bioRxiv preprint doi: https://doi.org/10.1101/042432; this version posted March 27, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Classification: Biological Sciences - Biochemistry A Novel Initiation Pathway in Escherichia Coli Transcription Eitan Lerner*†, SangYoon Chung*†, Benjamin L. Allen‡, Shuang Wang§, Jookyung J. Lee¶, Winson S. Lu*, Wilson L. Grimaud*, Antonino Ingargiola*, Xavier Michalet*, Yazan Alhadid*, Sergei Borukhov¶, Terence Strick§, Dylan J. Taatjes‡, Shimon Weiss*,#,||,** Affiliations: *Dept. of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA 90095. ‡Dept. of Chemistry & Biochemistry, University of Colorado, Boulder. §Institut Jacques Monod, Centre National de la Recherche Scientifique and University of Paris Diderot and Sorbonne Paris Cité, Paris, France. ¶Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA. #California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095. ||Dept. of Physiology, University of California Los Angeles, Los Angeles, CA 90095. † Equal contributions ** Corresponding author:
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/042432; this version posted March 27, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Initiation is a highly regulated, rate-limiting step in transcription. We employed a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with magnetic tweezer experiments and other methods, showed that, contrary to expectations, RNAP exit kinetics from later stages of initiation (e.g.