WO 2013/070521 Al O

Total Page:16

File Type:pdf, Size:1020Kb

WO 2013/070521 Al O (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/070521 Al 16 May 2013 (16.05.2013) P O P C T (51) International Patent Classification: (74) Agent: GARRETT, Arthur S.; Finnegan, Henderson, G01N 33/50 (2006.01) C12Q 1/68 (2006.01) Farabow, Garrett & Dunner, LLP, 901 New York Avenue, N.W., Washington, DC 20001-4413 (US). (21) International Application Number: PCT/US2012/0633 13 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 2 November 2012 (02.1 1.2012) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/557,238 8 November 201 1 (08. 11.201 1) US NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/597,426 10 February 2012 (10.02.2012) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (71) Applicant: GENOMIC HEALTH, INC. [US/US]; 301 ZM, ZW. Penobscott Drive, Redwood City, CA 94063 (US). (84) Designated States (unless otherwise indicated, for every (72) Inventors: BAKER, Joffre B.; 301 Penobscot Drive, Red kind of regional protection available): ARIPO (BW, GH, wood City, CA 94063 (US). SINICROPI, Dominick V.; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 301 Penobscot Drive, Redwood City, CA 94063 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, PELHAM, Robert J.; 301 Penobscot Drive, Redwood TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, City, CA 94063 (US). CRAGER, Michael; 301 Penobscot EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Drive, Redwood City, CA 94063 (US). COLLIN, Fran¬ MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, cois; 301 Penobscot Drive, Redwood City, CA 94063 TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (US). STEPHANS, James C ; 301 Penobscot Drive, Red ML, MR, NE, SN, TD, TG). wood City, CA 94063 (US). LIU, Mei-Lan; 301 Penob Published: scot Drive, Redwood City, CA 94063 (US). MORLAN, John; 301 Penobscot Drive, Redwood City, CA 94063 — with international search report (Art. 21(3)) (US). QU, Kunbin; 301 Penobscot Drive, Redwood City, — before the expiration of the time limit for amending the CA 94063 (US). claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) o © o (54) Title: METHOD OF PREDICTING BREAST CANCER PROGNOSIS (57) Abstract: The present invention relates to biomarkers associated with breast cancer prognosis. These biomarkers include coding transcripts and their expression products, as well as non-coding transcripts, and are useful for predicting the likelihood of breast can cer recurrence in a breast cancer patient, The present invention also relates to a novel method of identifying intergenic sequences that correlate with a clinical outcome. [0001] This application claims the benefit of U.S. Provisional Application Nos. 61/557,238, filed November 8, 201 1, and 61/597,426, filed February 0, 2012, which are hereby incorporated by reference in their entirety. LD OF [0002] The present invention relates to biomarkers associated with breast cancer prognosis. These biomarkers include coding transcripts and their expression products, as well as non-coding transcripts, an are useful for predicting the likelihood of breast cancer recurrence in a breast cancer patient. INTRODUCTION [0003] For over a decade, technologies such as DNA microarray and reverse transcription polymerase chain reaction (RT-PCR) have demonstrated that levels of certain RNA transcripts ("gene expression profiles") relate to patient stratification and disease outcomes, especially in a variety of cancers. Several validated and now widely used clinical tests make use of gene expression profiling, such as the Oncotype DX* RT-PCR test, which measures the levels of 2 1 biomarker RNAs in archival formalin-fixed paraffin-embedded (FFPE) tissue. The Oncotype DX® RT-PCR test predicts the risk of recurrence of early estrogen receptor (ER)- positive breast cancer, as well as the likelihood of response to chemotherapy, and is now used to guide treatment decisions for about half of ER+ breast cancer patients in the U.S. [0004] However, RT-PCR is constrained by the number of transcripts and sequence complexity that can be interrogated especially given the limited amount of patient FFPE RNA available from many tumor specimens. Recent major advances in DNA sequencing ("next generation sequencing") provide massively parallel throughput and data volumes that eclipse the nucleic acid information content possible with other technologies, such as RT-PCR. Next generation sequencing makes feasible unprecedented extensive genome analysis of groups of individuals, including analyses of sequence differences, polymorphisms, mutations, copy number variations epigenetic variations and transcript abundance (RNA-Seq). SUMMARY [0005] A multiplexed, whole genome sequencing methodology was developed to enable whole transcriptome-wide breast cancer biomarker discovery using low amounts of FFPE tissue. The present invention provides biomarkers that associate, positively or negatively, with a particular clinical outcome in breast cancer. These biomarkers are listed in Tables 1-5 and 15. For example, the clinical outcome could be no cancer recurrence or cancer recurrence. The clinical outcome may be defined by clinical endpoints, such as disease or recurrence free survival, metastasis free survival, overall survival, etc [0006] The present invention accommodates the use of archived paraffin-embedded biopsy material for assay of all markers in the set, and therefore is compatible with the most widely available type of biopsy material. It is also compatible with other different methods of tumor tissue harvest, fo example, via core biopsy or fine needle aspiration [0007] In one aspect, the present invention provides a method of predicting a likelihood of long-term survival without recurrence of breast cancer in a breast cancer patient. The method comprises determining a level of one or more RN A transcripts, or its expression product, in a breast cancer tumor sample obtained from the patient. The RNA transcript or its expression product may be selected from Tables 1 and 5. The likelihood of long-term survival without breast cancer recurrence is then predicted based on the negative or positive correlation of the RNA transcript or its expression product with increased likelihood of long-term survival without breast ca cer recurrence. An RNA transcript is negatively correlated with increased long-term survival without recurrence of breast cancer if its direction of association is marked in Tables 1 and 15, and is positively correlated with increased long-term survival without recurrence of breast cancer if its direction of association is marked -lin Tables and 15, [0008] In another aspect, the present invention provides a method of predicting a likelihood of long-term survival without recurrence of breast cancer in an estrogen receptor (ER)-positive breast cancer patient. The method comprises determining a level of one o more RNA transcripts, or its expression product, in a breast cancer tumor sample obtained from the patient. The RNA transcript or its expression product may be selected fro Table 2. The likelihood of long-term survi val without breast cancer recurrence is then predicted based on the negative or positive correlation of the RNA transcript or its expression product with increased likelihood of long-term survival without breast cancer recurrence. An RNA transcript is negatively correiaied with increased long-term survival without recurrence of breast cancer if its direction of association is marked 1 in Table 2, and is positively correlated with increased long- term survival without recurrence of breast cancer if its direction of association is marked - 1 in Table 2. [0009] The R A transcripts, or the expression products, ay be grouped into gene networks based on the current understanding of their cellular function. For example, the gene networks include a cell cycle network, ESR1 network, Clxr9q22network, Chrl7q23-24 network, Chr8q21-24 network, olfactory receptor network, and metabolic-like networks. The present invention therefore also provides a method of predicting a likelihood of long-term survival without breast cancer recurrence in a breas cancer patient by determining a quantitative value, such as a likelihood score, for one or more gene networks based on the level of at least one RNA transcript, or expression product thereof within the gene network, in a breast cancer tumor sample obtained from the patient The quantitative value for the gene network may be determined by weighting the contribution of one or more RNA transcripts or their expression products, to clinical outcome such as risk of recurrence. [0010] In yet another aspect, the present invention provides a method of predicting a likelihood of long-term survival without recurrence of breast cancer in a breast cancer patient by determining a level of one or more non-coding sequences in a breast cancer tissue sample obtained from the patient. In one embodiment, the non-coding sequence is one or more intronic RNAs selected from Table 3. In another embodiment, the non-coding sequence is one or more long intergenic non-coding regions (IincRNAs) selected from Table 4. In a further embodiment, the non-coding sequence is one or more intergenic sequences selected from Table 5.
Recommended publications
  • A Genome-Wide Association Study of Body Mass Index
    International Journal of Epidemiology, 2015, 700–712 doi: 10.1093/ije/dyv077 Advance Access Publication Date: 7 May 2015 Original article Genetic Epidemiology A genome-wide association study of body mass index across early life and childhood Nicole M Warrington,1,2* Laura D Howe,3,4* Lavinia Paternoster,3,4 Marika Kaakinen,5,6,7 Sauli Herrala,6 Ville Huikari,6 Yan Yan Wu,8 Downloaded from John P Kemp,2,3 Nicholas J Timpson,3,4 Beate St Pourcain,3,4 George Davey Smith,3,4 Kate Tilling,3,4 Marjo-Riitta Jarvelin,5,6,9,10,11 Craig E Pennell,1 David M Evans,2,3,4 Debbie A Lawlor,3,4 Laurent Briollais8,† and Lyle J Palmer12,† http://ije.oxfordjournals.org/ 1School of Women’s and Infants’ Health, University of Western Australia, Perth, WA, Australia, 2University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia, 3MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK, 4School of Social and Community Medicine, University of Bristol, Bristol, UK, 5Biocenter Oulu, and 6Institute of Health Sciences, University of Oulu, Oulu, Finland, 7Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK, 8Lunenfeld-Tanenbaum Research Institute, Mount 9 Sinai Hospital, Toronto, ON, Canada, Department of Children and Young People and Families, National at MPI Psycholinguistics on September 22, 2015 Institute for Health and Welfare, Oulu, Finland, 10Department of Epidemiology and Biostatistics, MRC- HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, UK, 11Unit of Primary Care, Oulu University Hospital, Oulu, Finland and 12The Joanna Briggs Institute, The Robinson Research Institute, and School of Translational Health Science, University of Adelaide, Adelaide, SA, Australia *Corresponding authors.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Genome-Wide Association Study of Body Mass
    International Journal of Epidemiology, 2015, 700–712 doi: 10.1093/ije/dyv077 Advance Access Publication Date: 7 May 2015 Original article Genetic Epidemiology A genome-wide association study of body mass index across early life and childhood Nicole M Warrington,1,2* Laura D Howe,3,4* Lavinia Paternoster,3,4 Marika Kaakinen,5,6,7 Sauli Herrala,6 Ville Huikari,6 Yan Yan Wu,8 John P Kemp,2,3 Nicholas J Timpson,3,4 Beate St Pourcain,3,4 George Davey Smith,3,4 Kate Tilling,3,4 Marjo-Riitta Jarvelin,5,6,9,10,11 Craig E Pennell,1 David M Evans,2,3,4 Debbie A Lawlor,3,4 Laurent Briollais8,† and Lyle J Palmer12,† 1School of Women’s and Infants’ Health, University of Western Australia, Perth, WA, Australia, 2University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia, 3MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK, 4School of Social and Community Medicine, University of Bristol, Bristol, UK, 5Biocenter Oulu, and 6Institute of Health Sciences, University of Oulu, Oulu, Finland, 7Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK, 8Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, 9Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland, 10Department of Epidemiology and Biostatistics, MRC- HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, UK, 11Unit of Primary Care, Oulu University Hospital, Oulu, Finland and 12The Joanna Briggs Institute, The Robinson Research Institute, and School of Translational Health Science, University of Adelaide, Adelaide, SA, Australia *Corresponding authors.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Table S4. RAE Analysis of Dedifferentiated Liposarcoma
    Table S4. RAE analysis of dedifferentiated liposarcoma Model Chromosome Region start Region end Size q value freqX0* # genes genes Amp 1 57809872 60413476 2603605 0.00026 34.6 10 DAB1,RPS26P15,OMA1,TACSTD2,MYSM1,JUN,FGGY,HOOK1,CYP2J2,C1orf87 Amp 1 158619146 158696968 77823 0.053 25 1 VANGL2 Amp 1 158883523 158922841 39319 0.081 23.1 2 SLAMF1,CD48 Amp 1 162042586 162118557 75972 0.072 25 0 [Nearest:NUF2] Amp 1 162272460 162767627 495168 0.017 26.9 0 [Nearest:PBX1] Amp 1 165486554 165532374 45821 0.057 25 1 POU2F1 Amp 1 167138282 167483267 344986 0.024 26.9 2 ATP1B1,NME7 Amp 1 167612872 167708844 95973 0.041 25 3 BLZF1,C1orf114,SLC19A2 Amp 1 167728199 167808161 79963 0.076 21.2 1 F5 Amp 1 168436370 169233893 797524 0.018 26.9 3 GORAB,PRRX1,C1orf129 Amp 1 169462231 170768440 1306210 1.3E-06 38.5 10 FMO1,FMO4,TOP1P1,BAT2D1,MYOC,VAMP4,METTL13,DNM3,C1orf105,PIGC Amp 1 171026247 171291427 265181 0.015 26.9 1 TNFSF18 Del 1 201860394 202299299 438906 0.0047 25 6 ATP2B4,SNORA77,LAX1,ZC3H11A,SNRPE,C1orf157 Del 1 210909187 212021116 1111930 0.017 19.2 8 BATF3,NSL1,TATDN3,C1orf227,FLVCR1,VASH2,ANGEL2,RPS6KC1 Del 1 215937857 216049214 111358 0.079 23.1 1 SPATA17 Del 1 218237257 218367476 130220 0.0063 26.9 3 EPRS,BPNT1,IARS2 Del 1 222100886 222727238 626353 5.2E-05 32.7 5 FBXO28,DEGS1,NVL,CNIH4,WDR26 Del 1 223166548 224519805 1353258 0.0063 26.9 15 DNAH14,LBR,ENAH,SRP9,EPHX1,TMEM63A,LEFTY1,PYCR2,LEFTY2,C1orf55,H3F3A,LOC440926 ,ACBD3,MIXL1,LIN9 Del 1 225283136 225374166 91031 0.054 23.1 1 CDC42BPA Del 1 227278990 229012661 1733672 0.091 21.2 13 RAB4A,SPHAR,C1orf96,ACTA1,NUP133,ABCB10,TAF5L,URB2,GALNT2,PGBD5,COG2,AGT,CAP
    [Show full text]
  • Non-Coding Rnas in Kidney Diseases: the Long and Short of Them
    International Journal of Molecular Sciences Review Non-Coding RNAs in Kidney Diseases: The Long and Short of Them Juan Antonio Moreno 1,2,3,* , Eya Hamza 4, Melania Guerrero-Hue 1 , Sandra Rayego-Mateos 5, Cristina García-Caballero 1, Mercedes Vallejo-Mudarra 1, Laurent Metzinger 4,* and Valérie Metzinger-Le Meuth 4,6 1 Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; [email protected] (M.G.-H.); [email protected] (C.G.-C.); [email protected] (M.V.-M.) 2 Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain 3 Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain 4 HEMATIM UR 4666, C.U.R.S, Université de Picardie Jules Verne (UPJV), CEDEX 1, 80025 Amiens, France; [email protected] (E.H.); [email protected] (V.M.-L.M.) 5 Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; [email protected] 6 INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Sorbonne Paris Nord, CEDEX, 93017 Bobigny, France * Correspondence: [email protected] (J.A.M.); [email protected] (L.M.); Tel.: +34-957-213849 (J.A.M.); +33-322-82-5356 (L.M.) Abstract: Recent progress in genomic research has highlighted the genome to be much more tran- Citation: Moreno, J.A.; Hamza, E.; scribed than expected. The formerly so-called junk DNA encodes a miscellaneous group of largely Guerrero-Hue, M.; Rayego-Mateos, S.; unknown RNA transcripts, which contain the long non-coding RNAs (lncRNAs) family.
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Lupus Nephritis Supp Table 5
    Supplementary Table 5 : Transcripts and DAVID pathways correlating with the expression of CD4 in lupus kidney biopsies Positive correlation Negative correlation Transcripts Pathways Transcripts Pathways Identifier Gene Symbol Correlation coefficient with CD4 Annotation Cluster 1 Enrichment Score: 26.47 Count P_Value Benjamini Identifier Gene Symbol Correlation coefficient with CD4 Annotation Cluster 1 Enrichment Score: 3.16 Count P_Value Benjamini ILMN_1727284 CD4 1 GOTERM_BP_FAT translational elongation 74 2.50E-42 1.00E-38 ILMN_1681389 C2H2 zinc finger protein-0.40001984 INTERPRO Ubiquitin-conjugating enzyme/RWD-like 17 2.00E-05 4.20E-02 ILMN_1772218 HLA-DPA1 0.934229063 SP_PIR_KEYWORDS ribosome 60 2.00E-41 4.60E-39 ILMN_1768954 RIBC1 -0.400186083 SMART UBCc 14 1.00E-04 3.50E-02 ILMN_1778977 TYROBP 0.933302249 KEGG_PATHWAY Ribosome 65 3.80E-35 6.60E-33 ILMN_1699190 SORCS1 -0.400223681 SP_PIR_KEYWORDS ubl conjugation pathway 81 1.30E-04 2.30E-02 ILMN_1689655 HLA-DRA 0.915891173 SP_PIR_KEYWORDS protein biosynthesis 91 4.10E-34 7.20E-32 ILMN_3249088 LOC93432 -0.400285215 GOTERM_MF_FAT small conjugating protein ligase activity 35 1.40E-04 4.40E-02 ILMN_3228688 HLA-DRB1 0.906190291 SP_PIR_KEYWORDS ribonucleoprotein 114 4.80E-34 6.70E-32 ILMN_1680436 CSH2 -0.400299744 SP_PIR_KEYWORDS ligase 54 1.50E-04 2.00E-02 ILMN_2157441 HLA-DRA 0.902996561 GOTERM_CC_FAT cytosolic ribosome 59 3.20E-33 2.30E-30 ILMN_1722755 KRTAP6-2 -0.400334007 GOTERM_MF_FAT acid-amino acid ligase activity 40 1.60E-04 4.00E-02 ILMN_2066066 HLA-DRB6 0.901531942 SP_PIR_KEYWORDS
    [Show full text]
  • Integrated Bioinformatics Analysis Reveals Novel Key Biomarkers and Potential Candidate Small Molecule Drugs in Gestational Diabetes Mellitus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434569; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus Basavaraj Vastrad1, Chanabasayya Vastrad*2, Anandkumar Tengli3 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. 3. Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434569; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Gestational diabetes mellitus (GDM) is one of the metabolic diseases during pregnancy. The identification of the central molecular mechanisms liable for the disease pathogenesis might lead to the advancement of new therapeutic options. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non GDM samples were analyzed with limma package. Gene ontology (GO) and REACTOME enrichment analysis were performed using ToppGene. Then we constructed the protein-protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed.
    [Show full text]
  • Multi-Tissue Probabilistic Fine-Mapping of Transcriptome-Wide Association Study Identifies Cis-Regulated Genes for Miserableness
    bioRxiv preprint doi: https://doi.org/10.1101/682633; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Multi-tissue probabilistic fine-mapping of transcriptome-wide association study identifies cis-regulated genes for miserableness Calwing Liao1,2 BSc, Veikko Vuokila2, Alexandre D Laporte2 BSc, Dan Spiegelman2 MSc, Patrick A. Dion2,3 PhD, Guy A. Rouleau1,2,3 * MD, PhD 1Department oF Human Genetics, McGill University, Montréal, Quebec, Canada 2Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 3Department oF Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada Short summary: The First transcriptome-wide association study oF miserableness identiFies many genes including c7orf50 implicated in the trait. Word count: 1,522 excluding abstract and reFerences Tables: 3 Keywords: Miserableness, transcriptome-wide association study, TWAS *Correspondence: Dr. Guy A. Rouleau Montreal Neurological Institute and Hospital Department oF Neurology and Neurosurgery 3801 University Street, Montreal, QC Canada H3A 2B4. Tel: +1 514 398 2690 Fax: +1 514 398 8248 E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/682633; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract (141 words) Miserableness is a behavioural trait that is characterized by strong negative Feelings in an individual.
    [Show full text]
  • Cellular Features Predicting Susceptibility to Ferroptosis: Insights from Cancer Cell-Line Profiling
    Cellular features predicting susceptibility to ferroptosis: insights from cancer cell-line profiling Vasanthi Sridhar Viswanathan Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 © 2015 Vasanthi Sridhar Viswanathan All rights reserved ABSTRACT Cellular features predicting susceptibility to ferroptosis: insights from cancer cell-line profiling Vasanthi Sridhar Viswanathan Ferroptosis is a novel non-apoptotic, oxidative form of regulated cell death that can be triggered by diverse small-molecule ferroptosis inducers (FINs) and genetic perturbations. Current lack of insights into the cellular contexts governing sensitivity to ferroptosis has hindered both translation of FINs as anti-cancer agents for specific indications and the discovery of physiological contexts where ferroptosis may function as a form of programmed cell death. This dissertation describes the identification of cellular features predicting susceptibility to ferroptosis from data generated through a large-scale profiling experiment that screened four FINs against a panel of 860 omically-characterized cancer cell lines (Cancer Therapeutics Response Portal Version 2; CTRPv2 at http://www.broadinstitute.org/ctrp/). Using correlative approaches incorporating transcriptomic, metabolomic, proteomic, and gene-dependency feature types, I uncover both pan-lineage and lineage-specific features mediating cell-line response to FINs. The first key finding from these analyses implicates high expression of sulfur and selenium metabolic pathways in conferring resistance to FINs across lineages. In contrast, the transsulfuration pathway, which enables de novo cysteine synthesis, appears to plays a role in ferroptosis resistance in a subset of lineages. The second key finding from these studies identifies cancer cells in a high mesenchymal state as being uniquely primed to undergo ferroptosis.
    [Show full text]