THE EIGHTH MOSCOW SOLAR SYSTEM SYMPOSIUM 2017 8MS3-PA-01 HETEROGENEOUS ACCRETION: SOME RESULTS OF THE COMPUTER MODELING (Dedicated to the memory of Tobias Owen) M.Ya. Marov, S.I. Ipatov Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin st., 19, Moscow 119991, Russia,
[email protected] KEYWORDS: heterogeneous accretion, migration, planetesimals, matter delivery, water, vol- atiles, terrestrial planets INTRODUCTION: Toby Owen contributed in many important fields of planetary sciences involv- ing both theoretical research and experimental results returned by space mis- sions. It was a great privilege to discuss with him the most challenging ideas concerning the structure and composition of atmospheres of inner and outer planets, specifically isotopic ratios of noble gases on Mars and Venus aiming to reveal origin and evolution of these planets. Here we address one of these pioneering ideas discussed by Toby Owen in the paper co-authored by F. Anders and published in Science magazine as early as in 1977 [1]. Authors attempted to explain lacking of water and other vola- tiles on Earth after its accum ulation invoking a postulated migration process of volatile-rich bodies from periphery of the solar system at the later phase of its evolution, mainly in the course of Late Heavy Bombardment (LHB) dated around 4 billion years ago. Delivery such a matter and its layered sedimentation (late veneer) on the inner planets’ surface the authors called the mechanism of heterogeneous accretion. The idea drew attention and took further development including computer modeling to ensure its more rigorous support. Results of the study can be found in the numerous publications showing the great advancement in the field (see, e.g., [2, 3] and references therein).