Comparative Performance of Acoustic-Tagged and Passive Integrated Transponder-Tagged Juvenile Salmon in the Columbia and Snake Rivers, 2008

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Performance of Acoustic-Tagged and Passive Integrated Transponder-Tagged Juvenile Salmon in the Columbia and Snake Rivers, 2008 Comparative performance of acoustic-tagged and passive integrated transponder-tagged juvenile salmon in the Columbia and Snake Rivers, 2008 A. Michelle Wargo Rub, Benjamin P. Sandford, Lyle G. Gilbreath, Mark S. Myers, Mark E. Peterson, Lila L. Charlton, Steven G. Smith, and Gene M. Matthews July 2011 Comparative Performance of Acoustic-Tagged and Passive Integrated Transponder-Tagged Juvenile Chinook Salmon in the Columbia and Snake Rivers, 2008 A. Michelle Wargo-Rub, Benjamin P. Sandford, Lyle G. Gilbreath, Mark S. Myers, Mark E. Peterson, Lila L. Charlton, Steven G. Smith, and Gene M. Matthews Report of research by Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Blvd. East Seattle, Washington 98112 for Environmental Resources Branch, Planning and Engineering Division Portland District, U.S. Army Corps of Engineers Robert Duncan Plaza 333 S.W. 1st Avenue Portland, Oregon 97208-2946 Contract W66QKZ60441152 July 2011 ii EXECUTIVE SUMMARY Evaluation of Acoustic Tags in Migrating Yearling Chinook Salmon Migration rates, detection and survival probabilities, and avian predation rates were compared between fish tagged with a passive integrated transponder (PIT) tag vs. those tagged with both a PIT-tag and Juvenile Salmonid Acoustic Telemetry System (JSATS) tag. During spring 2008, we collected migrating hatchery yearling Chinook salmon at Lower Granite Dam. We tagged 4,139 of these fish with both a JSATS tag and a PIT tag (JSATS-tagged fish) and 50,814 with a PIT tag only (PIT-tagged fish). Samples were designed to be of sufficient size to determine a minimum difference of 5% between tag groups in detection and survival over a distance of 348 km, and to provide statistical power of 80% (α = 0.05). Fish were released to the tailrace of Lower Granite Dam on 10 d, from 24 April through 17 May. Acoustic-tagged fish were implanted with the 2008 model JSATS acoustic tag, which weighed 0.42 g in air. Average tag burden experienced by JSATS-tagged fish was 2.3% of body weight (range 0.8-7.2%). For both tag treatments, travel times, detection probabilities, and survival were estimated from individual PIT-tag detections at Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dam. For estimates of detection probability and survival, we also utilized detections of JSATS-tagged fish from acoustic arrays at multiple locations within the study area. Mean detection probabilities were estimated for each PIT-tag detection site. Mean detection probability was higher for JSATS- than PIT-tagged fish at Little Goose, Lower Monumental, and John Day Dams. The difference in detection probability was 0.04 (P = 0.005) at Little Goose Dam, 0.05 (P = 0.002) at Lower Monumental, and 0.06 (P = 0.006) at John Day Dam. Mean detection probability at Ice Harbor Dam was 0.03 higher for JSATS- than PIT-tagged fish, and the difference approached significance (P = 0.067). There was no significant difference in detection probability between tag-treatment groups at McNary or Bonneville Dam (P = 0.242, and 0.174, respectively). In the Snake River, relative survival (ratio of survival estimates for JSATS-tagged/PIT-tagged groups) was not significantly different than one from release to Little Goose or Ice Harbor Dam (P = 0.107 and 0.336 respectively). Relative survival was 0.95 from release to Lower Monumental Dam and approached significance (P = 0.096). In the Columbia River, relative survival was 0.91 (P = 0.095) to McNary Dam, 0.72 (P = 0.001) to John Day Dam, and 0.69 (P = 0.021) to Bonneville Dam. A significant difference in travel time to John Day Dam was observed (P = 0.019), with JSATS-tagged fish arriving 0.81 d (19.44 h) after PIT-tagged fish, but significant differences in travel time were not observed at any other detection site. iii Overall mean PIT-tag recovery from upper river bird colonies was 2.0% for JSATS-tagged and 1.0% for PIT-tagged fish. Although this 1% difference in tag-recovery rate was statistically significant (P = 0.016), it was not likely to have been biologically meaningful. From estuarine bird colonies, the overall mean PIT-tag recovery was rate 3.0% for JSATS-tagged and 4.0% for PIT-tagged fish, and the difference was not significant (P = 0.881). Gross Necropsy and Histological Evaluation of Migrating Yearling Chinook Salmon To provide insight into the mechanism responsible for any tag effects observed, we subsampled study fish at two downstream sites for necropsy and histological evaluation. Up to 10 yearling Chinook salmon from each tag treatment and each release group were recaptured during migration using the separation-by-code (SbyC) systems in the juvenile bypass facilities at McNary and Bonneville Dams. Midway through the study, sampling at Bonneville Dam was discontinued due to extremely high flows, which resulted in high debris loads on the fish guidance screens. We resumed sampling for the Bonneville target groups at John Day Dam within approximately 48 h of this disruption. Respective subsamples from JSATS- and PIT-tagged release groups totaled 98 and 92 at McNary Dam, 29 and 67 at Bonneville Dam, and 57 and 53 at John Day Dam. John Day and Bonneville fish were combined in a single group for analysis. Recaptured fish were euthanized and examined for tag loss, disease, and histological change due to tag implantation. Kidney tissue samples were also collected and examined for the antigen to Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD). A group of 100 non-tagged reference fish was used to provide baseline data for comparisons of gross necropsy, histological evaluation, and assessments of Rs in JSATS- and PIT-tag treatment fish. Reference fish were hatchery yearling Chinook collected at Lower Granite Dam for evaluations of migrating fish. The majority of fish subsampled at McNary Dam from both tag treatments were described as having either opaque, frayed, or missing fins (79% of PIT-tagged fish and 90% of JSATS-tagged fish). In contrast, a large majority of reference fish, and fish subsampled further downstream at Bonneville Dam, were described as having normal fins. Additionally, 13% of JSATS-tagged fish collected at McNary Dam were described as having eyes that were hemorrhagic. By comparison, 99% of the Lower Granite reference fish were described as having normal eyes. These observations indicated that fish might have experienced a trauma sometime between release and recapture. We also noted that in the McNary subsamples, the percentage of fish with hemorrhagic eyes was higher in JSATS-tagged than in PIT-tagged fish, and the difference between treatment groups was significant (P = 0.003). iv For both tag treatments, gross necropsy revealed less caecal and mesenteric fat in fish collected at McNary and Bonneville Dam than in reference fish, although these metrics were rated similarly between treatment groups at both locations. Splenic engorgement/enlargement was more prevalent in Lower Granite reference fish than in tag-treatment fish of either type subsampled at either McNary or Bonneville Dam. Enlarged spleens were observed in a higher percentage of fish collected at McNary than at Bonneville Dam. In the Bonneville subsamples, the percentage of fish observed with food in the stomach was higher for PIT-tagged than JSATS-tagged fish, and the difference between treatment groups was significant (P = 0.038). However, there was no difference between treatments for this metric in the McNary subsamples. Greater than 99% of all reference fish and SbyC subsampled fish were rated as having normal kidneys on gross exam. Liver abnormalities were seen in both reference and SbyC fish, and were of similar prevalence among treatment groups. Comparative histopathology metrics varied by recapture site and were mixed with respect to nutritional indicators, with some being higher in JSATS-tagged and others in PIT-tagged fish. However, histological indicators of inflammation and healing showed a consistent pattern of higher inflammation and slower healing in JSATS-tagged fish. For example, chronic inflammation within the mesentery was more prevalent in JSATS-tagged than in PIT-tagged fish subsampled at both McNary and Bonneville Dam (P = 0.001), and when present in both treatment groups, it was rated as more severe in JSATS-tagged fish at both recapture sites (P < 0.001). In Bonneville subsamples, chronic peritonitis was higher in JSATS-tagged than PIT-tagged fish (P = 0.001), and poor apposition of the incision was more common (P = 0.006), as were internal adhesions at the incision site (P = 0.063). Microscopic evidence of the incision/injection site was less prevalent in PIT-tagged than JSATS-tagged fish from both McNary and Bonneville Dams (P = 0.001), and the epidermis was more often observed to be "retracted" away from the incision/injection site in the JSATS-tagged fish from Bonneville Dam (P = 0.015). Rs antigen levels were evaluated using enzyme-linked immunosorbent assay (ELISA). For hatchery yearling Chinook, the range of Rs antigen levels was 0.065-0.335 in reference fish (one outlier at 1.11), 0.069-0.289 in both JSATS and PIT treatments recaptured at McNary Dam, and 0.076-0.540 in both JSATS and PIT treatments recaptured at Bonneville Dam. Since ELISA values were considered low for all but two fish recaptured at McNary Dam (1 JSATS and 1 PIT), no statistical analyses were conducted to evaluate differences between treatments at this location. At Bonneville Dam, 13% of JSATS-tagged fish had ELISA values considered moderate, compared to 11% of PIT-tagged fish. However, there was no statistical difference in these values based on a Kruskal-Wallis test (P = 0.830; a nonparametric equivalent of analysis of variance).
Recommended publications
  • The Importance of Sample Size in Marine Megafauna Tagging Studies
    Ecological Applications, 0(0), 2019, e01947 © 2019 by the Ecological Society of America The importance of sample size in marine megafauna tagging studies 1,17 2 3 4 5 6 6 A. M. M. SEQUEIRA, M. R. HEUPEL, M.-A. LEA, V. M. EGUILUZ, C. M. DUARTE, M. G. MEEKAN, M. THUMS, 7 8 9 6 4 10 H. J. CALICH, R. H. CARMICHAEL, D. P. COSTA, L. C. FERREIRA, J. F ERNANDEZ -GRACIA, R. HARCOURT, 11 10 10,12 13,14 15 16 A.-L. HARRISON, I. JONSEN, C. R. MCMAHON, D. W. SIMS, R. P. WILSON, AND G. C. HAYS 1IOMRC and The University of Western Australia Oceans Institute, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 2Australian Institute of Marine Science, PMB No 3, Townsville, Queensland 4810 Australia 3Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, Tasmania 7000 Australia 4Instituto de Fısica Interdisciplinar y Sistemas Complejos IFISC (CSIC – UIB), E-07122 Palma de Mallorca, Spain 5Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal 23955-6900 Saudi Arabia 6Australian Institute of Marine Science, Indian Ocean Marine Research Centre (M096), University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 7IOMRC and The University of Western Australia Oceans Institute, Oceans Graduate School, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 8Dauphin Island Sea Lab and University of South Alabama, 101 Bienville Boulevard, Dauphin Island, Alabama 36528 USA 9Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060 USA 10Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109 Australia 11Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012 MRC 5503 MBC, Washington, D.C.
    [Show full text]
  • Acoustic Tagging of Large Sharks – Potential for Acoustic Interference
    CITIZEN SCIENCE – CS 05-11-17) Acoustic tagging of large sharks – Potential for acoustic interference (CS 05-11-17) – Kim Allen independent researcher Citizen science overview This paper is one of a series of unfunded, independent research initiatives that question mainstream science, Animal ethics approaches and Governments’ apparent acceptance of “Validated” science in the area of wildlife electronic tracking. Clearly, the Australian shark issue is extremely contentious as well as political and emotionally charged. Over $100 million has been expended by State and Federal governments in an attempt to find answers and make our beaches safer. Unfortunately, at no stage has a strategic approach been taken to identify the key disciplines of science that need to be considered, assessed, and applied. Significant investment has been directed into the construction and support of wide-scale acoustic receiver arrays and individual sensors as well as significant tagging of large sharks off our coastline for research and public safety. Previous satellite archival tagging programs conducted by CSIRO gave us good insight into shark movements, however since this time despite significant investment minimal progress appears to have been made and the potential risks appear to have been ignored. This CSIRO document clearly outlines the types of tags that are used for shark research, it also clearly defines the recommended protocols that should be used for shark tagging operations. From photographic details shared in the public domain it is clear that shark tagging operations undertaken by Fisheries departments don’t follow these stringent protocols. (www.cmar.csiro.au/e-print/open/2009/bradfordrw a.pdf ) It is extremely difficult for “Unqualified” Citizen scientists to challenge mainstream research particularly given the potential erosion of future funding sources if technical criticism is determined as valid.
    [Show full text]
  • Conducting and Interpreting Fish Telemetry Studies
    Manuscript Click here to access/download;Manuscript;Telemetry considerations RFBF submission REVISED clean.docx Click here to view linked References 1 2 3 4 1 Conducting and interpreting fish telemetry studies: Considerations for researchers and 5 2 resource managers 6 7 8 3 Submission to: Reviews in Fish Biology and Fisheries 9 a,b a c d 10 4 Jacob W. Brownscombe , Elodie Ledee , Graham D. Raby , Daniel P. Struthers , Lee F.G. e a f g 11 5 Gutowsky , Vivian M. Nguyen , Nathan Young , Michael J.W. Stokesbury , Christopher M. 12 6 Holbrookh, Travis O. Brendeni, Christopher S. Vandergootj, Karen J. Murchiek, Kim Whoriskeyl, 13 7 Joanna Mills-Flemmingl, Steven T. Kesselk, Charles C. Kruegerm, Steven J. Cookea 14 15 8 a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of 16 17 9 Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, 18 10 ON, K1S 5B6, Canada 19 20 11 b Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, B4H 4R2, 21 12 Canada 22 23 13 c Great Lakes Institute for Environmental Research, University of Windsor, 2601 Union St., 24 14 Windsor, ON, N9B 3P4, Canada 25 26 d 27 15 Parks Canada, Banff National Park, Box 900, Banff, AB, T1L 1K2, Canada 28 e 29 16 Aquatic Research & Monitoring Section, Ontario Ministry of Natural Resources & Forestry, 30 17 Trent University, 2140 East Bank Drive, Peterborough, ON, K9L 1Z8, Canada 31 32 18 f Department of Sociology and Anthropology, University of Ottawa, Ottawa, ON, K1N 6N5, 33 19 Canada 34 g 35 20 Department of Biology, Acadia University, 33 Westwood Ave., Wolfville, NS, B4P 2R6, 36 37 21 Canada 38 h 39 22 U.S.
    [Show full text]
  • Ecological Engineering Response of Seaward-Migrating European
    Ecological Engineering 127 (2019) 480–486 Contents lists available at ScienceDirect Ecological Engineering journal homepage: www.elsevier.com/locate/ecoleng Response of seaward-migrating European eel (Anguilla anguilla) to an T infrasound deterrent ⁎ Adam T. Pipera,b, , Paul R. Whitec, Rosalind M. Wrightd, Timothy G. Leightonc, Paul S. Kempa a International Centre for Ecohydraulics Research, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK b Institute of Zoology, Zoological Society of London, Regent’s Park, NW1 4RY London, UK c Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK d Environment Agency, Rivers House, Threshelfords Business Park, Inworth Road, Feering CO5 9SE, UK ARTICLE INFO ABSTRACT Keywords: Behavioural guidance technologies that employ stimuli to attract or repel fish offer potential to enhance, oreven Behavioural guidance replace, costly physical and mechanical screens traditionally used to protect fish at river infrastructure such as Acoustic telemetry hydropower and water intakes. At these structures, eel can suffer high rates of damage and mortality if entrained Bypass in pumps or turbines, or impinged on screens intended to protect them. This study used acoustic telemetry to Fishway quantify the behavioural response of adult European eel (Anguilla anguilla) to infrasound (12 Hz) under field Fish migration settings. Eel (n = 50) were tracked after release immediately upstream of the forebay of a redundant hydro- power facility. An infrasound deterrent located at the water intake either emitted continuously (ON) or was switched OFF. Treatment (ON/OFF) was alternated nightly over 10 consecutive nights with five eel released during a single trial conducted each night.
    [Show full text]
  • External Attachment of Acoustic Tags to Deepwater Reef Fishes- an Alternate
    This article was downloaded by: [Texas A&M University Corpus Christi] On: 30 June 2015, At: 12:45 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 External Attachment of Acoustic Tags to Deepwater Reef Fishes: an Alternate Approach When Internal Implantation Affects Experimental Design Matthew W. Johnsona, Sandra L. Diamondbc & Gregory W. Stunza a Harte Research Institute for Gulf of Mexico Studies, Texas A&M University–Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412-5869, USA b Department of Biology, Texas Tech University, Lubbock, Texas 79409, USA c School of Science and Health, Hawkesbury Campus, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia Published online: 30 Jun 2015. Click for updates To cite this article: Matthew W. Johnson, Sandra L. Diamond & Gregory W. Stunz (2015) External Attachment of Acoustic Tags to Deepwater Reef Fishes: an Alternate Approach When Internal Implantation Affects Experimental Design, Transactions of the American Fisheries Society, 144:4, 851-859, DOI: 10.1080/00028487.2015.1042556 To link to this article: http://dx.doi.org/10.1080/00028487.2015.1042556 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • Future Directions in Research on Beaked Whales
    25th Meeting of the Advisory Committee ASCOBANS/AC25/Inf.5.1 Stralsund, Germany, 17-19 September 2019 Dist.16 August 2019 Agenda Item 5.1 Special Species Sessions Beaked Whales Information Document 5.1 Future Directions in Research on Beaked Whales Action Requested Take Note Submitted by Hooker et al. Note: Delegates are kindly reminded to bring their own document copies to the meeting, if needed. fmars-05-00514 January 23, 2019 Time: 17:10 # 1 REVIEW published: 25 January 2019 doi: 10.3389/fmars.2018.00514 Future Directions in Research on Beaked Whales Sascha K. Hooker1*, Natacha Aguilar De Soto2, Robin W. Baird3, Emma L. Carroll1,4, Diane Claridge1,5, Laura Feyrer6, Patrick J. O. Miller1, Aubrie Onoufriou1,2, Greg Schorr7, Eilidh Siegal1 and Hal Whitehead6 1 Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom, 2 BIOECOMAC Department of Animal Biology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain, 3 Cascadia Research Collective, Olympia, WA, United States, 4 School of Biological Sciences, The University of Auckland, Auckland, New Zealand, 5 Bahamas Marine Mammal Research Organisation, Abaco, Bahamas, 6 Department of Biology, Dalhousie University, Halifax, NS, Canada, 7 Marine Ecology and Telemetry Research, Seabeck, WA, United States Until the 1990s, beaked whales were one of the least understood groups of large mammals. Information on northern bottlenose whales (Hyperoodon ampullatus) and Baird’s beaked whales (Berardius bairdii) was available from data collected during Edited by: Lars Bejder, whaling, however, little information existed on the smaller species other than occasional University of Hawai‘i at Manoa, data gleaned from beach-cast animals.
    [Show full text]
  • Acoustic Telemetry and Fisheries Management
    INVITED FEATURE ARTICLE Ecological Applications, 0(0), 2017, pp. 1–19 © 2017 by the Ecological Society of America Acoustic telemetry and fisheries management 1,8 2 3 4 GLENN T. C ROSSIN, MICHELLE R. HEUPEL, CHRISTOPHER M. HOLBROOK, NIGEL E. HUSSEY, 5,6 7 4 7 SUSAN K. LOWERRE-BARBIERI, VIVIAN M. NGUYEN, GRAHAM D. RABY, AND STEVEN J. C OOKE 1Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia B4H 4R2 Canada 2Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia 3U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, Michigan 49759 USA 4Department of Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4 Canada 5Florida Fish & Wildlife Research Institute, 100 8th Avenue SE, St. Petersburg, Florida 33701 USA 6Fisheries and Aquatic Science Program, School of Forest Resources and Conservation, University of Florida, 7922 North West 71st Street, Gainesville, Florida 32653 USA 7Fish Ecology & Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 Canada Abstract. This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applica- tions titled Acoustic Telemetry and Fisheries Management. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy.
    [Show full text]
  • Forum „Fischschutz Und Fischabstieg“ Arbeitshilfe Zur Standörtlichen
    Gefördert durch: Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit Forum „Fischschutz und Fischabstieg“ Arbeitshilfe zur standörtlichen Evaluierung des Fischschutzes und Fischabstieges Von Arbeitsgemeinschaft Wolfgang Schmalz FLUSS, Breitenbach/Deutschland Falko Wagner IGF, Jena/Deutschland Damien Sonny Profish, Naninne/Belgien Im Auftrag des Ecologic Institutes gemeinnützige GmbH März 2015 Autoren: SCHMALZ, Wolfgang Dipl.-Biol., FLUSS (Fischökologische und Limnologische Untersu- chungsStelle Südthüringen); Vertreter der Bietergemeinschaft WAGNER, Falko Dr. rer. nat., IGF (Institut für Gewässerökologie & Fischereibiologie Jena) SONNY, Damien Dr. rer. nat., Profish (ProFish Technology SA) unter Mitarbeit von: EBEL, Guntram Dr. rer. agr., BGF (Büro für Gewässerökologie und Fischereibiologie) HÜBNER, Dirk Dr. rer. nat., BFS (Büro für Fisch- und Gewässerökologische Studien) LINDIG, Andreas Dipl.-Biol., IGF (Institut für Gewässerökologie & Fischereibiologie Jena) SCHMALZ, Maria Dipl.-Biol., IWSÖ GmbH (Institut für Wasserwirtschaft Siedlungswas- serbau und Ökologie, Hydrolabor Schleusingen) SCHNEIDER, Jörg Dr. rer. nat., BFS (Büro für Fisch- und Gewässerökologische Studien) Für die fachliche Unterstützung wird gedankt: Forum Fischschutz und der Mitglieder der Lenkungsgruppe siehe http://forum- Lenkungsgruppe des Forums fischschutz.de/lenkungsgruppe HAAS, Christian Dipl.-Ing., I AM HYDRO, Haas & Thumser GbR HASSINGER, Reinhard Dr.-Ing., Universität Kassel, Versuchsanstalt und Prüfstelle für Umwelt-
    [Show full text]
  • Investigating the Efficacy of a Proposed Marine Protected Area for the Endangered Humphead Wrasse Cheilinus Undulatus at a Remote Island Group in Seychelles
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2020 Investigating the efficacy of a oposedpr marine protected area for the Endangered humphead wrasse Cheilinus undulatus at a remote island group in Seychelles Ryan Daly Clare A. Keating Andrew E. Gray Lauren R. Peel Luke Gordon See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Daly, Ryan; Keating, Clare A.; Gray, Andrew E.; Peel, Lauren R.; Gordon, Luke; Lea, James S.E.; Clarke, Christopher R.; and Weng, Kevin C., Investigating the efficacy of a oposedpr marine protected area for the Endangered humphead wrasse Cheilinus undulatus at a remote island group in Seychelles (2020). Endangered Species Research, 42, 7-20. doi: 10.3354/esr01035 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors Ryan Daly, Clare A. Keating, Andrew E. Gray, Lauren R. Peel, Luke Gordon, James S.E. Lea, Christopher R. Clarke, and Kevin C. Weng This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1964 Vol. 42: 7–20, 2020 ENDANGERED SPECIES RESEARCH Published May 14 https://doi.org/10.3354/esr01035 Endang Species Res OPENPEN ACCESSCCESS Investigating the efficacy of a proposed marine protected area for the Endangered humphead wrasse Cheilinus undulatus at a remote island group in Seychelles Ryan Daly1,2,3,*, Clare A.
    [Show full text]
  • Use of Acoustic Tags to Examine Movement of Chum Salmon in Nearshore Marine Waters of Northern Norton Sound, 2015-2016
    Fishery Data Series No. 18-15 Use of Acoustic Tags to Examine Movement of Chum Salmon in Nearshore Marine Waters of Northern Norton Sound, 2015-2016 by Jenefer Bell Kevin Keith and Brendan Scanlon May 2018 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Mathematics, statistics centimeter cm Alaska Administrative all standard mathematical deciliter dL Code AAC signs, symbols and gram g all commonly accepted abbreviations hectare ha abbreviations e.g., Mr., Mrs., alternate hypothesis HA kilogram kg AM, PM, etc. base of natural logarithm e kilometer km all commonly accepted catch per unit effort CPUE liter L professional titles e.g., Dr., Ph.D., coefficient of variation CV meter m R.N., etc. common test statistics (F, t, χ2, etc.) milliliter mL at @ confidence interval CI millimeter mm compass directions: correlation coefficient east E (multiple) R Weights and measures (English) north N correlation coefficient cubic feet per second ft3/s south S (simple) r foot ft west W covariance cov gallon gal copyright degree (angular ) ° inch in corporate suffixes: degrees of freedom df mile mi Company Co.
    [Show full text]
  • Cup Tagging of a Small Delphinid Species, Stenella Attenuata: Insights Into Whistle Characteristics
    Notes MARINE MAMMAL SCIENCE, **(*): ***–*** (*** 2016) © 2016 Society for Marine Mammalogy DOI: 10.1111/mms.12376 Successful suction-cup tagging of a small delphinid species, Stenella attenuata: Insights into whistle characteristics TAMMY L. SILVA,1 Biology Department, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts 02747, U.S.A.; T. ARAN MOONEY AND LAELA S. SAYIGH, Biology Department, Woods Hole Oceanographic Institution, MS#50, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, U.S.A.; ROBIN W. BAIRD, Cascadia Research Collective, 218 ½ W. 4th Avenue, Olympia, Washington 98501, U.S.A.; PETER L. TYACK, Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews KY16 8LB, United Kingdom. The Delphinidae is the most diverse family of cetaceans, with 38 species recog- nized. Small pelagic delphinids are also the most abundant cetaceans world-wide, yet their communication and behavior remain poorly understood. Many populations live in relatively remote habitats, which creates challenges in accessing study animals. Small odontocete species often face numerous anthropogenic stressors. For example, many pelagic delphinids incur significant interactions with fisheries (Gerrodette and Forcada 2005, Geijer and Read 2013). With a wide distribution, many delphinid populations utilize habitats that also are important for human seagoing activities that produce intense sound, such as seismic surveys or naval sonar exercises that may dis- turb or harm these odontocetes. Many U.S. naval sonar exercises take place on naval training ranges such as those in Hawai‘i (Baird et al. 2013), California (Carretta et al. 1995, Henderson et al. 2014), and the Bahamas (DeRuiter et al.
    [Show full text]
  • Fish Sound Production and Acoustic Telemetry Reveal Behaviors and Spatial Patterns Associated with Spawning Aggregations of Two Caribbean Groupers
    Vol. 518: 239–254, 2015 MARINE ECOLOGY PROGRESS SERIES Published January 7 doi: 10.3354/meps11060 Mar Ecol Prog Ser Fish sound production and acoustic telemetry reveal behaviors and spatial patterns associated with spawning aggregations of two Caribbean groupers Timothy J. Rowell1,3,*, Richard S. Nemeth2, Michelle T. Schärer3, Richard S. Appeldoorn3 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA 2Center for Marine and Environmental Studies, University of the Virgin Islands, 2 John Brewer’s Bay, St. Thomas, United States Virgin Islands 00802, USA 3Department of Marine Sciences and Caribbean Coral Reef Institute, University of Puerto Rico, Mayagüez, PO Box 9000, Mayagüez, Puerto Rico 00681-9013, USA ABSTRACT: Regional abundances of Nassau grouper Epinephelus striatus and yellowfin grouper Mycteroperca venenosa have declined due to overfishing of their spawning aggregations, prompting permanent and seasonal fisheries closures in the US Virgin Islands (USVI). As both species produce sounds associated with reproductive behaviors (courtship-associated sounds; CAS), passive acoustic and acoustic telemetry methods were used to determine temporal patterns of reproductive activity, site usage, and fish movements in order to assess the effectiveness of cur- rent management strategies at 2 marine protected areas (MPAs) in the USVI: the Grammanik Bank (GB) and Hind Bank Marine Conservation District (MCD). Patterns of sound production and ultrasonic acoustic tag detections showed that both species formed spawning aggregations from January through May at the GB, highlighting the current seasonal regulations (1 February to 30 April) as insufficient for protecting spawning stocks during the entire reproductive season.
    [Show full text]