Tideline Spring05c

Total Page:16

File Type:pdf, Size:1020Kb

Tideline Spring05c Spring 2005 Scooping for Scoters in Volume 25, Number 1 San Francisco Bay By Susan Wainwright-De La Cruz and boreal forests of Alaska and Canada, and winters John Takekawa along both the Pacific and Atlantic coasts. Surf On a clear, crisp, winter day, a spectacular scoters are long-lived and their lifetime reproduc- array of shorebirds and waterfowl can be easily tion rate is quite low. Juveniles can take two to seen feasting on the mudflats and salt ponds at three years to mature. the Don Edwards San Francisco Bay National Surf scoters have the dubious distinction of Wildlife Refuge, creating a birdwatcherʼs being one of the least studied waterfowl species paradise. When you aim your binoculars beyond in North America. Waterfowl breeding surveys the salt ponds and the mudflats toward the open have been traditionally geared toward dabbling Bay waters, youʼll notice huge rafts of ducks ducks that nest earlier, resulting in a lack of dominating the landscape. Unlike dabbling information for ducks that ducks that feed partially submerged in shallow nest later. Due to this lapse, waters, these bay ducks dive deep to the depths obtaining good estimates of the Bay floor in search of clams and other of surf scoter population invertebrate prey. Peer closely into one of size has proven difficult. In these mixed species groups, and your eyes are addition, the extent of the immediately drawn to white triangular markings surf scoter breeding range on the forehead and neck of a black bird. Its is not well known. Rough bill, bulbous and multi-colored with hues of red, estimates of the North yellow, white, orange, and black, grabs your at- American population size tention next. This male duck standing out from range between 600,000 and the others is just one of 60,000 surf scoters that one million individuals. make the San Francisco Bay estuary their winter However, surveys con- home. ducted since the 1950s show a disturbing trend: Male surf scoter close-up, Surf scoters (Melanitta perspicillata) are scoter populations seem to have decreased by clearly showing distin- sea ducks, waterfowl that molt and winter in about 50%. It is quite difficult to reverse the guishing markings coastal waters.They are one of just three species decline of a species when we know so little about Photo by Dan Gaube, USGS of scoters.White-winged scoters and black its life history. scoters are the other species and are uncommon Biologists across the continent are working in the San Francisco Bay Area. The male surf to improve our knowledge of surf scoters and scoter is quite distinct while females are less to determine the causes of their decline. Current showy with brown bodies, diffuse white patches theories on decline focus on changes that are below their eyes, and bluish-black bills. This occurring throughout the breeding and wintering species breeds in very low densities across the ranges of surf scoters. For instance, global warm- Continued page 2 1 Scooping for Scoters in ing may be reducing the quality of the freshwater ters, and follow them back to their breeding areas boreal lakes scoters use in breeding areas. Also, to examine their reproduction. the majority of wintering surf scoters are found During this study, we discovered that in large, urbanized estuaries where increased capturing surf scoters to attach the radio trans- development, contamination, and invasive spe- mitters was no easy task. They are incredibly cies could be negatively influencing them or their difficult to catch. We first tried to catch scoters primary prey. using mist nets, a net made of fine mesh, early in The San Francisco Bay estuary is one of the morning before the birds could see the nets. the most important wintering areas for surf sco- This method works well in most areas, but not ters along the here - probably because of the ambient lights that Pacific coast. surround the Bay, allowing scoters to see and This estuary, the avoid the nets. We now catch scoters from a boat largest on the with a net launcher that “scoops” them into a net west coast of just off the water. Once caught, we radio-mark North America, birds and track their movements in the Bay seven contains abun- days a week throughout the winter. dant food for We have found that scoters use all bays wintering and in the estuary during early winter, and a large migrating birds. proportion of them are found within the bound- During some aries of the San Pablo Bay National Wildlife years, as much Refuge. By mid-February they begin to congre- as 75% of surf gate in the middle of the San Francisco Bay near scoters counted the San Mateo Bridge, and nearly all scoters are in U.S. Fish found here by the early spring. We were able to Surf scoters in the central and Wildlife Service mid-winter surveys of the determine that most scoters feed in shallow water bay during late winter. lower Pacific Flyway are found right here in our of about six feet, or in the subtidal shoals sur- Photo by Dan Gaube, USGS backyard. Because the Bay is winter home to rounding the edge of the Bay. We also know that such a large fraction of surf scoters, it is crucial they do feed on the Asian clam, as well as a great for us to understand factors here that influence variety of invertebrates, and even fish eggs! this declining species. Scoters on the Pacific coast are associ- Studies conducted in San Francisco Bay ated with spawning of Pacific herring (Clupea in the 1980s have already shown us that pol- pallasi). Herring roe is found in the Bay, often lutants such as mercury, selenium, and cad- in eelgrass beds in the shoals, from November mium accumulate in scoters during the winter. through March, with a peak in January. Concentrations of these contaminants were Unfortunately, herring are at their lowest since higher in scoters than in any other Bay waterfowl the 1970s, and their decline may represent the and were high enough to potentially cause them loss of an important food source for scoters. reproductive problems. Today this threat may be greater because of the invasion of the non-native Very few scoter nests have ever been found Asian clam (Potamocorbula amurensis) in the and their breeding grounds are not well-known. late 1980s. This clam has become widespread in In 2003, we marked females with satellite the northern estuary and has been shown to ac- transmitters and waited for the spring migration cumulate three-times the selenium and 22-times Female surf scoter the cadmium as other clam species. Scoters may foraging on clams in be eating the Asian clam, which could increase San Francisco Bay. their exposure to these pollutants. Photo by Dan Gaube, USGS In 2003, we began a study of San Francisco Bay surf scoters to determine what they are eating and how much they are being affected by pollution. We are also attempting to track their migration routes with radio transmit- 2 3 San Francisco Bay to begin. Using satellite receivers, we followed these birds northward along the west coast and to their breeding area in the Northwest Territories of Canada between the Great Slave and Great Bear Lakes, a distance ranging between 2000 and 2500 miles. For a detailed map, log on to http://www.werc.usgs.gov/scoter. Once we discovered how and where these birds go, we went to the breeding area to find the nests and to determine the types of nesting habitat that scoters favor. Flying in floatplanes, our crew was able to observe three different radio-marked scoters on small lakes scattered across this very large region. Our future work on the breeding ground will include determining whether pollutants affect scoter reproduction. Over the next three years, weʼll continue scooping for scoters to learn more about their wintering activities in the San Francisco Bay, ogy and cross-seasonal contaminant effects in Migration routes of surf Pacific Flyway, and in the breeding grounds. surf scoters. scoters. This information will help in their recovery, and, John Takekawa is a research wildlife Courtesy of USGS with any luck, you will see more of their colorful biologist with the U.S. Geological Survey, San bills in our Bay Area waters. Francisco Bay Estuary Field Station which is co- Susan Wainwright-De La Cruz is a wildlife located with the San Pablo Bay National Wildlife biologist with the U.S. Geological Survey, San Refuge on Mare Island in Vallejo. His research Francisco Bay Estuary Field Station and a specialities include migration and wintering graduate student at the University of California, ecology of waterbirds, radio telemetry, salt pond Davis. Her research focuses on foraging ecol- ecology, and wetland restoration. TIDELINE Don Edwards Warm Springs San Francisco Bay Wildlife Society Published quarterly by Don Edwards San Francisco Unit Manager: .................................... Sally Reynolds A nonprofit 501(c)(3) cooperating association es- Bay National Wildlife Refuge, with funding from San Don Edwards Refuge Operations Specialist:.............. tablished in 1987 to promote public awareness and Francisco Bay Wildlife Society. Eric Mruz appreciation of San Francisco Bay and fund educa- Volume 25, Number 1 Farallon Refuge Manager:....................... Joelle Buffa tion and outreach programs at San Francisco Bay Editor: ................................................ Carmen Minch Farallon Refuge Operations Specialist: ....Jesse Irwin National Wildlife Refuge Complex. San Pablo Bay Manager:......................Christy Smith To receive Tideline, email carmen_leong-minch@ Board of Directors fws.gov, or write to: Tideline, Don Edwards San South Bay Refuges Manager: ...............Ivette Loredo Antioch Dunes Refuge Manager: ............Chris Bandy President: ....................................Christopher Kitting Francisco Bay National Wildlife Refuge, P.O.
Recommended publications
  • Diet and Habitat Use of Scoters Melanitta in the Western Palearctic - a Brief Overview
    163 Diet and habitat use of scoters Melanitta in the Western Palearctic - a brief overview A. D. Fox Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, Kalø, Grenåvej 12, DK-8410 Rønde, Denmark. E-mail: tfo@dmu. dk If patterns of scoter distribution and abundance are to be understood, there is a need to know upon which prey items these birds feed, how they obtain these prey items and the habitats from which these food items are most easily harvested. Dietary studies and descriptions of habitats exploited by Common and Velvet Scoter in the non-breeding season are reviewed. The existing literature strongly suggests that, outside of the breeding season, these species forage mainly upon marine bivalve mol­ luscs (especially those less than 4cm long) that live on the surface or within the upper 3cm of clean, coarse, sandy substrates in waters less than 20m deep. Although there is a large energetic cost to diving, han­ dling and crushing such prey prior to digestion, such sedentary prey items often occur in very high densities, offering a locally abundant and predictable feeding resource. Since single species often dominate the diet, but dominant food items differ between feeding areas, it seem s likely that scoters simply take whatever prey is locally available in suffi­ cient abundance to fulfil nutritional needs. Large differences in docu­ mented prey size frequency distributions suggest that scoters may not select for specific prey size classes below an upper digestive limit. However, in the absence of any precise understanding of how scoters obtain their prey, nor any simultaneous studies of available benthic food abundance and size class distributions in scoter diets, it is not possible to confirm if differences simply reflect differences in profitability between different prey at different sites at different times of the year.
    [Show full text]
  • International Single Species Action Plan for the Conservation of the Velvet Scoter Melanitta Fusca
    TECHNICAL SERIES No. 67 International Single Species Action Plan for the Conservation of the Velvet Scoter (W Siberia & N Europe/NW Europe Population) Melanitta fusca Supported by: based on a decision of the German Bundestag Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) European Union (EU) International Single Species Action Plan for the Conservation of the Velvet Scoter (W Siberia & N Europe/NW Europe Population) Melanitta fusca AEWA Technical Series No. 67 December 2018 Produced by Lithuanian Ornithological Society (LOD) Wildfowl & Wetlands Trust (WWT) Prepared in the framework of the EuroSAP (LIFE14 PRE/UK/000002) LIFE preparatory project, coordinated by BirdLife International and co-financed by the European Commission Directorate General for the Environment, and the UNEP/AEWA Secretariat, through a grant by the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety of Germany (BMU) AEWA Technical Series No. 67 Adopting Frameworks: Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) European Union (EU) The International Single Species Action Plan for the Conservation of the Velvet Scoter Melanitta fusca (Western Siberia & Northern Europe/North-western Europe population) was prepared in the framework of LIFE EuroSAP (LIFE14 PRE/UK/000002), a LIFE Preparatory project, co-financed by the European Commission Directorate General for the Environment, the Secretariat of the African-Eurasian Migratory Waterbird Agreement (UNEP/AEWA) through a grant provided by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), and by each of the project partners, and coordinated by BirdLife International. Preparation of this Single Species Action Plan was coordinated by the Lithuanian Ornithological Society (LOD) and supported by the Wildfowl & Wetlands Trust (WWT).
    [Show full text]
  • Surf Scoter (Melanitta Perspicillata) Survey Stanley Park 1999-2000
    Surf Scoter (Melanitta perspicillata) Survey Stanley Park 1999-2000 Prepared for: Daniel J. Catt, Wildlife Management Instructor British Columbia Institute of Technology Burnaby, BC & Dr. Sean Boyd, Research Biologist Canadian Wildlife Service Delta, BC Prepared by: Christine Williams, student Fish, Wildlife, Management Technology i Surf Scoter Survey, 1999-2000 Stanley Park _______________________________________________________________________________ British Columbia Institute of Technology Summary The Stanley Park Surf Scoter Survey was made possible through a co-operative arrangement between the Canadian Wildlife Service (CWS) and the British Columbia Institute of Technology (BCIT). The purpose of the study was to document the distribution and abundance of Surf Scoters (Melanitta perspicillata) observed along the Stanley Park foreshore in Vancouver, British Columbia from October 1999 to April 2000. An oil spill occurring on November 24, 1999 gave the survey another objective in the form of monitoring the effects of the spill on the distribution and abundance of Surf Scoter that utilise the foreshore of Stanley Park as wintering habitat. The Stanley Park foreshore sees large concentrations of wintering Surf Scoters from late October to April/May. The rocky shoreline, extensive mussels beds and combination of winds and tide make the foreshore an important habitat for Surf Scoters. Data were gathered and analysed from November 3, 1999 to April 15, 2000 to document the following: • Trends in the abundance and distribution of Surf Scoter throughout the wintering season • Observer variability in data collection • Tidal influence on Surf Scoter abundance and distribution • Sex ratios of Surf Scoter observed along the Stanley Park foreshore The results of the data analysis show the following: • Distribution: The Stanley Park foreshore was not utilised uniformly by Surf Scoters throughout the survey period.
    [Show full text]
  • Movements of Pre-Migratory Surf and White-Winged Scoters in Response to Pacific Herring Spawn Author(S): Erika K
    Movements of Pre-migratory Surf and White-winged Scoters in Response to Pacific Herring Spawn Author(s): Erika K. Lok, Molly Kirk, Daniel Esler, and W. Sean Boyd Source: Waterbirds, 31(3):385-393. 2008. Published By: The Waterbird Society DOI: http://dx.doi.org/10.1675/1524-4695-31.3.385 URL: http://www.bioone.org/doi/full/10.1675/1524-4695-31.3.385 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Movements of Pre-migratory Surf and White-winged Scoters in Response to Pacific Herring Spawn ERIKA K. LOK1, MOLLY KIRK2, DANIEL ESLER3 AND W. SEAN BOYD4 1Centre for Wildlife Ecology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia,
    [Show full text]
  • Visualizing Populations of North American Sea Ducks: Maps to Guide Research and Management Planning
    Prepared in Cooperation with the Sea Duck Joint Venture Continental Technical Team Visualizing Populations of North American Sea Ducks: Maps to Guide Research and Management Planning Open-File Report 2019–1142 U.S. Department of the Interior U.S. Geological Survey Cover: Male long-tailed duck. (Photograph by Ryan Askren, U.S. Geological Survey, public domain.) Prepared in Cooperation with the Sea Duck Joint Venture Continental Technical Team Visualizing Populations of North American Sea Ducks: Maps to Guide Research and Management Planning By John M. Pearce, Paul L. Flint, Mary E. Whalen, Sarah A. Sonsthagen, Josh Stiller, Vijay P. Patil, Timothy Bowman, Sean Boyd, Shannon S. Badzinski, H. Grant Gilchrist, Scott G. Gilliland, Christine Lepage, Pam Loring, Dan McAuley, Nic R. McLellan, Jason Osenkowski, Eric T. Reed, Anthony J. Roberts, Myra O. Robertson, Tom Rothe, David E. Safine, Emily D. Silverman, and Kyle Spragens Open-File Report 2019–1142 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior David Bernhardt, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https:/store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Scoter, White-Winged
    Waterfowl — Family Anatidae 77 White-winged Scoter Melanitta fusca Winter: From 1997 to 2002 we noted the White-winged Scoter only 13 times in San Diego County. Only three The White-winged Scoter was once a common win- sightings were of more than a single individual: eight at ter visitor to San Diego County, especially to San La Jolla (P7) 21 January 1999 (L. and M. Polinsky), three Diego Bay. Its almost complete disappearance since in the west basin of Batiquitos Lagoon (J6) 6 February the 1970s, in lack of reports of a catastrophic decline 1998 (C. C. Gorman), and 20 at San Onofre (C1) 27 in the species as a whole, suggests that the winter February 1999 (L. Ellis). At least the last, and possibly all range has shifted north, few individuals bothering three records, were of spring migrants rather than winter- to migrate this far south. ing birds. Surprisingly, only four of the birds were within 78 Waterfowl — Family Anatidae San Diego Bay, the traditional site for the species. More intensive surveys of the bay in the 1990s also yielded few White-winged Scoters. In spite of weekly or monthly surveys of north and central San Diego Bay 1993–95, Mock et al. (1994) and Preston and Mock (1995) found only a single individual in the north bay 4 April 1995. On the basis of weekly surveys of the central and south bay 1993–94, Manning (1995) recorded a cumulative total of 13 in the south bay, which could have included repeated sightings of the same individual(s).
    [Show full text]
  • Sea Duck Curriculum Revised
    Sea Ducks of Alaska Activity Guide Acknowledgments Contact Information: Project Coordinator: Marilyn Sigman, Center for Alaskan Coastal Studies Education: Written By: Sea Duck Activity Guide, Teaching Kit and Display: Elizabeth Trowbridge, Center for Alaskan Coastal Marilyn Sigman Center for Alaskan Coastal Studies Studies P.O. Box 2225 Homer, AK 99603 Illustrations by: (907) 235-6667 Bill Kitzmiller, Conrad Field and Fineline Graphics [email protected] (Alaska Wildlife Curriculum Illustrations), Elizabeth Alaska Wildlife Curricula Trowbridge Robin Dublin Wildlife Education Coordinator Reviewers: Alaska Dept. of Fish & Game Marilyn Sigman, Bree Murphy, Lisa Ellington, Tim Division of Wildlife Conservation Bowman, Tom Rothe 333 Raspberry Rd. Anchorage, AK 99518-1599 (907)267-2168 Funded By: [email protected] U.S. Fish and Wildlife Service, Alaska Coastal Program and Scientific/technical Information: The Alaska Department of Fish and Game, State Duck Tim Bowman Stamp Program Sea Duck Joint Venture Coordinator (Pacific) The Center for Alaskan Coastal Studies would like to thank U.S. Fish & Wildlife Service the following people for their time and commitment to sea 1011 E. Tudor Rd. duck education: Tim Bowman, U.S. Fish and Wildlife Anchorage, AK 99503 Service, Sea Duck Joint Venture Project, for providing (907) 786-3569 background technical information, photographs and [email protected] support for this activity guide and the sea duck traveling SEADUCKJV.ORG display; Tom Rothe and Dan Rosenberg of the Alaska Department of Fish and Game for technical information, Tom Rothe presentations and photographs for both the sea duck Waterfowl Coordinator traveling display and the activity guide species identifica- Alaska Dept. of Fish & Game tion cards; John DeLapp, U.S.
    [Show full text]
  • Ducks, Geese, and Swans of the World by Paul A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 Ducks, Geese, and Swans of the World: Index Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "Ducks, Geese, and Swans of the World: Index" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 19. https://digitalcommons.unl.edu/biosciducksgeeseswans/19 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Index The following index is limited to the species of Anatidae; species of other bird families are not indexed, nor are subspecies included. However, vernacular names applied to certain subspecies that sometimes are considered full species are included, as are some generic names that are not utilized in this book but which are still sometimes applied to par­ ticular species or species groups. Complete indexing is limited to the entries that correspond to the vernacular names utilized in this book; in these cases the primary species account is indicated in italics. Other vernacular or scientific names are indexed to the section of the principal account only. Abyssinian blue-winged goose. See atratus, Cygnus, 31 Bernier teal. See Madagascan teal blue-winged goose atricapilla, Heteronetta, 365 bewickii, Cygnus, 44 acuta, Anas, 233 aucklandica, Anas, 214 Bewick swan, 38, 43, 44-47; PI.
    [Show full text]
  • Species Limits Within the Genus Melanitta, the Scoters Martin Collinson, David T
    A paper from the BOURC Taxonomic Sub-committee Species limits within the genus Melanitta, the scoters Martin Collinson, David T. Parkin,Alan G. Knox, George Sangster and Andreas J. Helbig Dan Powell ABSTRACT As part of its reassessment of the taxonomy of birds on the British List, the BOURC Taxonomic Sub-committee has assessed all six recognised taxa of scoters Melanitta against its previously published Species Guidelines (Helbig et al. 2002).We consider that, on the basis of evidence currently available, at least five species should be recognised: Common Scoter M. nigra, Black Scoter M. americana,Velvet Scoter M. fusca,White-winged Scoter M. deglandi and Surf Scoter M. perspicillata.The taxonomic status of the Asian subspecies of White-winged Scoter (stejnegeri) is uncertain, owing to insufficient information on several aspects of its morphology and behaviour. Provisionally, we suggest that it is best treated as conspecific with M. deglandi. © British Birds 99 • April 2006 • 183–201 183 Species limits within the genus Melanitta Introduction regarded as separate species (BOU 1883, 1915; Six taxa of scoters Melanitta are generally recog- Dwight 1914). nised within the seaduck tribe Mergini (Miller For brevity, these taxa will henceforth be 1916; Vaurie 1965; Cramp & Simmons 1977; referred to by their subspecific names, i.e. nigra table 1). The Surf Scoter M. perspicillata is (Common or Eurasian Black Scoter), americana monotypic. The other taxa have traditionally (American and East Asian Black Scoter), fusca been treated as two polytypic species by both (Velvet Scoter), deglandi (American White- the American and the British Ornithologists’ winged Scoter), stejnegeri (Asian White-winged Unions: Velvet (or White-winged) Scoter M.
    [Show full text]
  • Yukon Flats Scoter Timing Survey
    REPLICATE AERIAL SCOTER SURVEYS OF THE YUKON FLATS, ALASKA - 2002 FINAL REPORT U.S. Fish and Wildlife Service Waterfowl Management 1412 Airport Way Fairbanks, Alaska 99701 REPLICATE AERIAL SCOTER SURVEYS OF THE YUKON FLATS, ALASKA - 2002 Edward J. Mallek, U.S. Fish and Wildlife Service, Waterfowl Management, 1412 Airport Way, Fairbanks, AK, 99701 Abstract: Replicate aerial scoter surveys of the Yukon Flats of Alaska were completed for the third consecutive year in 2002. Four surveys were conducted from 26 May to 18 June, 2002. These surveys were conducted to investigate temporal fluctuations of scoter densities within the Yukon Flats during the breeding season. White-winged scoters and surf scoters accounted for 98.7 and 1.3% of the indicated-total scoters observed during the four surveys, respectively. Observations of indicated-total and indicated-breeding white-winged scoters followed similar trends with high numbers occurring during the second and third surveys (2 and 8 June), respectively. Key Words: aerial survey, white-winged scoters, scoters, Alaska, Yukon Flats, replicate March 2003 INTRODUCTION Standard waterfowl breeding population surveys have been flown in Alaska for over 46 years (Conant and Groves 2002). Generally, waterfowl breeding population surveys are conducted when a representative sample of the local breeding population can be obtained for the greatest number of duck species. These surveys do not begin until the majority of transient species migrate through the survey area and most late-arriving species are occupying breeding territories in the survey area (U.S. Fish and Wildlife Service and Canadian Wildlife Service 1987). The timing of waterfowl breeding pair surveys is critical to estimating local breeding populations and is dictated by the phenology of the majority of local breeding birds.
    [Show full text]
  • A Molecular Phylogeny of Anseriformes Based on Mitochondrial DNA Analysis
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 339–356 www.academicpress.com A molecular phylogeny of anseriformes based on mitochondrial DNA analysis Carole Donne-Goussee,a Vincent Laudet,b and Catherine Haanni€ a,* a CNRS UMR 5534, Centre de Genetique Moleculaire et Cellulaire, Universite Claude Bernard Lyon 1, 16 rue Raphael Dubois, Ba^t. Mendel, 69622 Villeurbanne Cedex, France b CNRS UMR 5665, Laboratoire de Biologie Moleculaire et Cellulaire, Ecole Normale Superieure de Lyon, 45 Allee d’Italie, 69364 Lyon Cedex 07, France Received 5 June 2001; received in revised form 4 December 2001 Abstract To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, So- materia, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen.
    [Show full text]
  • Checklist of Amphibians, Reptiles, Birds and Mammals of New York
    CHECKLIST OF AMPHIBIANS, REPTILES, BIRDS AND MAMMALS OF NEW YORK STATE Including Their Legal Status Eastern Milk Snake Moose Blue-spotted Salamander Common Loon New York State Artwork by Jean Gawalt Department of Environmental Conservation Division of Fish and Wildlife Page 1 of 30 February 2019 New York State Department of Environmental Conservation Division of Fish and Wildlife Wildlife Diversity Group 625 Broadway Albany, New York 12233-4754 This web version is based upon an original hard copy version of Checklist of the Amphibians, Reptiles, Birds and Mammals of New York, Including Their Protective Status which was first published in 1985 and revised and reprinted in 1987. This version has had substantial revision in content and form. First printing - 1985 Second printing (rev.) - 1987 Third revision - 2001 Fourth revision - 2003 Fifth revision - 2005 Sixth revision - December 2005 Seventh revision - November 2006 Eighth revision - September 2007 Ninth revision - April 2010 Tenth revision – February 2019 Page 2 of 30 Introduction The following list of amphibians (34 species), reptiles (38), birds (474) and mammals (93) indicates those vertebrate species believed to be part of the fauna of New York and the present legal status of these species in New York State. Common and scientific nomenclature is as according to: Crother (2008) for amphibians and reptiles; the American Ornithologists' Union (1983 and 2009) for birds; and Wilson and Reeder (2005) for mammals. Expected occurrence in New York State is based on: Conant and Collins (1991) for amphibians and reptiles; Levine (1998) and the New York State Ornithological Association (2009) for birds; and New York State Museum records for terrestrial mammals.
    [Show full text]