utilisés pour la PCR (oligonucléotides dégénérescents) • Efficacité du séquençage SANGER

122

Tableau 10. Identification par séquençage SANGER des insectes récoltés aux sites témoin, intermédiaire et illuminé dans la zone du pont Jacques-Cartier en août 2017 représentant les proportions du nombre d’individus les plus élevées.

Proportion Proportion Décompte Type Biomasse de la du Site (nombre Organisme Genre Famille Ordre d'insecte (mg)3 biomasse décompte d'individus) (%) (%)

Témoin Aquatique 32 7% 441 15% Cricotopus sp. Cricotopus Polycentropodidae Diptera Aérien 13 3% 162 6% Empoasca sp. Empoasca Cicadellidae Hemiptera Aquatique 21 4% 109 4% Dicrotendipes sp Dicrotendipes Chironomidae Diptera Aérien 20 4% 45 2% Ablabesmyia americana Ablabesmyia Chironomidae Diptera Intermédiaire Aérien 50 3% 725 32% Paratanytarsus sp. Paratanytarsus Chironomidae Diptera Aérien 67 3% 291 13% Psychomyia flavida Psychomyia Psychomyiidae Trichoptera Aérien 14 1% 67 3% Cricotopus trifascia Cricotopus Polycentropodidae Diptera Illuminé Aérien 16 1% 671 17% Paratanytarsus sp. Paratanytarsus Chironomidae Diptera Aquatique 263 24% 364 9% Leucotrichia sp. Leucotrichia Hydroptilidae Trichoptera Aquatique 158 14% 255 6% Psychomyia flavida Psychomyia Psychomyiidae Trichoptera Aquatique Hydroptila waubesiana Hydroptila Hydroptilidae Trichoptera 14 1% 231 6% Aérien 12 1% 177 4% Orthocladiinae sp. Chironomidae Diptera Aquatique 3 < 0% 155 4% Tribelos sp. Tribelos Chironomidae Diptera Aquatique Paratanytarsus sp. Paratanytarsus Chironomidae Diptera < 0 < 0% 140 4% Aquatique 39 4% 115 3% Chironomidae sp. Chironomidae Diptera Aquatique 32 3% 111 3% Chironomus sp. Chironomus Chironomidae Diptera

3 mg/m2 pour les insectes aquatiques, mg/m3 pour les insectes aériens

123

Les résultats de l’analyse génétique confirme qu’il y a une prédominance de l’ordre des diptères dans les trois sites à l’étude comme l’analyse visuelle l’avait initialement proposé. Bien que le site illuminé compte une biomasse élevée d’insectes aquatiques contrairement aux insectes aériens, la majorité de ceux-ci sont de l’ordre Diptera, signifiant potentiellement la forte présence de larves aquatiques des insectes qui constituent une source importante d’alimentation pour les oiseaux.

Il est possible de voir qu’au site témoin, l’organisme qui est le plus présent est une espèce du genre Cricotopus et de la famille Polycentropodidae. Cet insecte représente 15% du décompte total des insectes récoltés au site témoin. Il est aussi celui avec la biomasse la plus élevée (32 mg/m2). Il appartient à l’ordre des diptères et est de type aquatique. Au site intermédiaire et au site illuminé, la plus grande proportion appartient à l’organisme du genre Paratanytarsus et de la famille Chironomidae. Cet organisme représente 32% du décompte des insectes au site intermédiaire et 17% du décompte des insectes au site illuminé. Cet insecte est aussi de l’ordre Diptera et est de type aérien.

Le 2e organisme le plus présent à la zone témoin est du genre Empoasca et de la famille Cicadellidae (6% du décompte total). Il appartient à l’ordre Hemiptera et est un insecte aérien. Ces résultats permettent d’affiner ceux de l’analyse visuelle qui avait déterminé que l’ordre le plus abondant après Diptera était Trichoptera. Aux zones intermédiaire et illuminé, l’ordre du 2e organisme le plus abondant est le même, Trichoptera. Au site intermédiaire, l’espèce dominante est Psychomyia flavida, de la famille Psychomyiidae (13% du nombre d’insectes total), et au site illuminé, l’espèce dominante est du genre Leucotrichia et de la famille Hydroptilidae (9% du nombre total d’insectes). C’est cet organisme qui a la biomasse la plus élevée à ce site (263 mg/m2).

Les insectes de l’ordre Hemiptera regroupent entres autres les cigales, les punaises et les pucerons. Ces insectes sont en général spécialisés dans les vols de courte distance pour des déplacements rapides. Ainsi, ils ne se trouvent pas souvent à des hautes distances du sol (Loxdale et al. 1993). Ce type d’insectes n’est donc pas une proie de choix pour les oiseaux insectivores se nourrissant au vol comme les hirondelles à front blanc. L’ordre Trichoptera est très près de l’ordre Lepidoptera (la majeure différence étant dans leur adaptation à l’eau douce au stade larvaire), qui lui est une source importante de nourriture pour les oiseaux insectivores (Grimaldi et Engel 2005, Krištín et Patočka 1997). Leur grande présence au site illuminé pourrait favoriser l’importante présence d’hirondelles dans cette zone.

B.4 Discussion

L'analyse entomologique révèle que Diptera (mouches, taons, moustiques, tipules et drosophiles) est l'ordre d'insectes le plus répandu sur tous les sites. Bien qu’il y ait une plus grande abondance d’insectes aquatiques que d’insectes terrestres sur le site illuminé, la plupart d’entre eux sont de l’ordre des diptères, ce qui signifie

124

potentiellement que la plupart des insectes aquatiques sont des stades larvaires des diptères volants terrestres, qui constituent une source importante de nourriture pour les oiseaux insectivores.

Les données recueillies montrent des différences dans la distribution des types d'insectes qui pourraient influencer les organismes de la chaîne alimentaire en encourageant les oiseaux insectivores à privilégier les zones présentant le type d’insectes qu’ils favorisent. L’éclairage du pont pourrait avoir une influence potentielle sur les observations effectuées sur les trois sites d’étude.

La littérature montre souvent que les insectes de l'ordre des diptères sont les plus attirés par les lumières artificielles (Hering 2012, Stringer et Meyer-Rochow 1994, Belton et Pucat 1967, Ali et al. 1986). Les recherches de Wakefield et al. (2017) montre que les diptères, contrairement aux ordres des coléoptères et des lépidoptères, sont les plus abondants près des sources de lumière à LED. Cela confirme notre observation selon laquelle les insectes de type diptères étaient plus abondants sur le site illuminé qui était situé juste sous l'éclairage (composé principalement de lumières DEL). Des diptères ont également été trouvés sur les deux autres sites, mais leur abondance diminue à mesure que leur distance du pont augmente. Le site intermédiaire, qui peut être légèrement influencé par l'éclairage en raison de sa plus faible distance du pont, présente la deuxième plus grande abondance de diptères. Le site témoin, dont l’éclairage a un impact potentiellement inexistant, présente la plus faible abondance en diptères. De plus, l’abondance des coléoptères était similaire aux trois sites, ne montrant aucune tendance en termes d’attraction au pont. Les insectes de l'ordre des lépidoptères n'ont pas été détectés dans cette expérience.

L’attraction des diptères par les lumières peut dépendre de la quantité (intensité) de la lumière plutôt que de sa qualité (longueur d’onde et couleur) (Ali et al. 1984, Ali et al. 1986). Cela pourrait expliquer la plus grande abondance d'insectes diptères près de l'éclairage. Bien que le pont tout entier soit dans illuminé (par des lampadaires pour éclairer la route), la lumière artificielle additionnelle sur la section 7 du pont pourrait être une cause de l’abondance accrue des diptères.

Les conditions environnementales pourraient également être responsables de la distribution des insectes dans la zone entourant le pont Jacques-Cartier. Une abondance élevée de végétation peut favoriser une plus grande abondance et diversité d'insectes. Des recherches par Jaganmohan et al. (2013) ont montré que dans les jardins urbains en Inde, le nombre d’ordres d'insectes était positivement relié au nombre d'espèces d'arbres et d'arbustes dans un jardin.

Les résultats de cette étude sont limités, car il n'y a pas de données antérieures sur les espèces d'insectes et leur répartition autour du pont Jacques-Cartier. Par conséquent, aucune comparaison temporelle prolongée n’a pu être effectuée entre les différents sites. L'étude a consisté en une analyse spatiale et une courte analyse

125

temporelle (2 ans). De plus, certains pièges ont parfois été renversé par des forts courants, ce qui peut causer un manque de données. Il est à noter qu’une partie des insectes collectés demeurent non identifiés sur tous les sites d’échantillonnage.

B.5 Conclusion

L’analyse visuelle a permis de déterminer que les populations d’insectes aériens ont eu tendance à augmenter vers le site illuminé vers la fin août. Une abondance importante d’insectes de l’ordre des Diptera a aussi été détectée. Ces insectes sont une source privilégiée de nourriture pour de nombreuses espèces aviaires insectivores. Ainsi, le site illuminé semble être un site de choix pour les oiseaux insectivores cherchant à se nourrir, notamment l’hirondelle à front blanc. Les différents résultats de l’analyse génétique confirment et complètent les résultats de l’analyse visuelle et permettent également d’apporter des corrections sur les analyses visuelles réalisées.

La distribution de l’abondance et des ordres d’insectes peut être due à l’illumination comme aux conditions environnementales locales. La portée limitée de l’expérimentation (seulement 2 années de recherche sans comparaison temporelle prolongée) permet de déterminer un impact potentiellement positif, mais faible, de l’illumination sur l’entomofaune.

126

Annexe C Protocole d’extraction d’ADN pour l’analyse génétique de l’entomofaune (Qiagen, 2006)

1. Peser les groupes d’individus similaires et réduire les poids à un maximum de 25 mg; 2. Broyer à l’aide de petits pilons stériles; 3. Ajouter 180 µl de solution Buffer ATL dans chaque tube; 4. Ajouter 20 µl de protéinase K dans chaque tube; 5. Mélanger les tubes par vortex; 6. Mettre les tubes dans un incubateur à 56°C pour une durée de 3 heures minimum et d’une nuit maximum; 7. Mélanger les tubes par vortex pendant 15 secondes; 8. Ajouter 200 µl de solution Buffer AL et mélanger les tubes par vortex; 9. Ajouter 200 µl d’éthanol à 96-100% et mélanger les tubes par vortex; 10. Centrifuger les tubes pendant 2 à 3 minutes à entre 12000 et 13000 rpm pour déposer le précipité dans le fond du tube; 11. Pipetter le sur-latent et le mettre dans un tube de collection de 2 ml; 12. Centrifuger les tubes de collection pendant 1 minute à 8000 rpm; 13. Conserver les filtres des tubes et jeter le reste; 14. Placer les filtres dans des nouveaux tubes de collection; 15. Ajouter 500 µl de solution Buffer AW1 et centrifuger les tubes pendant 1 minute à 8000 rpm; 16. Conserver les filtres des tubes et jeter le reste; 17. Placer les filtres dans des nouveaux tubes de collection; 18. Ajouter 500 µl de solution Buffer AW2 et centrifuger les tubes pendant 3 minutes à 14000 rpm; 19. Conserver les filtres des tubes et jeter le reste; 20. Placer les filtres dans des tubes eppendorfs de 1,5 ml; 21. Ajouter 100 µl de solution Buffer AE directement sur les filtres et centrifuger les tubes pendant 1 minute à 8000 rpm; 22. Jeter les filtres; 23. Le contenu des tubes eppendorfs contient le matériel génétique des insectes.

127

Annexe D Protocole de PCR (polymerase chain reaction, réaction de polymérase en chaine) pour l’analyse génétique de l’entomofaune

(À noter que les quantités utilisées dans les manipulations changent pour chaque échantillon dépendamment du résultat du dosage.)

1. Ajouter 10 µl de GC Reaction Buffer Phusion dans un tube eppendorf; 2. Ajouter 1 µl de dNTPs à une concentration de 10 mM dans le même tube eppendorf; 3. Ajouter 2,5 µl de Forward primer BF1_FWD_Tag à une concentration de 10 µM dans le même tube eppendorf; 4. Ajouter 2,5 µl de Reverse primer BR2_RVS_Tag à une concentration de 10 µM dans le même tube eppendorf; 5. Ajouter 0,5 µl de polymérase ADN Phusion dans le même tube eppendorf; 6. Ajouter 1,5 µl de solution DMSO dans le même tube eppendorf; 7. Ajouter 28 µl d’eau sans nucléotides dans le même tube eppendorf; 8. Mélanger la solution créée, appelée MasterMix, par vortex; 9. Pipetter 50 µl du MasterMix dans un nouveau tube eppendorf; 10. Ajouter 4 µl du matériel génétique dans ce nouveau tube eppendorf; 11. Mélanger la solution par vortex; 12. Placer le tube dans un Thermocycleur pendant une nuit; 13. La solution restante contient le matériel génétique en très grande quantité, prête à être purifiée.

128

Annexe E Protocole de purification d’ADN pour l’analyse génétique de l’entomofaune (Zymo Research, 2001)

(À noter que les quantités utilisées dans les manipulations suivantes dépendent du volume final de la solution de PCR. Elles sont donc différentes d’un échantillon à l’autre.)

1. Ajouter 50 µl de solution DNA Binding Buffer à chaque échantillon; 2. Mélanger les échantillons par vortex; 3. Transférer les solutions dans des tubes de collection contenant une colonne de type Zymo-Spin; 4. Centrifuger les tubes pendant 30 secondes à 12000 rpm; 5. Ajouter 200 µl de solution DNA Wash Buffer à chaque tube; 6. Centrifuger les tubes pendant 30 secondes à 12000 rpm; 7. Répéter les deux étapes précédentes; 8. Ajouter 30 µl de solution DNA Elution Buffer à chaque tube; 9. Incuber les tubes à température de la pièce pendant 1 minute; 10. Transférer les colonnes Zymo-Spin dans des tubes eppendorf de 1,5 ml; 11. Centrifuger les tubes pendant 30 secondes à 12000 rpm; 12. Les solutions restantes dans les tubes eppendorf contiennent de l’ADN cible ultrapur pouvant être utilisé pour l’identification.

129

Annexe F Protocole de préparation des échantillons pour le séquençage SANGER pour l’analyse génétique de l’entomofaune

1. Préparer des plaques de 96 puits de la façon suivante : 2. Mettre 5 μL de chaque échantillon d’insecte dans un puit désigné de la plaque; 3. Utiliser 10 ou 20 μL au besoin pour les échantillons contenant une faible quantité de matériel génétique; 4. Ajouter 20 μL d’eau dans chaque puits; 5. Utiliser 0 ou 10 μL d’eau pour les puits contenant plus de 5 μL de volume de l’échantillon d’insecte; 6. Mélanger. 7. Préparer la séquence d’oligonucléotide de la façon suivante : 8. Mettre 27,2 μL de l’oligonucléotide BF1 dans un Eppendorf; 9. Ajouter 1672,8 μL d’eau; 10. Mélanger; 11. Envoyer les plaques d’échantillon et la séquence d’oligonucléotide à la plateforme de séquençage SANGER du CHUL.

130

Annexe G Descriptions des ordres d’insectes identifiés visuellement

Tableau 11. Description des caractéristiques et du cycle de vie des différents ordres d’insectes identifiés visuellement au pont Jacques-Cartier en août 2017.

Traits physiques Nombre Exemple de Ordre Cycle de vie Photo caractéristiques d’espèces familles

Diptera • Seulement une paire d’ailes Les œufs éclosent après 125 000 • Mouche • Balanciers/haltères au lieu quelques heures ou jours. • Moustique d’une 2ème paire d’ailes Ensuite, l’individu est une larve. • Taon • Mandibules adaptées pour la La larve forme ensuite un cocon, succion duquel l’individu adulte sort.

Coleoptera • 2ème paire d’ailes non nervurée Les œufs sont pondus et la larve 360 000 • Scarabée • Corps couvert de sclérites sort quatre (4) à six (6) jours • Coccinelle (plaques rigides) après. Elle forme un cocon • Hanneton • Mandibules adaptées à mordre pendant un minimum de quatre et mâcher (4) jours et devient un adulte. Le cycle complet dure entre 20 jours et quatre (4) ans dépendamment de la température.

131

Trichoptera • 2ème paire d’ailes plus grande Les œufs sont déposés sur l’eau 50 000 • Trichoptère que la première et une larve en sort après quelques jours. Les cocons sont • Ailes poilues • Longues antennes formés dans l’eau. Après deux (2) ou trois (3) semaines, l’adulte en sort.

Hymenoptera • Ailes postérieures beaucoup Les œufs sont pondus dans un 115 000 • Fourmi plus petites qu’antérieures (s’il nid et en une vingtaine de jours, • Abeille y a des ailes) l’individu passe de larve à cocon • Guêpe • Petite taille entre abdomen et à un adulte.

thorax • Mandibules adaptées pour mordre et/ou aspirer

132

Araneae • Huit (8) pattes Les œufs sont placés dans un sac 46 700 • Araignée • Séparation du corps en deux de soie. Les individus qui en (2) parties au lieu de trois (3) sortent ont déjà la physiologie adulte. La maturation peut durer quelques semaines.

Lepidoptera • Ailes colorées et grandes Les œufs sont pondus et une 180 000 • Papillon larve (la chenille) en sort. Ensuite, • Mandibules en forme de trompe elle forme une chrysalide qui peut durer entre dix (10) jours et trois (3) ans. L’adulte en sort après cette période de développement.

133

Hemiptera • Ailes nervurées, les ailes Lorsque les œufs sont pondus, 40 000 • Cigale postérieures sont plus petites les individus peuvent y rester une • Puceron • Mandibules adaptées pour la dizaine de mois. Lorsqu’ils • Punaise perforation et la succion éclosent, une nymphe en sort et forme un adulte.

Odonata • Apparence de libellule Les œufs sont placés dans l’eau 5 000 • Libellule • Long abdomen et les larves en sortent. Celles-ci prennent entre trois (3) semaines et dix (10) ans pour devenir des adultes.

134

Neuroptera • Beaucoup de nervures sur les Les œufs sont pondus dans le sol. 5 000 • Chrysope ailes Les larves éclosent entre cinq (5) • Mantispe • Longues antennes à 14 jours après cette période. • Nymphe Après plusieurs semaines ou mois, l’individu devient un adulte.

Thysanoptera • Pas d’ailes Lorsque les œufs éclosent, 5 000 • Thrip • Petites antennes l’individu passe par deux (2) stades de larve. Le premier dure quelques jours et le deuxième plusieurs mois. Ensuite, l’individu forme un cocon et demeure ainsi entre quelques heures et plusieurs jours. L’adulte est formé.

135

Acarina • Aucune segmentation du corps Les individus naissent d’œufs. Ils Million • Acarien • Très petit deviennent ensuite des larves et • Tique puis des nymphes. Après ces stades, ils sont adultes.

Mecoptera • Antennes longues et fines Lorsque les œufs éclosent, la 600 • Mouche • Bulbe au bout de l’abdomen larve en sort. Elle ressemble à scorpion • Long ‘’bec’’ une chenille. Elle forme un cocon dans le sol et l’adulte en sort après une certaine période.

136

Annexe H Résultats complets de l’identification génétique des insectes par séquençage SANGER

Tableau 12. Résultats complets des identifications par séquençage SANGER d’insectes récoltés aux sites témoin, intermédiaire et illuminé dans la zone du pont Jacques-Cartier en août 2017.

Proportion de Décompte Type Biomasse Proportion du Site la biomasse (nombre Organisme Genre Famille d’insecte (mg)4 décompte (%) (%) d’individus) Témoin Aquatique 32 7% 441 15% Cricotopus sp. Cricotopus Polycentropodidae Aérien 13 3% 162 6% Empoasca sp. Empoasca Cicadellidae Aquatique 21 4% 109 4% Dicrotendipes sp Dicrotendipes Chironomidae Aérien 20 4% 45 2% Ablabesmyia americana Ablabesmyia Chironomidae Aquatique < 0 < 0% 32 1% Ablabesmyia americana Ablabesmyia Chironomidae Aquatique < 0 < 0% 31 1% Paratanytarsus sp. Paratanytarsus Chironomidae Aquatique < 0 < 0% 24 1% Procladius sp. Procladius Chironomidae Aérien 2 < 0% 19 1% Procladius sp. Procladius Chironomidae Aquatique 2 < 0% 19 1% Scatella sp. Scatella Ephydridae Aérien 3 1% 18 1% Parachironomus sp. Parachironomus Chironomidae Aérien < 0 < 0% 15 1% Xenochironomus xenolabis Xenochironomus Chironomidae Aérien 30 6% 13 < 0% Ceratopsyche alternans Ceratopsyche Hydropsychidae Aérien < 0 < 0% 13 < 0% Scatella sp. Scatella Ephydridae Aérien < 0 < 0% 11 < 0% Phaenopsectra sp. Phaenopsectra Chironomidae Aquatique 5 1% 10 < 0% Bembidion impotens Bembidion Carabidae Aérien 15 3% 8 < 0% Paratanytarsus sp. Paratanytarsus Chironomidae

4 mg/m2 pour les insectes aquatiques, mg/m3 pour les insectes aériens

137

Aquatique < 0 < 0% 7 < 0% Polypedilum convictum Polypedilum Chironomidae Aérien 32 7% 6 < 0% Harmonia axyridis Harmonia Coccinellidae Aérien < 0 < 0% 6 < 0% Tachydromia annulimana Tachydromia Hybotidae Aérien < 0 < 0% 5 < 0% Trixagus sp. Trixagus Throscidae Aquatique < 0 < 0% 5 < 0% Hyalopterus pruni Hyalopterus Aphididae Aérien 15 3% 4 < 0% Polypedilum cf. halterale Polypedilum Chironomidae Aquatique 2 < 0% 4 < 0% Asecodes sp. Asecodes Eulophidae Aérien < 0 < 0% 4 < 0% Bradysia urticae Bradysia Sciaridae Aérien < 0 < 0% 4 < 0% Hydropsyche scalaris Hydropsyche Hydropsychidae Aquatique < 0 < 0% 4 < 0% Chironomidae sp. Chironomidae Aquatique < 0 < 0% 4 < 0% Diptera sp. / Paratendipes sp Chironomidae Aérien 6 1% 3 < 0% Microplitis sp. Microplitis Braconidae Aquatique 5 1% 3 < 0% Tetragnatha sp. Tetragnatha Tetragnathidae Aérien < 0 < 0% 3 < 0% Platypalpus stabilis Platypalpus Hybotidae Aquatique 16 3% 2 < 0% Harmonia axyridis Harmonia Coccinellidae Aérien 14 3% 2 < 0% Spelobia ochripes Spelobia Sphaeroceridae Aérien < 0 < 0% 2 < 0% Adeliinae sp. Adeliinae Braconidae Aérien < 0 < 0% 2 < 0% Chaitophorus populicola Chaitophorus Aphididae Aérien < 0 < 0% 2 < 0% Leucotrichia sp. Leucotrichia Hydroptilidae Aquatique < 0 < 0% 2 < 0% Aphidiinae sp. Braconidae Aquatique < 0 < 0% 2 < 0% Tychius picirostris Tychius Curculionidae Aérien 10 2% 1 < 0% Erigone atra Erigone Linyphiidae Aquatique 4 1% 1 < 0% Ichneumonidae sp. Ichneumonidae Aérien < 0 < 0% 1 < 0% Anthocoris antevolens Anthocoris Anthocoridae Aérien < 0 < 0% 1 < 0% Crepidodera sp. Crepidodera Chrysomelidae Aérien < 0 < 0% 1 < 0% Dicranomyia longipennis Dicranomyia Limoniidae Aérien < 0 < 0% 1 < 0% Lasius neoniger Lasius Formicidae Aérien < 0 < 0% 1 < 0% Syrphoctonus sp. Syrphoctonus Ichneumonidae

138

Aquatique < 0 < 0% 1 < 0% Carpelimus sp. Carpelimus Staphylinidae Aquatique < 0 < 0% 1 < 0% Erigone atra Erigone Linyphiidae Aquatique < 0 < 0% 1 < 0% Gnypeta brincki Gnypeta Staphylinidae Aquatique < 0 < 0% 1 < 0% Hydrellia nobilis Hydrellia Ephydridae Aquatique < 0 < 0% 1 < 0% Isotomurus stuxbergi Isotomurus Isotomida Aquatique < 0 < 0% 1 < 0% Phaenocarpa sp. Phaenocarpa Braconidae Aquatique < 0 < 0% 1 < 0% Tetragnatha vermiformis Tetragnatha Tetragnathidae Intermédiaire Aérien 50 3% 725 32% Paratanytarsus sp. Paratanytarsus Chironomidae Aérien 67 3% 291 13% Psychomyia flavida Psychomyia Psychomyiidae Aérien 14 1% 67 3% Cricotopus trifascia Cricotopus Polycentropodidae Aérien 16 1% 21 1% Ceratopsyche alternans Ceratopsyche Hydropsychidae Aérien 1 < 0% 20 1% Chaetocnema confinis Chaetocnema Chrysomelidae Aérien 9 < 0% 13 1% Orthocladiinae sp. Chironomidae Aérien 17 1% 8 < 0% Chimarra sp. Chimarra Philopotamidae Aérien 3 < 0% 7 < 0% Lasius neoniger Lasius Formicidae Aérien 10 1% 5 < 0% Cheumatopsyche sp. Cheumatopsyche Hydropsychidae Aérien 4 < 0% 5 < 0% Pullimosina sp. Pullimosina Sphaeroceridae Aérien < 0 < 0% 5 < 0% Dicrotendipes sp. Dicrotendipes Chironomidae Aérien < 0 < 0% 5 < 0% Flavina sp. Flavina Issidae Aérien 1 < 0% 4 < 0% Leucotrichia sp. Leucotrichia Hydroptilidae Aérien < 0 < 0% 4 < 0% Xenochironomus xenolabis Xenochironomus Chironomidae Aérien 5 < 0% 3 < 0% Procladius sp. Procladius Chironomidae Aérien 3 < 0% 3 < 0% Microtendipes sp. Microtendipes Chironomidae Aérien 32 2% 2 < 0% Hydropsyche hageni Hydropsyche Hydropsychidae Aérien 11 1% 2 < 0% Climacia areolaris Climacia Sisyridae Aérien 4 < 0% 2 < 0% Cyrnellus fraternus Cyrnellus Polycentropodidae Aérien 4 < 0% 2 < 0% Lissonota coracina Lissonota Ichneumonidae Aérien 2 < 0% 2 < 0% Pseudolycoriella sp. Pseudolycoriella Sciaridae

139

Aérien 1 < 0% 2 < 0% Sciara humeralis Sciara Sciaridae Aérien < 0 < 0% 2 < 0% Adelphocoris lineolatus Adelphocoris Miridae Aérien < 0 < 0% 2 < 0% Gnypeta brincki Gnypeta Staphylinidae Aérien 28 1% 1 < 0% Bracon sp. Bracon Braconidae Aérien 15 1% 1 < 0% Myrmica americana Myrmica Formicidae Aérien 9 < 0% 1 < 0% Harmonia axyridis Harmonia Coccinellidae Aérien 9 < 0% 1 < 0% Micromus posticus Micromus Hemerobiidae Aérien < 0 < 0% 1 < 0% Ablabesmyia americana Ablabesmyia Chironomidae Aérien < 0 < 0% 1 < 0% Chironomus cf. decorus Chironomus Chironomidae Aérien < 0 < 0% 1 < 0% Chironomus sp. Chironomus Chironomidae Aérien < 0 < 0% 1 < 0% Drosophila affinis Drosophila Drosophilidae Aérien < 0 < 0% 1 < 0% Stigmatomma pallipes Stigmatomma Formicidae Illuminé Aérien 16 1% 671 17% Paratanytarsus sp. Paratanytarsus Chironomidae Aquatique 263 24% 364 9% Leucotrichia sp. Leucotrichia Hydroptilidae Aquatique 158 14% 255 6% Psychomyia flavida Psychomyia Psychomyiidae Aquatique 14 1% 231 6% Hydroptila waubesiana Hydroptila Hydroptilidae Aérien 12 1% 177 4% Orthocladiinae sp. Chironomidae Aquatique 3 < 0% 155 4% Tribelos sp. Tribelos Chironomidae Aquatique < 0 < 0% 140 4% Paratanytarsus sp. Paratanytarsus Chironomidae Aquatique 39 4% 115 3% Chironomidae sp. Chironomidae Aquatique 32 3% 111 3% Chironomus sp. Chironomus Chironomidae Aérien 24 2% 73 2% Psychomyia flavida Psychomyia Psychomyiidae Aérien 45 4% 39 1% Cheumatopsyche sp. Cheumatopsyche Hydropsychidae Aérien 2 < 0% 29 1% Cricotopus trifascia Cricotopus Polycentropodidae Aquatique 6 1% 25 1% Cricotopus trifascia Cricotopus Polycentropodidae Aquatique 7 1% 24 1% Baetis flavistriga Baetis Baetidae Aérien 44 4% 22 1% Ceratopsyche alternans Ceratopsyche Hydropsychidae Aquatique 10 1% 18 < 0% Dicrotendipes sp. Dicrotendipes Chironomidae

140

Aquatique < 0 < 0% 15 < 0% Simuliidae sp. Simuliidae Aquatique < 0 < 0% 14 < 0% Smittia cf. stercoraria Smittia Chironomidae Aquatique < 0 < 0% 12 < 0% Isotomurus stuxbergi Isotomurus Isotomidae Aquatique 1 < 0% 11 < 0% Hemerodromia sp. Hemerodromia Empididae Aérien 6 1% 9 < 0% Chironomus sp. Chironomus Chironomidae Aérien 12 1% 6 < 0% Harmonia axyridis Harmonia Coccinellidae Aquatique 1 < 0% 5 < 0% Chimarra sp. Chimarra Philopotamidae Aérien < 0 < 0% 5 < 0% Tachydromia annulimana Tachydromia Hybotidae Aquatique < 0 < 0% 5 < 0% Conchapelopia telema Conchapelopia Chironomidae Aquatique < 0 < 0% 5 < 0% Lispe albitarsis Lispe Muscidae Aquatique 24 2% 4 < 0% Hydropsyche scalaris Hydropsyche Hydropsychidae Aérien 4 < 0% 4 < 0% Hemerodromia sp. Hemerodromia Empididae Aérien < 0 < 0% 4 < 0% Balaustium sp. Balaustium Erythraeidae Aérien < 0 < 0% 4 < 0% Crepidodera sp. Crepidodera Chrysomelidae Aérien < 0 < 0% 4 < 0% Polypedilum sp. Polypedilum Chironomidae Aérien 4 < 0% 3 < 0% Xenochironomus xenolabis Xenochironomus Chironomidae Aérien 3 < 0% 3 < 0% Medetera jacula Dolichopodidae Aérien < 0 < 0% 3 < 0% Tanypodinae sp. Chironomidae Aérien < 0 < 0% 3 < 0% Trixagus carinicollis Trixagus Throscidae Aquatique < 0 < 0% 3 < 0% Limoniidae sp. Limoniidae Aérien 16 1% 2 < 0% Hydropsyche scalaris Hydropsyche Hydropsychidae Aquatique 2 < 0% 2 < 0% Coleomegilla maculata Coleomegilla Coccinellidae Aérien < 0 < 0% 2 < 0% Empoasca sp. Empoasca Cicadellidae Aérien < 0 < 0% 2 < 0% Hyalopterus pruni Hyalopterus Aphididae Aérien < 0 < 0% 2 < 0% Phanerotoma sp. Phaenopsectra Chironomidae Aquatique < 0 < 0% 2 < 0% Atractodes fumatus Atractodes Ichneumonidae

Aquatique < 0 < 0% 2 < 0% Coleoptera sp. Aquatique < 0 < 0% 2 < 0% Tanypodinae sp. Chironomidae

141

Aquatique 14 1% 1 < 0% Harmonia axyridis Harmonia Coccinellidae Aérien 12 1% 1 < 0% Agapostemon virescens Agapostemon Halictidae Aquatique 9 1% 1 < 0% Ceratopsyche alternans Ceratopsyche Hydropsychidae Aérien 7 1% 1 < 0% Sarcophaga subvicina Sarcophaga Sarcophagidae Aquatique 6 1% 1 < 0% Chimarra socia Chimarra Philopotamidae Aérien 4 < 0% 1 < 0% Ceratagallia uhleri Ceratagallia Cicadellidae Aquatique 2 < 0% 1 < 0% Ceratopsyche morosa Ceratopsyche Hydropsychidae Aérien 1 < 0% 1 < 0% Phaonia fuscana Phaonia Muscidae Aérien < 0 < 0% 1 < 0% Camponotus nearcticus Camponotus Formicidae Aérien < 0 < 0% 1 < 0% Cymodusa distincta Cymodusa Ichneumonidae Aérien < 0 < 0% 1 < 0% Dicrotendipes sp Dicrotendipes Chironomidae Aérien < 0 < 0% 1 < 0% Diplazon tetragonus Diplazon Ichneumonidae Aérien < 0 < 0% 1 < 0% Dolichopus plumipes Dolichopus Dolichopodidae Aérien < 0 < 0% 1 < 0% Lasius neoniger Lasius Formicidae Aérien < 0 < 0% 1 < 0% Leucotrichia sp. Leucotrichia Hydroptilidae Aérien < 0 < 0% 1 < 0% Limoniidae sp. Limoniidae Aérien < 0 < 0% 1 < 0% Phoridae sp. Phoridae Aérien < 0 < 0% 1 < 0% Psyllobora vigintimaculata Psyllobora Coccinellidae Aérien < 0 < 0% 1 < 0% Sciara humeralis Sciara Sciaridae Aérien < 0 < 0% 1 < 0% Sepsis punctum Sepsis Sepsidae Aérien < 0 < 0% 1 < 0% Tetragnatha guatemalensis Tetragnatha Tetragnathidae Aérien < 0 < 0% 1 < 0% Tipula sp. Tipula Tipulidae Aquatique < 0 < 0% 1 < 0% Empoasca sp. Empoasca Cicadellidae Aquatique < 0 < 0% 1 < 0% Hydrellia nobilis Hydrellia Ephydridae

Aquatique < 0 < 0% 1 < 0% Hymenoptera sp. Aquatique < 0 < 0% 1 < 0% Liodessus affinis Liodessus Dytiscidae Aquatique < 0 < 0% 1 < 0% Melanophthalma inermis Melanophthalma Latridiidae Aquatique < 0 < 0% 1 < 0% Nectopsyche diarina Nectopsyche Leptoceridae

142

Aquatique < 0 < 0% 1 < 0% Pullimosina sp. Pullimosina Sphaeroceridae Aquatique < 0 < 0% 1 < 0% Saldula laticollis Saldula Saldidae Aquatique < 0 < 0% 1 < 0% Stethorus punctillum Stethorus Coccinellidae Aquatique < 0 < 0% 1 < 0% Themira minor Themira Sepsidae

143