Downloadable .Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Downloadable .Pdf MAKING MICROBATTERIES BETTER ACCREDITED TEST FACILITY Animal–Tracking PNNL is home to the Bio-Acoustics & Flow Laboratory, the only lab in the nation accredited by the American Association for Laboratory Length: 6 mm Accreditation to ISO/IEC 17025:2005 for hydrophone sensitivity Width: 3 mm measurements and power level measurements of sound sources for Technologies Weight 0.07 g frequencies from 50 kHz to 500 kHz for both military equipment and commercial components. This certification permits us to perform Capacity: ~ 7.5 mAh primary certified testing on instruments made by others or ourselves, reducing costs and providing significant flexibility in testing. ABOUT PNNL AND OUR SPONSORS LICENSING AND Pacific Northwest National Laboratory draws on signature capabilities in chemistry, Earth sciences, and data analytics to advance scientific COLLABORATION discovery and create solutions to the nation’s toughest challenges OPPORTUNITIES in energy resiliency and national security. Founded in 1965, PNNL PNNL is seeking companies interested in manufacturing is operated by Battelle for the U.S. Department of Energy’s Office Whether you are microbatteries. Our scientists designed a new tiny battery to of Science. DOE’s Office of Science is the single largest supporter monitoring fish and power fish-monitoring tags because those on the market were of basic research in the physical sciences in the United States and either too big to allow for an injectable tag or didn’t last as long is working to address some of the most pressing challenges of our wildlife behavior, as needed. Slightly larger than a long grain of rice, the PNNL time. For more information, visit PNNL’s News Center. Follow us on evaluating their passage lithium carbon monfluoride battery cuts the weight of current microbatteries by nearly half while packing twice the energy. The Facebook, LinkedIn, and Twitter. through structures, or PNNL microbattery works better in cold water, sending clearer Funding for the technologies described in this brochure has been seeking partnerships signals than current batteries at low temperatures. provided by the Wind and Water Power programs within the DOE’s related to animal- Office of Energy Efficiency and Renewable Energy, the U.S. Army Corps of Engineers, and the Electric Power Research Institute. tracking technologies, SOFTWARE the Department This software, available for licensing, helps collect and analyze the HOW CAN WE HELP YOU? of Energy’s Pacific data necessary to learn more about fish behavior and ecosystems. Northwest National You can tap into PNNL’s expertise through sponsored or collaborative Laboratory is ready to Hydropower Biological Evaluation Tools (HBET) research, and by licensing technologies and software. Qualifying This suite of analytical tools evaluates the physical and biological businesses may be eligible for no-cost technology assistance. work with you. performance of existing, refurbished, or newly installed hydro- Companies also can try out a technology through a six-month non- turbines wherever fish passage is a regulatory concern. The tools exclusive research and option license. include study design, data processing, and biological response Pacific Northwest National Laboratory (PNNL) works with businesses tools with applications to various turbine designs and other passage and other organizations to move its research innovations into alternatives. A centralized database can be accessed remotely. APPLICATIONS the marketplace. Among these available innovations is a suite of HBET is currently based on Sensor Fish data, but is compatible PNNL’s tracking and sensing technologies are applicable to a technologies and software used to better understand fish and wildlife with other measurement technologies, such as acoustic telemetry. CONTACTS wide range of species, research goals, commercial applications, behavior and the hazards they face when encountering dams and and locations: 3D Tracking V2.0 Daniel Deng other structures. Principal Investigator ► Evaluation of fish guidance, behavior, and passage around What we offer. For research with live fish and wildlife, you can access structures, such as hydroelectric dams, using high-accuracy, [email protected] some of the smallest and most lightweight tags available. You may high-efficiency 3D tracking also wish to use the instrumented Sensor Fish, which takes more than 509-372-6120 2,000 measurements per second as it moves through water and around ► Determination of ferry terminal impacts on juvenile structures. You can also access analytical software that supports 3D salmonid movements in salt water Sara Hunt location tracking and fish passage evaluation. ► Assessment of freshwater and marine habitats Commercialization Manager Validated field experience. Since 2005, more than 100,000 fish in ► Observation of predator-prey interactions the U.S., Australia, Brazil, and East Asian countries have been tracked [email protected] ► Determination of water temperature stratification and dis- and studied using tags from this suite of technologies. With the solved gas effects on fish survival and migration behavior 206-528-3535 results, government, academic, and commercial organizations are: ► Expansion to applications that include tagging bats, birds, ► Gaining a better understanding of the impacts of dams and cli- This software tool accurately and efficiently estimates the time Web Resources small mammals, and amphibians. mate change on fish sequence of 3D locations of fish tagged with transmitters. It www.pnnl.gov collects enough detail to assess the function of dam-passage ► Making more informed decisions about designs of turbines and design alternatives, for example. It estimates a fish’s location by http://availabletechnologies.pnnl.gov other in-water structures calculating the time difference of arrival from all hydrophones http://jsats.pnnl.gov ► that detect the transmission from the tag on that fish. During field Submitting more accurate, site-specific data to satisfy permitting tests at several dams, 3D Tracking V2.0 performed significantly and environmental reporting requirements. better than other available solvers. Working with us. We have developed and validated these technologies with fish; however, they are also available for testing with small mammals and amphibians. We would love to talk with you about licensing these technologies JULY 2019 PNNL-SA-122953 or customizing them through collaborative research. INJECTABLE ACOUSTIC TAG SELF-POWERED ACOUSTIC TAG Rather than requiring surgical placement, this tag can be inserted into fish with a simple This tag uses the movement of the fish to Specification Highlights needle injection, allowing the fish to heal quickly and providing dependable information power and recharge batteries rather than ► Length: Can vary based on power about their behavior. This injectable tag is powered by a tiny high-energy-density 3-volt relying solely on a battery—allowing data to requirements and fish characteristics of battery. It features a delayed start option, a temperature sensor, and the ability to transmit be collected for well over a year instead of specific applications. A 100-mm tag was two alternating codes. It has been field-tested with Chinook salmon and juvenile only a month or two. A longer monitoring used for 53-cm rainbow trout and a muskellunge and tested in the lab with Chinook salmon, delta smelt, and catfish. It is period allows for a more complete view of 77-mm tag was used for 38-cm juvenile now commercially available through Advanced Telemetry Systems. fish behavior and of the impact of river obstructions for fish with longer migration patterns, such white sturgeon. as sturgeon, lamprey, and eels. Specification Highlights ► Weight, option 1, without a battery: 1.05 There are two designs for the transmitter. In one, the energy is generated and used in real time, so and 0.80 g, respectively ► Dry weight: 0.22 g the fish has to be moving for the tag to have enough power to send a signal. In the second design, ► Length: 15 mm a battery is recharged with energy from the fish’s movement and stored until needed. The self- ► Weight, option 2, with a battery: 1.10 powered tags were lab-tested with juvenile white sturgeon and rainbow trout. In both species, the and 0.85 g, respectively ► Diameter: 3.38 mm tags were implanted in a tiny incision in a quick 75-second process. Patent: 15/088,032 ► Transmitter life: 120 days at 3-second ping rate (PNNL version). PNNL’s acoustic telemetry tags release beeps, unique to each tagged fish. Receivers placed in Patents: 10,033,469 and 10,033,470 rivers, lakes, or other waterbodies receive the signals as the tagged fish swim by, and collect data We also demonstrated the feasibility of a low-frequency design at ~200 kHz, which that help researchers map the precise 3D location INJECTABLE RADIO-FREQUENCY (RF) TAG of each fish and determine if those fish were injured is more suitable for marine applications. It has a source level of 150 dB and a tag life during their travels. of 140 days at 5-second ping rate. Compared to the smallest low-frequency acoustic This small and powerful RF tag with a Specification Highlights diameter of just 2.95 mm can be injected tag commercially available, our design is 16 dB higher in source level, significantly Coded version lighter in weight, and lasts three times longer. into fish using a 9-gauge needle. Two designs: One transmits coded signals ► Length: 11.85 mm and the other transmits uncoded signals. ► Weight: 0.16 g - about 0.1 g lighter than
Recommended publications
  • The Importance of Sample Size in Marine Megafauna Tagging Studies
    Ecological Applications, 0(0), 2019, e01947 © 2019 by the Ecological Society of America The importance of sample size in marine megafauna tagging studies 1,17 2 3 4 5 6 6 A. M. M. SEQUEIRA, M. R. HEUPEL, M.-A. LEA, V. M. EGUILUZ, C. M. DUARTE, M. G. MEEKAN, M. THUMS, 7 8 9 6 4 10 H. J. CALICH, R. H. CARMICHAEL, D. P. COSTA, L. C. FERREIRA, J. F ERNANDEZ -GRACIA, R. HARCOURT, 11 10 10,12 13,14 15 16 A.-L. HARRISON, I. JONSEN, C. R. MCMAHON, D. W. SIMS, R. P. WILSON, AND G. C. HAYS 1IOMRC and The University of Western Australia Oceans Institute, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 2Australian Institute of Marine Science, PMB No 3, Townsville, Queensland 4810 Australia 3Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, Tasmania 7000 Australia 4Instituto de Fısica Interdisciplinar y Sistemas Complejos IFISC (CSIC – UIB), E-07122 Palma de Mallorca, Spain 5Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal 23955-6900 Saudi Arabia 6Australian Institute of Marine Science, Indian Ocean Marine Research Centre (M096), University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 7IOMRC and The University of Western Australia Oceans Institute, Oceans Graduate School, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 8Dauphin Island Sea Lab and University of South Alabama, 101 Bienville Boulevard, Dauphin Island, Alabama 36528 USA 9Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060 USA 10Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109 Australia 11Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012 MRC 5503 MBC, Washington, D.C.
    [Show full text]
  • Acoustic Tagging of Large Sharks – Potential for Acoustic Interference
    CITIZEN SCIENCE – CS 05-11-17) Acoustic tagging of large sharks – Potential for acoustic interference (CS 05-11-17) – Kim Allen independent researcher Citizen science overview This paper is one of a series of unfunded, independent research initiatives that question mainstream science, Animal ethics approaches and Governments’ apparent acceptance of “Validated” science in the area of wildlife electronic tracking. Clearly, the Australian shark issue is extremely contentious as well as political and emotionally charged. Over $100 million has been expended by State and Federal governments in an attempt to find answers and make our beaches safer. Unfortunately, at no stage has a strategic approach been taken to identify the key disciplines of science that need to be considered, assessed, and applied. Significant investment has been directed into the construction and support of wide-scale acoustic receiver arrays and individual sensors as well as significant tagging of large sharks off our coastline for research and public safety. Previous satellite archival tagging programs conducted by CSIRO gave us good insight into shark movements, however since this time despite significant investment minimal progress appears to have been made and the potential risks appear to have been ignored. This CSIRO document clearly outlines the types of tags that are used for shark research, it also clearly defines the recommended protocols that should be used for shark tagging operations. From photographic details shared in the public domain it is clear that shark tagging operations undertaken by Fisheries departments don’t follow these stringent protocols. (www.cmar.csiro.au/e-print/open/2009/bradfordrw a.pdf ) It is extremely difficult for “Unqualified” Citizen scientists to challenge mainstream research particularly given the potential erosion of future funding sources if technical criticism is determined as valid.
    [Show full text]
  • Conducting and Interpreting Fish Telemetry Studies
    Manuscript Click here to access/download;Manuscript;Telemetry considerations RFBF submission REVISED clean.docx Click here to view linked References 1 2 3 4 1 Conducting and interpreting fish telemetry studies: Considerations for researchers and 5 2 resource managers 6 7 8 3 Submission to: Reviews in Fish Biology and Fisheries 9 a,b a c d 10 4 Jacob W. Brownscombe , Elodie Ledee , Graham D. Raby , Daniel P. Struthers , Lee F.G. e a f g 11 5 Gutowsky , Vivian M. Nguyen , Nathan Young , Michael J.W. Stokesbury , Christopher M. 12 6 Holbrookh, Travis O. Brendeni, Christopher S. Vandergootj, Karen J. Murchiek, Kim Whoriskeyl, 13 7 Joanna Mills-Flemmingl, Steven T. Kesselk, Charles C. Kruegerm, Steven J. Cookea 14 15 8 a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of 16 17 9 Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, 18 10 ON, K1S 5B6, Canada 19 20 11 b Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, B4H 4R2, 21 12 Canada 22 23 13 c Great Lakes Institute for Environmental Research, University of Windsor, 2601 Union St., 24 14 Windsor, ON, N9B 3P4, Canada 25 26 d 27 15 Parks Canada, Banff National Park, Box 900, Banff, AB, T1L 1K2, Canada 28 e 29 16 Aquatic Research & Monitoring Section, Ontario Ministry of Natural Resources & Forestry, 30 17 Trent University, 2140 East Bank Drive, Peterborough, ON, K9L 1Z8, Canada 31 32 18 f Department of Sociology and Anthropology, University of Ottawa, Ottawa, ON, K1N 6N5, 33 19 Canada 34 g 35 20 Department of Biology, Acadia University, 33 Westwood Ave., Wolfville, NS, B4P 2R6, 36 37 21 Canada 38 h 39 22 U.S.
    [Show full text]
  • Ecological Engineering Response of Seaward-Migrating European
    Ecological Engineering 127 (2019) 480–486 Contents lists available at ScienceDirect Ecological Engineering journal homepage: www.elsevier.com/locate/ecoleng Response of seaward-migrating European eel (Anguilla anguilla) to an T infrasound deterrent ⁎ Adam T. Pipera,b, , Paul R. Whitec, Rosalind M. Wrightd, Timothy G. Leightonc, Paul S. Kempa a International Centre for Ecohydraulics Research, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK b Institute of Zoology, Zoological Society of London, Regent’s Park, NW1 4RY London, UK c Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK d Environment Agency, Rivers House, Threshelfords Business Park, Inworth Road, Feering CO5 9SE, UK ARTICLE INFO ABSTRACT Keywords: Behavioural guidance technologies that employ stimuli to attract or repel fish offer potential to enhance, oreven Behavioural guidance replace, costly physical and mechanical screens traditionally used to protect fish at river infrastructure such as Acoustic telemetry hydropower and water intakes. At these structures, eel can suffer high rates of damage and mortality if entrained Bypass in pumps or turbines, or impinged on screens intended to protect them. This study used acoustic telemetry to Fishway quantify the behavioural response of adult European eel (Anguilla anguilla) to infrasound (12 Hz) under field Fish migration settings. Eel (n = 50) were tracked after release immediately upstream of the forebay of a redundant hydro- power facility. An infrasound deterrent located at the water intake either emitted continuously (ON) or was switched OFF. Treatment (ON/OFF) was alternated nightly over 10 consecutive nights with five eel released during a single trial conducted each night.
    [Show full text]
  • External Attachment of Acoustic Tags to Deepwater Reef Fishes- an Alternate
    This article was downloaded by: [Texas A&M University Corpus Christi] On: 30 June 2015, At: 12:45 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 External Attachment of Acoustic Tags to Deepwater Reef Fishes: an Alternate Approach When Internal Implantation Affects Experimental Design Matthew W. Johnsona, Sandra L. Diamondbc & Gregory W. Stunza a Harte Research Institute for Gulf of Mexico Studies, Texas A&M University–Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412-5869, USA b Department of Biology, Texas Tech University, Lubbock, Texas 79409, USA c School of Science and Health, Hawkesbury Campus, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia Published online: 30 Jun 2015. Click for updates To cite this article: Matthew W. Johnson, Sandra L. Diamond & Gregory W. Stunz (2015) External Attachment of Acoustic Tags to Deepwater Reef Fishes: an Alternate Approach When Internal Implantation Affects Experimental Design, Transactions of the American Fisheries Society, 144:4, 851-859, DOI: 10.1080/00028487.2015.1042556 To link to this article: http://dx.doi.org/10.1080/00028487.2015.1042556 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • Future Directions in Research on Beaked Whales
    25th Meeting of the Advisory Committee ASCOBANS/AC25/Inf.5.1 Stralsund, Germany, 17-19 September 2019 Dist.16 August 2019 Agenda Item 5.1 Special Species Sessions Beaked Whales Information Document 5.1 Future Directions in Research on Beaked Whales Action Requested Take Note Submitted by Hooker et al. Note: Delegates are kindly reminded to bring their own document copies to the meeting, if needed. fmars-05-00514 January 23, 2019 Time: 17:10 # 1 REVIEW published: 25 January 2019 doi: 10.3389/fmars.2018.00514 Future Directions in Research on Beaked Whales Sascha K. Hooker1*, Natacha Aguilar De Soto2, Robin W. Baird3, Emma L. Carroll1,4, Diane Claridge1,5, Laura Feyrer6, Patrick J. O. Miller1, Aubrie Onoufriou1,2, Greg Schorr7, Eilidh Siegal1 and Hal Whitehead6 1 Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom, 2 BIOECOMAC Department of Animal Biology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain, 3 Cascadia Research Collective, Olympia, WA, United States, 4 School of Biological Sciences, The University of Auckland, Auckland, New Zealand, 5 Bahamas Marine Mammal Research Organisation, Abaco, Bahamas, 6 Department of Biology, Dalhousie University, Halifax, NS, Canada, 7 Marine Ecology and Telemetry Research, Seabeck, WA, United States Until the 1990s, beaked whales were one of the least understood groups of large mammals. Information on northern bottlenose whales (Hyperoodon ampullatus) and Baird’s beaked whales (Berardius bairdii) was available from data collected during Edited by: Lars Bejder, whaling, however, little information existed on the smaller species other than occasional University of Hawai‘i at Manoa, data gleaned from beach-cast animals.
    [Show full text]
  • Acoustic Telemetry and Fisheries Management
    INVITED FEATURE ARTICLE Ecological Applications, 0(0), 2017, pp. 1–19 © 2017 by the Ecological Society of America Acoustic telemetry and fisheries management 1,8 2 3 4 GLENN T. C ROSSIN, MICHELLE R. HEUPEL, CHRISTOPHER M. HOLBROOK, NIGEL E. HUSSEY, 5,6 7 4 7 SUSAN K. LOWERRE-BARBIERI, VIVIAN M. NGUYEN, GRAHAM D. RABY, AND STEVEN J. C OOKE 1Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia B4H 4R2 Canada 2Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia 3U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, Michigan 49759 USA 4Department of Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4 Canada 5Florida Fish & Wildlife Research Institute, 100 8th Avenue SE, St. Petersburg, Florida 33701 USA 6Fisheries and Aquatic Science Program, School of Forest Resources and Conservation, University of Florida, 7922 North West 71st Street, Gainesville, Florida 32653 USA 7Fish Ecology & Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 Canada Abstract. This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applica- tions titled Acoustic Telemetry and Fisheries Management. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy.
    [Show full text]
  • Forum „Fischschutz Und Fischabstieg“ Arbeitshilfe Zur Standörtlichen
    Gefördert durch: Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit Forum „Fischschutz und Fischabstieg“ Arbeitshilfe zur standörtlichen Evaluierung des Fischschutzes und Fischabstieges Von Arbeitsgemeinschaft Wolfgang Schmalz FLUSS, Breitenbach/Deutschland Falko Wagner IGF, Jena/Deutschland Damien Sonny Profish, Naninne/Belgien Im Auftrag des Ecologic Institutes gemeinnützige GmbH März 2015 Autoren: SCHMALZ, Wolfgang Dipl.-Biol., FLUSS (Fischökologische und Limnologische Untersu- chungsStelle Südthüringen); Vertreter der Bietergemeinschaft WAGNER, Falko Dr. rer. nat., IGF (Institut für Gewässerökologie & Fischereibiologie Jena) SONNY, Damien Dr. rer. nat., Profish (ProFish Technology SA) unter Mitarbeit von: EBEL, Guntram Dr. rer. agr., BGF (Büro für Gewässerökologie und Fischereibiologie) HÜBNER, Dirk Dr. rer. nat., BFS (Büro für Fisch- und Gewässerökologische Studien) LINDIG, Andreas Dipl.-Biol., IGF (Institut für Gewässerökologie & Fischereibiologie Jena) SCHMALZ, Maria Dipl.-Biol., IWSÖ GmbH (Institut für Wasserwirtschaft Siedlungswas- serbau und Ökologie, Hydrolabor Schleusingen) SCHNEIDER, Jörg Dr. rer. nat., BFS (Büro für Fisch- und Gewässerökologische Studien) Für die fachliche Unterstützung wird gedankt: Forum Fischschutz und der Mitglieder der Lenkungsgruppe siehe http://forum- Lenkungsgruppe des Forums fischschutz.de/lenkungsgruppe HAAS, Christian Dipl.-Ing., I AM HYDRO, Haas & Thumser GbR HASSINGER, Reinhard Dr.-Ing., Universität Kassel, Versuchsanstalt und Prüfstelle für Umwelt-
    [Show full text]
  • Investigating the Efficacy of a Proposed Marine Protected Area for the Endangered Humphead Wrasse Cheilinus Undulatus at a Remote Island Group in Seychelles
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2020 Investigating the efficacy of a oposedpr marine protected area for the Endangered humphead wrasse Cheilinus undulatus at a remote island group in Seychelles Ryan Daly Clare A. Keating Andrew E. Gray Lauren R. Peel Luke Gordon See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Daly, Ryan; Keating, Clare A.; Gray, Andrew E.; Peel, Lauren R.; Gordon, Luke; Lea, James S.E.; Clarke, Christopher R.; and Weng, Kevin C., Investigating the efficacy of a oposedpr marine protected area for the Endangered humphead wrasse Cheilinus undulatus at a remote island group in Seychelles (2020). Endangered Species Research, 42, 7-20. doi: 10.3354/esr01035 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors Ryan Daly, Clare A. Keating, Andrew E. Gray, Lauren R. Peel, Luke Gordon, James S.E. Lea, Christopher R. Clarke, and Kevin C. Weng This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1964 Vol. 42: 7–20, 2020 ENDANGERED SPECIES RESEARCH Published May 14 https://doi.org/10.3354/esr01035 Endang Species Res OPENPEN ACCESSCCESS Investigating the efficacy of a proposed marine protected area for the Endangered humphead wrasse Cheilinus undulatus at a remote island group in Seychelles Ryan Daly1,2,3,*, Clare A.
    [Show full text]
  • Use of Acoustic Tags to Examine Movement of Chum Salmon in Nearshore Marine Waters of Northern Norton Sound, 2015-2016
    Fishery Data Series No. 18-15 Use of Acoustic Tags to Examine Movement of Chum Salmon in Nearshore Marine Waters of Northern Norton Sound, 2015-2016 by Jenefer Bell Kevin Keith and Brendan Scanlon May 2018 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Mathematics, statistics centimeter cm Alaska Administrative all standard mathematical deciliter dL Code AAC signs, symbols and gram g all commonly accepted abbreviations hectare ha abbreviations e.g., Mr., Mrs., alternate hypothesis HA kilogram kg AM, PM, etc. base of natural logarithm e kilometer km all commonly accepted catch per unit effort CPUE liter L professional titles e.g., Dr., Ph.D., coefficient of variation CV meter m R.N., etc. common test statistics (F, t, χ2, etc.) milliliter mL at @ confidence interval CI millimeter mm compass directions: correlation coefficient east E (multiple) R Weights and measures (English) north N correlation coefficient cubic feet per second ft3/s south S (simple) r foot ft west W covariance cov gallon gal copyright degree (angular ) ° inch in corporate suffixes: degrees of freedom df mile mi Company Co.
    [Show full text]
  • Cup Tagging of a Small Delphinid Species, Stenella Attenuata: Insights Into Whistle Characteristics
    Notes MARINE MAMMAL SCIENCE, **(*): ***–*** (*** 2016) © 2016 Society for Marine Mammalogy DOI: 10.1111/mms.12376 Successful suction-cup tagging of a small delphinid species, Stenella attenuata: Insights into whistle characteristics TAMMY L. SILVA,1 Biology Department, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts 02747, U.S.A.; T. ARAN MOONEY AND LAELA S. SAYIGH, Biology Department, Woods Hole Oceanographic Institution, MS#50, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, U.S.A.; ROBIN W. BAIRD, Cascadia Research Collective, 218 ½ W. 4th Avenue, Olympia, Washington 98501, U.S.A.; PETER L. TYACK, Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews KY16 8LB, United Kingdom. The Delphinidae is the most diverse family of cetaceans, with 38 species recog- nized. Small pelagic delphinids are also the most abundant cetaceans world-wide, yet their communication and behavior remain poorly understood. Many populations live in relatively remote habitats, which creates challenges in accessing study animals. Small odontocete species often face numerous anthropogenic stressors. For example, many pelagic delphinids incur significant interactions with fisheries (Gerrodette and Forcada 2005, Geijer and Read 2013). With a wide distribution, many delphinid populations utilize habitats that also are important for human seagoing activities that produce intense sound, such as seismic surveys or naval sonar exercises that may dis- turb or harm these odontocetes. Many U.S. naval sonar exercises take place on naval training ranges such as those in Hawai‘i (Baird et al. 2013), California (Carretta et al. 1995, Henderson et al. 2014), and the Bahamas (DeRuiter et al.
    [Show full text]
  • Fish Sound Production and Acoustic Telemetry Reveal Behaviors and Spatial Patterns Associated with Spawning Aggregations of Two Caribbean Groupers
    Vol. 518: 239–254, 2015 MARINE ECOLOGY PROGRESS SERIES Published January 7 doi: 10.3354/meps11060 Mar Ecol Prog Ser Fish sound production and acoustic telemetry reveal behaviors and spatial patterns associated with spawning aggregations of two Caribbean groupers Timothy J. Rowell1,3,*, Richard S. Nemeth2, Michelle T. Schärer3, Richard S. Appeldoorn3 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA 2Center for Marine and Environmental Studies, University of the Virgin Islands, 2 John Brewer’s Bay, St. Thomas, United States Virgin Islands 00802, USA 3Department of Marine Sciences and Caribbean Coral Reef Institute, University of Puerto Rico, Mayagüez, PO Box 9000, Mayagüez, Puerto Rico 00681-9013, USA ABSTRACT: Regional abundances of Nassau grouper Epinephelus striatus and yellowfin grouper Mycteroperca venenosa have declined due to overfishing of their spawning aggregations, prompting permanent and seasonal fisheries closures in the US Virgin Islands (USVI). As both species produce sounds associated with reproductive behaviors (courtship-associated sounds; CAS), passive acoustic and acoustic telemetry methods were used to determine temporal patterns of reproductive activity, site usage, and fish movements in order to assess the effectiveness of cur- rent management strategies at 2 marine protected areas (MPAs) in the USVI: the Grammanik Bank (GB) and Hind Bank Marine Conservation District (MCD). Patterns of sound production and ultrasonic acoustic tag detections showed that both species formed spawning aggregations from January through May at the GB, highlighting the current seasonal regulations (1 February to 30 April) as insufficient for protecting spawning stocks during the entire reproductive season.
    [Show full text]