Card Uses a Minor Groove Wedge Mechanism to Stabilize the RNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploring Antibiotic Susceptibility, Resistome and Mobilome Structure of Planctomycetes from Gemmataceae Family
sustainability Article Exploring Antibiotic Susceptibility, Resistome and Mobilome Structure of Planctomycetes from Gemmataceae Family Anastasia A. Ivanova *, Kirill K. Miroshnikov and Igor Y. Oshkin Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 119071 Moscow, Russia; [email protected] (K.K.M.); [email protected] (I.Y.O.) * Correspondence: [email protected] Abstract: The family Gemmataceae accomodates aerobic, chemoorganotrophic planctomycetes with large genome sizes, is mostly distributed in freshwater and terrestrial environments. However, these bacteria have recently also been found in locations relevant to human health. Since the antimi- crobial resistance genes (AMR) from environmental resistome have the potential to be transferred to pathogens, it is essential to explore the resistant capabilities of environmental bacteria. In this study, the reconstruction of in silico resistome was performed for all nine available gemmata genomes. Furthermore, the genome of the newly isolated yet-undescribed strain G18 was sequenced and added to all analyses steps. Selected genomes were screened for the presence of mobile genetic elements. The flanking location of mobilizable genomic milieu around the AMR genes was of particular in- terest since such colocalization may appear to promote the horizontal gene transfer (HGT) events. Moreover the antibiotic susceptibility profile of six phylogenetically distinct strains of Gemmataceae planctomycetes was determined. Citation: Ivanova, A.A.; Keywords: planctomycetes; Gemmataceae; antibiotic resistance profile; resistome; mobilome Miroshnikov, K.K.; Oshkin, I.Y. Exploring Antibiotic Susceptibility, Resistome and Mobilome Structure of Planctomycetes from Gemmataceae 1. Introduction Family. Sustainability 2021, 13, 5031. Several decades ago humanity faced the global issue of growing antibiotic resistance https://doi.org/10.3390/su13095031 of bacterial pathogens in clinic [1–5]. -
Expanding the Chlamydiae Tree
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040 Expanding the Chlamydiae tree Insights into genome diversity and evolution JENNAH E. DHARAMSHI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1203-3 UPPSALA urn:nbn:se:uu:diva-439996 2021 Dissertation presented at Uppsala University to be publicly examined in A1:111a, Biomedical Centre (BMC), Husargatan 3, Uppsala, Tuesday, 8 June 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Prof. Dr. Alexander Probst (Faculty of Chemistry, University of Duisburg-Essen). Abstract Dharamshi, J. E. 2021. Expanding the Chlamydiae tree. Insights into genome diversity and evolution. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040. 87 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1203-3. Chlamydiae is a phylum of obligate intracellular bacteria. They have a conserved lifecycle and infect eukaryotic hosts, ranging from animals to amoeba. Chlamydiae includes pathogens, and is well-studied from a medical perspective. However, the vast majority of chlamydiae diversity exists in environmental samples as part of the uncultivated microbial majority. Exploration of microbial diversity in anoxic deep marine sediments revealed diverse chlamydiae with high relative abundances. Using genome-resolved metagenomics various marine sediment chlamydiae genomes were obtained, which significantly expanded genomic sampling of Chlamydiae diversity. These genomes formed several new clades in phylogenomic analyses, and included Chlamydiaceae relatives. Despite endosymbiosis-associated genomic features, hosts were not identified, suggesting chlamydiae with alternate lifestyles. Genomic investigation of Anoxychlamydiales, newly described here, uncovered genes for hydrogen metabolism and anaerobiosis, suggesting they engage in syntrophic interactions. -
In Vitro Comparison of Initiation Properties of Bacteriophage X Wild-Type PR and X3 Mutant Promoters (RNA Polymerase Mechanism/Abortive Initiation) DIANE K
Proc. Natl. Acad. Sci. USA Vol. 77, No. 11, pp. 6381-6385, November 1980 Biochemistry In vitro comparison of initiation properties of bacteriophage X wild-type PR and x3 mutant promoters (RNA polymerase mechanism/abortive initiation) DIANE K. HAWLEY AND WILLIAM R. MCCLURE Department of Biochemistry and Molecular Biology, Conant Laboratory, Harvard University, Cambridge, Massachusetts 02138 Communicated by Mark Ptashne, July 28,1980 ABSTRACT The in vitro initiation properties of the PR Our analysis is based on a simple two-step model of pro- promoter of bacteriophage X and of a PR mutant, x3, were moter-polymerase interaction first proposed by Zillig and his compared. Using the abortive initiation reaction, we measured coworkers (4). According to this model, RNA polymerase first the lags in the approach to a final steady-state rate when dinu- binds to the DNA in a transcriptionally inactive "closed" cleotide synthesis was initiated with RNA polymerase. These unwinds the DNA to form the lags corresponded to the average times required for the forma- complex (RPc) and subsequently tion of transcriptionally active open complexes. By measuring "open" complex (RPO) which then binds the nucleoside tri- the lags at different RNA polymerase concentrations, we could phosphates and initiates transcription (5). Formation of the open separate open complex formation into two steps, based on a complex can be described as follows: simple model in which the initial bimolecular association of free ks k2 promoter and polymerase in a closed complex is followed by an R + Pa SRPco- RPo. [1] isomerization to the open complex. The contribution of each k-1 k-2 step to the overall rate of open complex formation was quanti- tated for both promoters. -
Development of the Equine Hindgut Microbiome in Semi-Feral and Domestic Conventionally-Managed Foals Meredith K
Tavenner et al. Animal Microbiome (2020) 2:43 Animal Microbiome https://doi.org/10.1186/s42523-020-00060-6 RESEARCH ARTICLE Open Access Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals Meredith K. Tavenner1, Sue M. McDonnell2 and Amy S. Biddle1* Abstract Background: Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results: Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein. -
Backtracked and Paused Transcription Initiation Intermediate of Escherichia Coli RNA Polymerase
Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase Eitan Lernera,1, SangYoon Chunga,1, Benjamin L. Allenb,1, Shuang Wangc,1, Jookyung Leed, Shijia W. Lua, Logan W. Grimauda, Antonino Ingargiolaa, Xavier Michaleta, Yazan Alhadida, Sergei Borukhovd, Terence R. Strickc,e,f,2, Dylan J. Taatjesb,2, and Shimon Weissa,g,h,2 aDepartment of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095; bDepartment of Chemistry & Biochemistry, University of Colorado, Boulder, CO 80309; cInstitut Jacques Monod, Centre National de la Recherche Scientifique (CNRS), UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; dRowan University School of Osteopathic Medicine, Stratford, NJ 08084; eInstitut de Biologie de l’Ecole Normale Supérieure, Institut de Biologie de l’Ecole Normale Superieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, F-75005 Paris, France; fProgramme Equipe Labellisées, Ligue Contre le Cancer, 75013 Paris, France; gMolecular Biology Institute, University of California, Los Angeles, CA 90095; and hDepartment of Physiology, University of California, Los Angeles, CA 90095 Edited by Steven M. Block, Stanford University, Stanford, CA, and approved September 13, 2016 (received for review March 30, 2016) Initiation is a highly regulated, rate-limiting step in transcription. the PRS, nascent RNA enters the RNA exit channel and tran- We used a series of approaches to examine the kinetics of RNA scription enters the elongation stage. polymerase (RNAP) transcription initiation in greater detail. Quenched In AI, the interactions between σ70 and the PRS limit the kinetics assays, in combination with gel-based assays, showed that lengths of abortive transcripts. -
Characterization of the First Cultured Representative of Verrucomicrobia Subdivision 5 Indicates the Proposal of a Novel Phylum
The ISME Journal (2016) 10, 2801–2816 OPEN © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum Stefan Spring1, Boyke Bunk2, Cathrin Spröer3, Peter Schumann3, Manfred Rohde4, Brian J Tindall1 and Hans-Peter Klenk1,5 1Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; 2Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; 3Department Central Services, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany and 4Central Facility for Microscopy, Helmholtz-Centre of Infection Research, Braunschweig, Germany The recently isolated strain L21-Fru-ABT represents moderately halophilic, obligately anaerobic and saccharolytic bacteria that thrive in the suboxic transition zones of hypersaline microbial mats. Phylogenetic analyses based on 16S rRNA genes, RpoB proteins and gene content indicated that strain L21-Fru-ABT represents a novel species and genus affiliated with a distinct phylum-level lineage originally designated Verrucomicrobia subdivision 5. A survey of environmental 16S rRNA gene sequences revealed that members of this newly recognized phylum are wide-spread and ecologically important in various anoxic environments ranging from hypersaline sediments to wastewater and the intestine of animals. Characteristic phenotypic traits of the novel strain included the formation of extracellular polymeric substances, a Gram-negative cell wall containing peptidoglycan and the absence of odd-numbered cellular fatty acids. Unusual metabolic features deduced from analysis of the genome sequence were the production of sucrose as osmoprotectant, an atypical glycolytic pathway lacking pyruvate kinase and the synthesis of isoprenoids via mevalonate. -
Molecular Diversity and Ecology of Microbial Plankton Stephen J
02 Giovanni 9-14 6/9/05 9:22 AM Page 9 NATURE|Vol 437|15 September 2005|doi:10.1038/nature04158 INSIGHT REVIEW Molecular diversity and ecology of microbial plankton Stephen J. Giovannoni1 & Ulrich Stingl1 The history of microbial evolution in the oceans is probably as old as the history of life itself. In contrast to terrestrial ecosystems, microorganisms are the main form of biomass in the oceans, and form some of the largest populations on the planet. Theory predicts that selection should act more efficiently in large populations. But whether microbial plankton populations harbour organisms that are models of adaptive sophistication remains to be seen. Genome sequence data are piling up, but most of the key microbial plankton clades have no cultivated representatives, and information about their ecological activities is sparse. Certain characteristics of the ocean environment — the prevailing cultivation of key organisms, metagenomics and ongoing biogeo- low-nutrient state of the ocean surface, in particular — mean it is chemical studies. It seems very likely that the biology of the dominant sometimes regarded as an extreme ecosystem. Fixed forms of nitrogen, microbial plankton groups will be unravelled in the years ahead. phosphorus and iron are often at very low or undetectable levels in the Here we review current knowledge about marine bacterial and ocean’s circulatory gyres, which occur in about 70% of the oceans1. archaeal diversity, as inferred from phylogenies of genes recovered Photosynthesis is the main source of metabolic energy and the basis of from the ocean water column, and consider the implications of micro- the food chain; ocean phytoplankton account for nearly 50% of global bial diversity for understanding the ecology of the oceans. -
Open Complex Scrunching Before Nucleotide Addition Accounts for The
Open complex scrunching before nucleotide addition PNAS PLUS accounts for the unusual transcription start site of E. coli ribosomal RNA promoters Jared T. Winkelmana,1, Pete Chandrangsua,1, Wilma Rossa, and Richard L. Goursea,2 aDepartment of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 Edited by Jeffrey W. Roberts, Cornell University, Ithaca, NY, and approved February 23, 2016 (received for review November 9, 2015) Most Escherichia coli promoters initiate transcription with a purine A recent single-molecule fluorescence resonance energy trans- 7 or 8 nt downstream from the –10 hexamer, but some promoters, fer study showed there can be heterogeneity in transcription including the ribosomal RNA promoter rrnB P1, start 9 nt from the bubble size in open complexes, even for an individual promoter –10 element. We identified promoter and RNA polymerase deter- (8). Thus, spontaneous bubble expansion and contraction can minants of this noncanonical rrnB P1 start site using biochemical account for multiple start sites at some promoters. The variation and genetic approaches including mutational analysis of the pro- in TSS from an individual promoter implies there is flexibility in + moter, Fe2 cleavage assays to monitor template strand positions the placement of template strand DNA by RNAP relative to the near the active-site, and Bpa cross-linking to map the path of open active site of the enzyme. complex DNA at amino acid and nucleotide resolution. We find After formation of the first phosphodiester bond during tran- that mutations in several promoter regions affect transcription scription initiation, the next 5–12 nucleotide addition steps pro- start site (TSS) selection. -
Compartmentalization in PVC Super-Phylum: Evolution and Impact
Pinos et al. Biology Direct (2016) 11:38 DOI 10.1186/s13062-016-0144-3 RESEARCH Open Access Compartmentalization in PVC super- phylum: evolution and impact Sandrine Pinos1,2*, Pierre Pontarotti2, Didier Raoult1, Jean Pierre Baudoin1 and Isabelle Pagnier1 Abstract Background: The PVC super-phylum gathers bacteria from seven phyla (Planctomycetes, Verrucomicrobiae, Chlamydiae, Lentisphaera, Poribacteria, OP3, WWE2) presenting different lifestyles, cell plans and environments. Planctomyces and several Verrucomicrobiae exhibit a complex cell plan, with an intracytoplasmic membrane inducing the compartmentalization of the cytoplasm into two regions (pirellulosome and paryphoplasm). The evolution and function of this cell plan is still subject to debate. In this work, we hypothesized that it could play a role in protection of the bacterial DNA, especially against Horizontal Genes Transfers (HGT). Therefore, 64 bacterial genomes belonging to seven different phyla (whose four PVC phyla) were studied. We reconstructed the evolution of the cell plan as precisely as possible, thanks to information obtained by bibliographic study and electronic microscopy. We used a strategy based on comparative phylogenomic in order to determine the part occupied by the horizontal transfers for each studied genomes. Results: Our results show that the bacteria Simkania negevensis (Chlamydiae) and Coraliomargarita akajimensis (Verrucomicrobiae), whose cell plan were unknown before, are compartmentalized, as we can see on the micrographies. This is one of the first indication of the presence of an intracytoplasmic membrane in a Chlamydiae. The proportion of HGT does not seems to be related to the cell plan of bacteria, suggesting that compartmentalization does not induce a protection of bacterial DNA against HGT. -
Control of Transcription Initiation*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows J. Biosci., Vol. 18, Number 1, March 1993, pp 13–25. © Printed in India. Control of transcription initiation* V NAGARAJA Centre for Generic Engineering, Indian Institute of Science, Bangalore 560 012, India MS received 11 June 1992; revised 23 October 1992 Abstract Mechanism of control of transcription initiation have expanded far beyond the classical operon concept. Control elements are multipartite and well separated from each other. The trans-factors bound to these sites make contacts with RNA polymerase: promoter complexes by DNA bending or looping to influence the initiation event. Activators and repressors are like two faces of the same coin and their function depends on the site of action, mode of interaction with DNA and also the nutritional status of the cell. Keywords. RNA polymerase; promoter; activator; repressor; transcription. 1. Introduction Regulation of gene expression is a fundamental event in every cell and organism. The regulatory events occur during each step of macromolecular synthesis. The control of transcription initiation is by far the major regulatory event determining whether a gene is turned 'on' or 'off'. The enzyme RNA polymerase occupies center stage during this process. A precise, productive initiation is possible only by the direct and specific interaction of the enzyme with functional promoter sequences (Mishra and Chatterji 1993). RNA polymerase is one of the conserved proteins in prokaryotes in terms of its structural organization and function. The size, composition and function of different subunits of core polymerase does not vary much in different organisms. -
Systema Naturae. the Classification of Living Organisms
Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5). -
The Use of Single-Molecule DNA Nanomanipulation to Study Transcription Kinetics by CHEN-YU LIU
The Use of Single-Molecule DNA Nanomanipulation to Study Transcription Kinetics By CHEN-YU LIU A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Computational Biology and Biophysics in Written under the direction of Dr. Richard H. Ebright And Approved by Dr. Richard H. Ebright Dr. Ronald M. Levy Dr. Wilma K. Olson Dr. Richard D. Ludescher New Brunswick, New Jersey October, 2007 ABSTRACT OF THE DISSERTATION The Use of Single-Molecule DNA Nanomanipulation to Study Transcription Kinetics by CHEN-YU LIU Dissertation Director: Dr. Richard H. Ebright Transcription involves many reaction steps and intermediates. Many phenomena in transcription kinetics are covered by ensemble average. Single-molecule DNA nanomanipulation techniques uncover these transcription kinetic events via determination of a transcription bubble in real time. In this dissertation, we focus on the transcription kinetics of bacterial RNAP. The study of transcription kinetics in this thesis can be divided into 4 main subjects: 1) The study of abortive initiation ii mechanism: Through a single-molecule DNA nanomanipulation technique, we tested the three models proposed for the mechanism of abortive initiation - inchworming, scrunching and transient excursion - on T5 N25 promoter. Of the three models, only the scrunching model involves a change in the size of the transcription bubble during abortive initiation, which was observed by single-molecule DNA nanomanipulation technique. 2) The study of the kinetics of elongation and termination: By introducing varying transcribed region lengths into DNA templates, the kinetics of elongation and terminator rewinding were studied.