CME (Chemical and Molecular Engineering)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
1. Define: Unit Operation. Useful Physical Changes Occur in the Chemical Industry Is Known As a Unit Operation
INTREVIEW QUESTIONS 1. Define: Unit operation. Useful Physical changes occur in the chemical industry is known as a Unit Operation. Example: Distillation, Filtration, Drying, Extraction, Gas absorption, Crystallization, etc. 2. Define: Unit process. Useful Chemical changes with or without physical change occur in chemical industry are known as a Unit Process. Example: - Oxidation, Reduction, Alkylation, Sulfonation, Chlorination, etc. 3. Define: Boiling Point and Bubble Point. Boiling Point: -It is a temperature of a liquid at which the vapour pressure of the liquid is equal to atmospheric pressure. Bubble Point: -It is a temperature at which first bubble of vapour is formed. 4. When does liquid boil? When the vapour pressure of the liquid is equal to atmospheric pressure at that time liquid is boil. 5. Define: - Volatile Liquid. It is a tendency of a liquid to vaporize. 6. Acetone and water out of this which is more volatile and why? Acetone is more volatile than water because of boiling point of acetone (56.7 °C) is low compa re to boiling point of water (100° C) 7. What is the Relative Volatility? It is a ratio of concentration of more volatile component in vapour phase to liquid phase is called Relative Volatility 8. What is important of Relative Volatility? For separation of liquid mixture using distillation, Relative volatility should be more than 1. 9. Why is Reflux done in distillation column? and Define Reflux Ratio. For Increasing product purity. Reflux: -It is amount of distillate which is resend to distillation column is known as a reflux. Reflux Ratio: -Reflux ratio is the ratio of the portion of the overhead liquid product from a distillation column that is returned to the upper part of column to the portion of liquid collected as distillate. -
Molecular Materials for Nonlinear Optics
RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal molecular solids mere aggregations of molecules held to line fIlms, and amorphous compositions. In these materi gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic. -
MATERIAL BALANCE NOTES Revision 3 Irven Rinard Department
MATERIAL BALANCE NOTES Revision 3 Irven Rinard Department of Chemical Engineering City College of CUNY and Project ECSEL October 1999 © 1999 Irven Rinard CONTENTS INTRODUCTION 1 A. Types of Material Balance Problems B. Historical Perspective I. CONSERVATION OF MASS 5 A. Control Volumes B. Holdup or Inventory C. Material Balance Basis D. Material Balances II. PROCESSES 13 A. The Concept of a Process B. Basic Processing Functions C. Unit Operations D. Modes of Process Operations III. PROCESS MATERIAL BALANCES 21 A. The Stream Summary B. Equipment Characterization IV. STEADY-STATE PROCESS MODELING 29 A. Linear Input-Output Models B. Rigorous Models V. STEADY-STATE MATERIAL BALANCE CALCULATIONS 33 A. Sequential Modular B. Simultaneous C. Design Specifications D. Optimization E. Ad Hoc Methods VI. RECYCLE STREAMS AND TEAR SETS 37 A. The Node Incidence Matrix B. Enumeration of Tear Sets VII. SOLUTION OF LINEAR MATERIAL BALANCE MODELS 45 A. Use of Linear Equation Solvers B. Reduction to the Tear Set Variables C. Design Specifications i VIII. SEQUENTIAL MODULAR SOLUTION OF NONLINEAR 53 MATERIAL BALANCE MODELS A. Convergence by Direct Iteration B. Convergence Acceleration C. The Method of Wegstein IX. MIXING AND BLENDING PROBLEMS 61 A. Mixing B. Blending X. PLANT DATA ANALYSIS AND RECONCILIATION 67 A. Plant Data B. Data Reconciliation XI. THE ELEMENTS OF DYNAMIC PROCESS MODELING 75 A. Conservation of Mass for Dynamic Systems B. Surge and Mixing Tanks C. Gas Holders XII. PROCESS SIMULATORS 87 A. Steady State B. Dynamic BILIOGRAPHY 89 APPENDICES A. Reaction Stoichiometry 91 B. Evaluation of Equipment Model Parameters 93 C. Complex Equipment Models 96 D. -
Download the Chemical Engineering Major Handbook
2020 - 2021 Undergraduate Handbook DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING INFORMATION FOR MAJORS IN CHEMICAL ENGINEERING Fall 2020 Updated July 2020 Quick Reference Guide Chemical Engineering Curriculum - Prerequisite Flowchart *Sophomore year has two variants; ChE 210 may be taken in sophomore or freshman year. Total Requirements - 48 classes Basic Courses: A. Mathematics - 4 classes D. Design and Communication - 3 classes Chemical Engineering Curriculum - Prerequisite Flowchart q MATH 220-1 (220) q MATH 228-1 (230) q q ENGLISH & DSGN 106-1,2 q MATH 220-2 (224) q MATH 228-2 (234) q COMM ST (Speech) 102, or B. Engineering Analysis - 4 classes PERF ST (Performance) 103 or 203 q q q q GEN ENG 205-1,2,3,4 E. Basic Engineering - 5 classes C. Basic Sciences - 4 classes q CHEM ENG 210 q q PHYSICS 135-2,3 (plus labs) q CHEM ENG 211 q q CHEM 131,132, or 151,152, q MAT SCI 301 or 171,172 (plus labs) q CHEM ENG 312 or IEMS 303 q CHEM ENG 321 Distribution Requirements: F. q Social Sci/Humanities (Theme) - 7 classes G. q Unrestricted Electives - 5 classes Core Curriculum: H. Major Program – 11 required classes + 5 technical electives q CHEM 210-1: Organic Chemistry q CHEM ENG 322: Heat Transfer q CHEM 210-2: Organic Chemistry (plus lab) q CHEM ENG 323: Mass Transfer q CHEM ENG 212: Phase Equilibrium and q CHEM ENG 341: Dynamics and Control Staged Separations of Chemical and Biological Processes q CHEM ENG 275: Cell & Molecular Biology q CHEM ENG 342: Chemical Engineering Lab for Engineers or BIOL SCI 215 or 291 or q CHEM ENG 351: Process Economics, 201 or 202 Design & Evaluation q CHEM ENG 307: Kinetics & Reactor q CHEM ENG 352: Chemical Engineering Engineering Design Projects q Technical Electives - 5 classes You may choose an area of specialization: (OR follow technical elective guidelines - Section IIIB) Bioengineering, Chemical Process Engineering, Design, Environmental Engineering and Sustainability, Nanotechnology and Molecular Engineering, or Polymer Science and Engineering Table of Contents I. -
Unit Operations for Bioprocess Engineers
Unit Operations for Bioprocess Engineers Chenming (Mike) Zhang Department of Biological Systems Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061 Abstract Unit Operations in Biological Systems Engineering was introduced into the curriculum at Virginia Tech in 2000. It is a lecture and laboratory combined course. The lectures and experiments covered in the course had a narrow focus before the author took over in 2002. To broaden the education for students selecting the Bioprocess Engineering option within the curriculum, the author has revised the content of the course to give the students an opportunity to understand that different unit operations can be applied in various industries, namely food, biochemical, and biotechnology. The experiments have been decreased from 14 to 8 so the students could have a better grasp of the theories and applications. Students’ responses showed that it is important to design the experiments in a way to stimulate their desire to learn and perform. The author found that it is possible to give the students a better view of the various unit operations in bioprocess engineering. Page 9.1342.1 Page 1 Introduction As defined by Shuler and Kargi (2002), “Bioprocess engineers are engineers working to apply the principles of various disciplines, such as chemical, mechanical, electrical, and industrial, to processes based on using living cells or subcomponents of such cells.” In other words, bioprocess engineers are engineers who process biological materials to produce useful goods for society. Without question, bioprocess engineering is a broad-based engineering discipline. As educators, it is our job to broaden the view of the students, so they can take advantage of numerous, diverse job opportunities presented to them when they finish their BS degree. -
Bottom-Up Nano-Technology: Molecular Engineering at Surfaces
BESSY – Highlights 2003 – Scientific Highligths 1 Max-Planck-Institut für Bottom-up nano-technology: Festkörperforschung, Stuttgart, 2 molecular engineering at surfaces Lehrstuhl für 1 1 1 1 2 Physikalische Chemie I, S. Stepanow , M. Lingenfelder , A. Dmitriev , N. Lin , Th. Strunskus , Ruhr-Universität Bochum, Ch. Wöll2, J.V. Barth3,4, K. Kern1,3 3 Institut de Physique des Nanostructures, A key issue in nanotech- acid (terephthalic acid - Ecole Polytechnique Fédérale de nology is the development tpa) and 1,2,4-benzenetri- Lausanne, Schweiz of conceptually simple carboxylic acid (trimellitic 4 construction techniques acid - tmla) on the Advanced Materials and Process for the mass fabrication Cu(100) surface. Mol- Engineering Laboratory, of identical nanoscale ecules of this type are University of British Columbia, structures. Conventional frequently employed in Vancouver, Canada top down fabrication 3-D crystal engineering techniques are both top [3] and have proven to be down fabrication techniques are both energy useful for the fabrication of nanoporous intensive and wasteful, because many supramolecular layers [4-7]. The molecules production steps involve depositing unstruc- tpa and tmla with their respective twofold tured layers and then patterning them by and threefold exodentate functionality are removing most of the deposited films. shown in Fig. 1. While the formation of Furthermore, increasingly expensive fabrica- organic layers and nano-structures can be tion facilities are required as the feature size nicely monitored by STM, X-ray photoelectron decreases. The natural alternative to the top- spectroscopy (XPS) and near-edge X-ray down construction is the bottom-up ap- absorption fine structure (NEXAFS) resolve proach, in which nanoscale structures are conclusively the deprotonation of carboxylic obtained from their atomic and molecular acid group and molecular orientation. -
Nanotechnology: a Slightly Different History Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected]
Nanotechnology: a slightly different history Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected] Originally published in Portuguese as a diffusion of Science article Nanotecnologia - uma história um pouco diferente Ciência Hoje 308, October 2013, p.26-29 Many introductory articles and books about nanotechnology have been written to disseminate this apparently new technology, which investigate and manipulates matter at dimension of a billionth of a meter. However, these texts show in general a common feature: there is very little about the origins of this multidisciplinary field. If anything is mentioned at all, a few dates, facts and characters are reinforced, which under the scrutiny of a careful historical digging do not sustain as really founding landmarks of the field. Nevertheless, in spite of these flaws, such historical narratives bring up important elements to understand and contextualize this human endeavor, as well as the corresponding dissemination among the public: would nanotechnology be a cultural imperative? Introduction: plenty of room beyond the bottom Nanotechnology is based on the investigation and manipulation of matter at the scale of billionths of a meter, i.e., nanometers; borrowing approaches from academic disciplines, which until recently were perceived more or less as isolated from each other: Biology, Physics, Chemistry and Material Sciences. Different groups, ranging from the scientific community to the general public, when asked about the history of nanotechnology seem to be satisfied with a tiny set of information spread out from site to site in the web. Within the most disseminated allegedly origins of nanotechnology, we can find the so called grandfather and launching act of nanotechnology, namely the famous physicist Richard Feynman (1918 - 1988) and his 1959 talk There is plenty of room at the bottom1. -
Making Downstream Processing Continuous and Robust a Virtual Roundtable S
BIOPROCESS TECHNICAL Making Downstream Processing Continuous and Robust A Virtual Roundtable S. Anne Montgomery, Cheryl Scott, and Peter Satzer, with Margit Holzer, Miriam Monge, Ralph Daumke, and Alexander Faude urrent biomanufacturing is driven to pursue continuous processing for cost reduction and increased productivity, Cespecially for monoclonal antibody (MAb) production and manufacturing. Although many technologies are now available and have been implemented in biodevelopment, implementation for large-scale production is still in its infancy. In a lively roundtable discussion at the BPI West conference in Santa Clara, CA (11 March 2019), participants touched on a number of important issues still to be resolved and technologies that are still in need of implementation at large scale. Below, moderator Peter Satzer (senior scientist RENTSCHLER BIOPHARMA (WWW.RENTSCHLER-BIOPHARMA.COM) with the Austrian Center of Industrial Biotechnology, Vienna) summarizes key points raised in that session. Based on Requirements for integration without the need for hold his highlights, BPI asked a number of Continuous Downstream tanks between unit operations requires industry representatives to comment on further exploration. those points further, and their Applications Chromatography Operations: Some responses follow. by Peter Satzer unit operations such as flow-through chromatography and single-pass, Minimizing Buffer and Hold Tanks: One tangential-flow filtration (SPTFF) can be critical parameter is integration of unit integrated easily into a continuous Product Focus: Biologics operations on manufacturing shop downstream process scheme at any floors using minimum numbers of point because they offer constant inflow Process Focus: Downstream buffer tanks and hold tanks. The benefit and outflow of material. Such operations processing of continuous manufacturing can be can be called truly or fully continuous. -
Chemical Engineering - CHEN 1
Chemical Engineering - CHEN 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030 or CHEM 1033) and (MATH 1610 or MATH 1613 or MATH 1617) and (P/C CHEM 1120 or P/C CHEM 1127 or P/C CHEM 1040 or P/ C CHEM 1043) and (P/C MATH 1620 or MATH 1623 or P/C MATH 1627) and (P/C PHYS 1600 or P/C PHYS 1607). Application of multicomponent material and energy balances to chemical processes involving phase changes and chemical reactions. CHEN 2110 CHEMICAL ENGINEERING THERMODYNAMICS (3) LEC. 3. Pr. (CHEM 1030 or CHEM 1033 or CHEM 1110 or CHEM 1117) and (MATH 1620 or MATH 1623 or MATH 1627) and (CHEN 2100) and (P/C PHYS 1600 or P/C PHYS 1607) and (P/C CHEN 2650). This course is intended to comprehensively introduce the thermodynamics of single- and multi-phase, pure systems, including the first and second laws of thermodynamics, equations of state, simple processes and cycles, and their applications in chemical engineering. CHEN 2610 TRANSPORT I (3) LEC. 3. Pr. (PHYS 1600 or PHYS 1607) and CHEN 2100 and (P/C MATH 2630 or P/C MATH 2637) and (P/C ENGR 2010 or P/C CHEN 2110). CHEN 2100 requires a grade of C or better. Introduction to fluid statics and dynamics; dimensional analysis; compressible and incompressible flows; design of flow systems, introduction to fluid solids transport including fluidization, flow through process media and multiphase flows. CHEN 2650 CHEMICAL ENGINEERING APPLICATIONS OF MATHEMATICAL TECHNIQUES (3) LEC. -
Ac 2011-1640: Unit Operations Lab Bazaar
AC 2011-1640: UNIT OPERATIONS LAB BAZAAR Michael E Prudich, Ohio University Mike Prudich is a professor in the Department of Chemical and Biomolecular Engineering at Ohio Uni- versity were he has been for 27 years. Prior to joining the faculty at Ohio University, he was a senior research engineering at Gulf Research and Development Company in Pittsburgh, PA primarily working in the area of synthetic fuels. Daina Briedis, Michigan State University DAINA BRIEDIS is a faculty member in the Department of Chemical Engineering and Materials Science at Michigan State University. Dr. Briedis has been involved in several areas of education research includ- ing student retention, curriculum redesign, and the use of technology in the classroom. She is a co-PI on two NSF grants in the areas of integration of computation in engineering curricula and in developing comprehensive strategies to retain early engineering students. She is active nationally and internationally in engineering accreditation and is a Fellow of ABET. Robert Y. Ofoli, Michigan State University ROBERT Y. OFOLI is an associate professor in the Department of Chemical Engineering and Materi- als Science at Michigan State University. He has had a long interest in teaching innovations, and has used a variety of active learning protocols in his courses. His research interests include biosensors for biomedical applications, optical and electrochemical characterization of active nanostructured interfaces, nanocatalytic conversion of biorenewables to commodity chemicals and fuels, and nanoscale production of hydrogen on demand. Robert B. Barat, New Jersey Institute of Technology Robert Barat is a Professor of Chemical Engineering at NJIT, where he has been a faculty member for over 20 years. -
Marko Leino Process Simulation Unit Operation Models – Review of Open
MARKO LEINO PROCESS SIMULATION UNIT OPERATION MODELS – REVIEW OF OPEN AND HSC CHEMISTRY I/O INTERFACES Master of Science Thesis Examiner: Professor Hannu Jaakkola Examiner and topic approved by the Faculty Council of the Faculty of Business and Built Environment on 6 April 2016 i ABSTRACT MARKO LEINO: Process Simulation Unit Operation Models – Review of Open and HSC Chemistry I/O Interfaces Tampere University of Technology Master of Science Thesis, 76 pages, 29 Appendix pages April 2016 Master’s Degree Programme in Information Technology Major: Software Engineering Examiner: Professor Hannu Jaakkola Keywords: CAPE-OPEN, HSC Chemistry Sim, unit operation, process simulation Chemical process modelling and simulation can be used as a design tool in the development of chemical plants, and is utilized as a means to evaluate different design options. The CAPE- OPEN interface standards were developed to allow the deployment and utilization of process modelling components in any compliant process modelling environment. This thesis examines the possibilities provided by the CAPE-OPEN interfaces and the .NET framework to develop compliant, cross-platform process modelling components, particularly unit operations. From the software engineering point of view, a unit operation is a represen- tation of physical equipment, and contains the mathematical model of its functionality. The study indicates that the differences between the CAPE-OPEN standards and Outotec HSC Chemistry Sim are negligible at the conceptual level. On the other hand, at the implementa- tion level, the differences are quite considerable. Regardless of the simulation application be- ing used, the modelling of unit operations requires interdisciplinary skills, and creating tools and methods to ease the development of such models is well justified. -
Chemical Process Simulation Using Openmodelica Priyam Nayak, Pravin Dalve, Rahul Anandi Sai, Rahul Jain, Kannan M
Chemical Process Simulation Using OpenModelica Priyam Nayak, Pravin Dalve, Rahul Anandi Sai, Rahul Jain, Kannan M. Moudgalya, P. R. Naren, Peter Fritzson and Daniel Wagner The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159151 N.B.: When citing this work, cite the original publication. Nayak, P., Dalve, P., Sai, R. A., Jain, R., Moudgalya, K. M., Naren, P. R., Fritzson, P., Wagner, D., (2019), Chemical Process Simulation Using OpenModelica, Industrial & Engineering Chemistry Research, 58(26), 11164-11174. https://doi.org/10.1021/acs.iecr.9b00104 Original publication available at: https://doi.org/10.1021/acs.iecr.9b00104 Copyright: American Chemical Society http://pubs.acs.org/ Article Cite This: Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX pubs.acs.org/IECR Chemical Process Simulation Using OpenModelica † † † † † Priyam Nayak, Pravin Dalve, Rahul Anandi Sai, Rahul Jain, Kannan M. Moudgalya,*, ‡ ¶ § P. R. Naren, Peter Fritzson, and Daniel Wagner † Department of Chemical Engineering, IIT Bombay, Mumbai 400 076, India ‡ School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India ¶ Linkoping University, 581 83 Linköping, Sweden § Independent Researcher, Manaus 69053-020, Brazil ABSTRACT: The equation-oriented general-purpose simulator OpenModelica provides a convenient, extendible modeling environ- ment, with capabilities such as an easy switch from steady-state to dynamic simulations. This work reports the creation of a library of steady-state models of unit operations using OpenModelica. The use of this library is demonstrated through a few representative flow- sheets, and the results are compared with the steady-state simulators Aspen Plus and DWSIM.