Department of Materials Science and Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Department of Materials Science and Engineering DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING DEPARTMENT OF MATERIALS SCIENCE AND and characterization equipment. The Undergraduate Teaching ENGINEERING Laboratory on the Innite Corridor includes facilities for biomaterials research, chemical synthesis, and physical and electronic properties measurement. The Laboratory for Advanced Materials contains Materials science and engineering (MSE) studies the ways in which thermal, electrical, optical, and magnetic characterization atoms and molecules can be built into solid materials and how equipment. The Laboratory for Engineering Materials has machining the structural arrangement of the atoms in a material governs its and 3D printing capabilities. The Nanomechanics Laboratory has properties. The department's research and academic programs a suit of equipment for probe microscopy and mechanical and address all classes of materials, used in every domain of human tribological measurements. Other departmental laboratories include endeavor, including energy, sustainability, nanotechnology, facilities for preparation of a variety of bulk and thin lm materials, healthcare, information technology, and manufacturing. Because and characterization by optical, electron (TEM, SEM), and scanning almost all technological advances are based upon materials probe (AFM, STM) microscopy, and electrical, optical, magnetic, advances, MSE is unique for its balance of basic science (examining and mechanical property measurements. DMSE faculty, students, the relationships and connections between processing, structure, and sta also access the materials characterization tools in the and properties of materials) and practical applications. The Materials Research Laboratory (http://catalog.mit.edu/mit/research/ department draws on scientic perspectives from chemistry, materials-research-laboratory) and the cleanroom facilities and physics, biology, computational, and mathematical approaches, and tools in MIT.nano (https://mitnano.mit.edu), including state of the art engineering, economics, and industrial design. electron microscopy. Recent advances in materials have depended as much on advances in materials engineering as they have on materials science. When Undergraduate Study developing engineering processes for the production of materials and when designing materials for specic applications, the materials The Department of Materials Science and Engineering (DMSE) oers scientist and engineer must understand both fundamental concepts several undergraduate degree programs: such as thermodynamics, kinetics, and atomic structure and economic, social, and environmental factors. Today's materials • Course 3, leading to the Bachelor of Science in Materials Science scientists and engineers address some of the key challenges facing and Engineering, is taken by the majority of undergraduates humanity, including sustainable energy generation and storage, in the department and is accredited by the Engineering the environmental impact of human activities, and advancements in Accreditation Commission of Accreditation Board for Engineering health and medicine. and Technology (ABET) (http://www.abet.org). • Course 3-A, leading to the Bachelor of Science as Recommended The fundamental concepts and applications of materials science by the Department of Materials Science and Engineering, and engineering are taught within core subjects and electives at provides students greater flexibility in designing their own self- the undergraduate and graduate levels. Undergraduate lectures guided program. The New Engineering Education Transformation are complemented by a variety of laboratory experiences. By (NEET) program (https://neet.mit.edu) oers a thread in Advanced selecting appropriate subjects, students can follow many dierent Materials Machines that meets the 3-A requirements. paths with emphasis on engineering, science, or a mixture of • Course 3-C leads to the Bachelor of Science in Archaeology and the two. In addition, students may pursue a path in archaeology Materials as Recommended by the Department of Materials and archaeological science within the Department of Materials Science and Engineering. Science and Engineering and the Center for Materials Research in Archaeology and Ethnology (CMRAE) (http://web.mit.edu/cmrae). The department also oers research and educational specialization This curriculum is unique within departments of anthropology, in a large number of industrially and scientically important areas archaeology, and engineering. leading to master's and doctoral degrees. Materials engineers and materials scientists are continually in Bachelor of Science in Materials Science and Engineering high demand by industry and government for jobs in research, (Course 3) development, production, and management. They nd a diversity The undergraduate program (http://catalog.mit.edu/degree-charts/ of challenging opportunities in in industries related to energy, materials-science-engineering-course-3) serves the needs of the environment, electronics, aerospace, consumer products, students who intend to pursue employment in materials-related biomaterials, and medicine, as well as in national laboratories, industries immediately upon graduation, as well as those who will consulting, and entrepreneurship. A large number of DMSE alumni do graduate work in the engineering or science of materials. The are faculty at leading universities. program is designed to be started at the beginning of the sophomore The department has extensive undergraduate materials teaching year, although it can be started in the spring term of the sophomore laboratories containing a wide range of materials processing year or in the junior year with some loss of scheduling flexibility. Department of Materials Science and Engineering | 3 DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING The rst four academic terms of the program contain required MBA or law program. In these cases, the 3-A program may be of value core subjects that address the fundamental relations between as a more flexible curriculum in which a larger number of elective processing, microstructure, properties, and applications of modern choices is available. materials. The core subjects are followed by a sequence of restricted electives that provide more specialized coverage of the major classes The curriculum requirements for Course 3-A (http://catalog.mit.edu/ of modern materials: biomaterials, ceramics, electronic materials, degree-charts/materials-science-engineering-course-3-a) are similar metals, and polymers, as well as cross-cutting topics relevant to all to but more flexible than those for Course 3. types of materials. Course 3 students write either a senior thesis or A student considering the 3-A program (including NEET) should reports based on industrial internships. This provides an opportunity contact the department Academic Oce, who will counsel them for original research work beyond that which occurs elsewhere in the more fully on the academic considerations involved. The student program. will prepare a complete plan of study which must be approved by The required subjects can be completed in the sophomore and the departmental Undergraduate Committee. This approval must be junior years within a schedule that allows students to take a HASS obtained no later than the beginning of the student's junior year. The subject each term and a range of elective junior and senior subjects. student is then expected to adhere to this plan unless circumstances Departmental advisors assist students in selecting elective subjects. require a change, in which case a petition for a modied program While the program should satisfy the academic needs of most must be submitted to the Undergraduate Committee. The department students, petitions for variations or substitutions may be approved does not seek ABET accreditation for the 3-A program. by the departmental Undergraduate Committee; students should The NEET option allows students to pursue a project-centered contact their advisor for guidance in such cases. academic program across multiple departments and disciplines. Participation in laboratory work by undergraduates is an integral part of the curriculum. The departmental core subjects include Bachelor of Science in Archaeology and Materials as extensive laboratory exercises, which investigate materials Recommended by the Department of Materials Science and properties, structure, and processing and are complementary to the Engineering (Course 3-C) lecture subjects. The junior-year core includes a capstone laboratory Students who have a specic interest in archaeology and subject, 3.042 Materials Project Laboratory, that emphasizes design, archaeological science may choose Course 3-C. The 3-C program materials processing, teamwork, communication skills, and project (http://catalog.mit.edu/degree-charts/archaeology-materials- management. Undergraduate students also have access to extensive course-3-c) is designed to aord students broad exposure to facilities for research in materials as part of the Undergraduate elds that contribute fundamental theoretical and methodological Research Opportunities Program (UROP) (http://uaap.mit.edu/ approaches to the study of ancient and historic societies. The research-exploration/urop) and thesis projects. Engineering design primary elds include anthropological archaeology, geology, and gures prominently in a substantial portion of the laboratory materials science and engineering. The program enriches knowledge exercises. Students develop oral and written
Recommended publications
  • Molecular Materials for Nonlinear Optics
    RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para­ physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam­ Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com­ is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal­ molecular solids mere aggregations of molecules held to­ line fIlms, and amorphous compositions. In these materi­ gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug­ solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic.
    [Show full text]
  • MSE 403: Ceramic Materials
    MSE 403: Ceramic Materials Course description: Processing, characteristics, microstructure and properties of ceramic materials. Number of credits: 3 Course Coordinator: John McCloy Prerequisites by course: MSE 201 Prerequisites by topic: 1. Basic knowledge of thermodynamics. 2. Elementary crystallography and crystal structure. 3. Mechanical behavior of materials. Postrequisites: None Textbooks/other required 1. Carter, C.B. and Norton, M.G. Ceramic Materials Science and Engineering, materials: Springer, 2007. Course objectives: 1. Review of crystallography and crystal structure. 2. Review of structure of atoms, molecules and bonding in ceramics. 3. Discussion on structure of ceramics. 4. Effects of structure on physical properties. 5. Ceramic Phase diagrams. 6. Discussion on defects in ceramics. 7. Introduction to glass. 8. Discussion on processing of ceramics. 9. Introduction to sintering and grain growth. 10. Introduction to mechanical properties of ceramics. 11. Introduction to electrical properties of ceramics. 12. Introduction to bioceramics. 13. Introduction to magnetic ceramics. Topics covered: 1. Introduction to crystal structure and crystallography. 2. Fundamentals of structure of atoms. 3. Structure of ceramics and its influence on properties. 4. Binary and ternary phase diagrams. 5. Point defects in ceramics. 6. Glass and glass-ceramic composites. 7. Ceramics processing and sintering. 8. Mechanical properties of ceramics. 9. Electrical properties of ceramics. 10. Bio-ceramics. 11. Ceramic magnets. Expected student outcomes: 1. Knowledge of crystal structure of ceramics. 2. Knowledge of structure-property relationship in ceramics. 3. Knowledge of the defects in ceramics (Point defects). 4. Knowledge of glass and glass-ceramic composite materials. 5. Introductory knowledge on the processing of bulk ceramics. 6. Applications of ceramic materials in structural, biological and electrical components.
    [Show full text]
  • Materials Science and Engineering 1
    Materials Science and Engineering 1 EN.515.603. Materials Characterization. 3 Credits. MATERIALS SCIENCE AND This course will describe a variety of techniques used to characterize the structure and composition of engineering materials, including metals, ENGINEERING ceramics, polymers, composites, and semiconductors. The emphasis will be on microstructural characterization techniques, including optical The Materials Science and Engineering Program for professionals allows and electron microscopy, x-ray diffraction, and acoustic microscopy. students to take courses that address current and emerging areas Surface analytical techniques, including Auger electron spectroscopy, critical to the development and use of biomaterials, electronic materials, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, structural materials, nanomaterials and nanotechnology, and related and Rutherford backscattering spectroscopy. Real-world examples of materials processing technologies. Students in this program gain an materials characterization will be presented throughout the course, advanced understanding of foundational concepts and are exposed to including characterization of thin films, surfaces, interfaces, and single the latest research that is driving materials-related advances. crystals. Courses are offered at the Applied Physics Laboratory, the Homewood EN.515.605. Electrical, Optical and Magnetic Properties. 3 Credits. campus, and online. An overview of electrical, optical and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic Program Committee processes. Emphasis will be placed on both fundamental principles and James Spicer, Program Chair applications in contemporary materials technologies.Course Note(s): Principal Professional Staff Please note that this 515 course is also listed as a 510 course in the full- JHU Applied Physics Laboratory time program.
    [Show full text]
  • Biological Materials: a Materials Science Approach✩
    JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmbbm Review article Biological materials: A materials science approachI Marc A. Meyers∗, Po­Yu Chen, Maria I. Lopez, Yasuaki Seki, Albert Y.M. Lin University of California, San Diego, La Jolla, CA, United States ARTICLEINFO ABSTRACT Article history: The approach used by Materials Science and Engineering is revealing new aspects Received 25 May 2010 in the structure and properties of biological materials. The integration of advanced Received in revised form characterization, mechanical testing, and modeling methods can rationalize heretofore 20 August 2010 unexplained aspects of these structures. As an illustration of the power of this Accepted 22 August 2010 methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3­PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. ⃝c 2010 Elsevier Ltd. All rights reserved. Contents 1. Introduction and basic components ............................................................................................................................................. 1 2. Hierarchical nature of biological materials ................................................................................................................................... 3 3. Structural biological materials.....................................................................................................................................................
    [Show full text]
  • Download the Chemical Engineering Major Handbook
    2020 - 2021 Undergraduate Handbook DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING INFORMATION FOR MAJORS IN CHEMICAL ENGINEERING Fall 2020 Updated July 2020 Quick Reference Guide Chemical Engineering Curriculum - Prerequisite Flowchart *Sophomore year has two variants; ChE 210 may be taken in sophomore or freshman year. Total Requirements - 48 classes Basic Courses: A. Mathematics - 4 classes D. Design and Communication - 3 classes Chemical Engineering Curriculum - Prerequisite Flowchart q MATH 220-1 (220) q MATH 228-1 (230) q q ENGLISH & DSGN 106-1,2 q MATH 220-2 (224) q MATH 228-2 (234) q COMM ST (Speech) 102, or B. Engineering Analysis - 4 classes PERF ST (Performance) 103 or 203 q q q q GEN ENG 205-1,2,3,4 E. Basic Engineering - 5 classes C. Basic Sciences - 4 classes q CHEM ENG 210 q q PHYSICS 135-2,3 (plus labs) q CHEM ENG 211 q q CHEM 131,132, or 151,152, q MAT SCI 301 or 171,172 (plus labs) q CHEM ENG 312 or IEMS 303 q CHEM ENG 321 Distribution Requirements: F. q Social Sci/Humanities (Theme) - 7 classes G. q Unrestricted Electives - 5 classes Core Curriculum: H. Major Program – 11 required classes + 5 technical electives q CHEM 210-1: Organic Chemistry q CHEM ENG 322: Heat Transfer q CHEM 210-2: Organic Chemistry (plus lab) q CHEM ENG 323: Mass Transfer q CHEM ENG 212: Phase Equilibrium and q CHEM ENG 341: Dynamics and Control Staged Separations of Chemical and Biological Processes q CHEM ENG 275: Cell & Molecular Biology q CHEM ENG 342: Chemical Engineering Lab for Engineers or BIOL SCI 215 or 291 or q CHEM ENG 351: Process Economics, 201 or 202 Design & Evaluation q CHEM ENG 307: Kinetics & Reactor q CHEM ENG 352: Chemical Engineering Engineering Design Projects q Technical Electives - 5 classes You may choose an area of specialization: (OR follow technical elective guidelines - Section IIIB) Bioengineering, Chemical Process Engineering, Design, Environmental Engineering and Sustainability, Nanotechnology and Molecular Engineering, or Polymer Science and Engineering Table of Contents I.
    [Show full text]
  • Materials Science
    Materials Science Materials Science is an interdisciplinary field combining physics (fundamental laws of nature), chemistry (interactions of atoms) and biology (how life interacts with materials) to elucidate the inherent properties of basic and complex systems. This includes optical (interaction with light), electrical (interaction with charge), magnetic and structural properties of everyday electronics, clothing and architecture. The Materials Science central dogma follows the sequence: Structure—Properties—Design—Performance. This involves relating the nanostructure of a material to its macroscale physical and chemical properties. By understanding and then changing the structure, material scientists can create custom materials with unique properties. The goal of the materials science minor is to create a cross-disciplinary approach to fundamental topics in basic and applied physical sciences. Students will gain experience and perspectives from the disciplines of chemistry, physics and biology. The minor places a strong emphasis on current nanoscale research methods in addition to the basics of electronic, optical and mechanical properties of materials. Any student with an interest in pursuing the cross-disciplinary minor in materials science should consult with the coordinator of the minor. Students are encouraged to declare their participation in their sophomore year but no later than the end of the junior year. Students also should seek an adviser from participating faculty. Degree Requirements for the Minor General College requirements
    [Show full text]
  • Bottom-Up Nano-Technology: Molecular Engineering at Surfaces
    BESSY – Highlights 2003 – Scientific Highligths 1 Max-Planck-Institut für Bottom-up nano-technology: Festkörperforschung, Stuttgart, 2 molecular engineering at surfaces Lehrstuhl für 1 1 1 1 2 Physikalische Chemie I, S. Stepanow , M. Lingenfelder , A. Dmitriev , N. Lin , Th. Strunskus , Ruhr-Universität Bochum, Ch. Wöll2, J.V. Barth3,4, K. Kern1,3 3 Institut de Physique des Nanostructures, A key issue in nanotech- acid (terephthalic acid - Ecole Polytechnique Fédérale de nology is the development tpa) and 1,2,4-benzenetri- Lausanne, Schweiz of conceptually simple carboxylic acid (trimellitic 4 construction techniques acid - tmla) on the Advanced Materials and Process for the mass fabrication Cu(100) surface. Mol- Engineering Laboratory, of identical nanoscale ecules of this type are University of British Columbia, structures. Conventional frequently employed in Vancouver, Canada top down fabrication 3-D crystal engineering techniques are both top [3] and have proven to be down fabrication techniques are both energy useful for the fabrication of nanoporous intensive and wasteful, because many supramolecular layers [4-7]. The molecules production steps involve depositing unstruc- tpa and tmla with their respective twofold tured layers and then patterning them by and threefold exodentate functionality are removing most of the deposited films. shown in Fig. 1. While the formation of Furthermore, increasingly expensive fabrica- organic layers and nano-structures can be tion facilities are required as the feature size nicely monitored by STM, X-ray photoelectron decreases. The natural alternative to the top- spectroscopy (XPS) and near-edge X-ray down construction is the bottom-up ap- absorption fine structure (NEXAFS) resolve proach, in which nanoscale structures are conclusively the deprotonation of carboxylic obtained from their atomic and molecular acid group and molecular orientation.
    [Show full text]
  • Nanotechnology: a Slightly Different History Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected]
    Nanotechnology: a slightly different history Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected] Originally published in Portuguese as a diffusion of Science article Nanotecnologia - uma história um pouco diferente Ciência Hoje 308, October 2013, p.26-29 Many introductory articles and books about nanotechnology have been written to disseminate this apparently new technology, which investigate and manipulates matter at dimension of a billionth of a meter. However, these texts show in general a common feature: there is very little about the origins of this multidisciplinary field. If anything is mentioned at all, a few dates, facts and characters are reinforced, which under the scrutiny of a careful historical digging do not sustain as really founding landmarks of the field. Nevertheless, in spite of these flaws, such historical narratives bring up important elements to understand and contextualize this human endeavor, as well as the corresponding dissemination among the public: would nanotechnology be a cultural imperative? Introduction: plenty of room beyond the bottom Nanotechnology is based on the investigation and manipulation of matter at the scale of billionths of a meter, i.e., nanometers; borrowing approaches from academic disciplines, which until recently were perceived more or less as isolated from each other: Biology, Physics, Chemistry and Material Sciences. Different groups, ranging from the scientific community to the general public, when asked about the history of nanotechnology seem to be satisfied with a tiny set of information spread out from site to site in the web. Within the most disseminated allegedly origins of nanotechnology, we can find the so called grandfather and launching act of nanotechnology, namely the famous physicist Richard Feynman (1918 - 1988) and his 1959 talk There is plenty of room at the bottom1.
    [Show full text]
  • Chemical Engineering - CHEN 1
    Chemical Engineering - CHEN 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030 or CHEM 1033) and (MATH 1610 or MATH 1613 or MATH 1617) and (P/C CHEM 1120 or P/C CHEM 1127 or P/C CHEM 1040 or P/ C CHEM 1043) and (P/C MATH 1620 or MATH 1623 or P/C MATH 1627) and (P/C PHYS 1600 or P/C PHYS 1607). Application of multicomponent material and energy balances to chemical processes involving phase changes and chemical reactions. CHEN 2110 CHEMICAL ENGINEERING THERMODYNAMICS (3) LEC. 3. Pr. (CHEM 1030 or CHEM 1033 or CHEM 1110 or CHEM 1117) and (MATH 1620 or MATH 1623 or MATH 1627) and (CHEN 2100) and (P/C PHYS 1600 or P/C PHYS 1607) and (P/C CHEN 2650). This course is intended to comprehensively introduce the thermodynamics of single- and multi-phase, pure systems, including the first and second laws of thermodynamics, equations of state, simple processes and cycles, and their applications in chemical engineering. CHEN 2610 TRANSPORT I (3) LEC. 3. Pr. (PHYS 1600 or PHYS 1607) and CHEN 2100 and (P/C MATH 2630 or P/C MATH 2637) and (P/C ENGR 2010 or P/C CHEN 2110). CHEN 2100 requires a grade of C or better. Introduction to fluid statics and dynamics; dimensional analysis; compressible and incompressible flows; design of flow systems, introduction to fluid solids transport including fluidization, flow through process media and multiphase flows. CHEN 2650 CHEMICAL ENGINEERING APPLICATIONS OF MATHEMATICAL TECHNIQUES (3) LEC.
    [Show full text]
  • Glossary of Materials Engineering Terminology
    Glossary of Materials Engineering Terminology Adapted from: Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010. McCrum, N. G.; Buckley, C. P.; Bucknall, C. B. Principles of Polymer Engineering, 2nd ed.; Oxford University Press: New York, NY, 1997. Brittle fracture: fracture that occurs by rapid crack formation and propagation through the material, without any appreciable deformation prior to failure. Crazing: a common response of plastics to an applied load, typically involving the formation of an opaque banded region within transparent plastic; at the microscale, the craze region is a collection of nanoscale, stress-induced voids and load-bearing fibrils within the material’s structure; craze regions commonly occur at or near a propagating crack in the material. Ductile fracture: a mode of material failure that is accompanied by extensive permanent deformation of the material. Ductility: a measure of a material’s ability to undergo appreciable permanent deformation before fracture; ductile materials (including many metals and plastics) typically display a greater amount of strain or total elongation before fracture compared to non-ductile materials (such as most ceramics). Elastic modulus: a measure of a material’s stiffness; quantified as a ratio of stress to strain prior to the yield point and reported in units of Pascals (Pa); for a material deformed in tension, this is referred to as a Young’s modulus. Engineering strain: the change in gauge length of a specimen in the direction of the applied load divided by its original gauge length; strain is typically unit-less and frequently reported as a percentage.
    [Show full text]
  • Ceramic Materials
    Material Science I Ceramic Materials F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials [email protected] HS 2007 Ceramics: Introduction 1 Material Science I Persons in Charge of this Lecture • Dr. F. Filser, HCI G 529, phone 26435, [email protected] • Prof. Dr. L.J. Gauckler HCI G 535, phone 25646, [email protected] • F. Krauss HCI G 538, phone 3 68 34, [email protected] • Dipl.-Ing. J. Kübler EMPA Dübendorf, phone 044 823 4223, [email protected] Ceramics: Introduction 2 Material Science I Overview & preliminary schedule (HS 2007) Nov 26, 07 Introduction on ceramic materials, technology, applications Dec 03, 07 Crystal structures of ceramic materials Dec 10, 07 Potential well of bonding and physical properties & Examples of Structural ceramic materials Dec 17, 07 Examples of structural ceramic materials Dec 21, 07 term finish Ceramics: Introduction 3 Material Science I Overview & preliminary schedule (FS 2008) Feb 18, 08 term starts (5 x ceramic & 9 x polymer) Feb 19, 08 Glass Feb 26, 08 Toughness (JK) Mar 04, 08 Strength & Weibull statistics (JK) Mar 11, 08 Subcritical crack growth, SPT-Diagrams (JK) Mar 18, 08 Proof-testing, creep, thermical properties (JK) Apr 01, 08 polymer part (Prof. D. Schlüter) May 30, 08 term finish Ceramics: Introduction 4 Material Science I Documentation Visit our homepage @ http://ceramics.ethz.ch -> education -> courses -> Materialwissenschaft I und II Ceramics: Introduction 5 Material Science I Sources of Information - ETH Bib -NEBIS http://www.ethbib.ethz.ch/ http://www.nebis.ch/ Ceramics: Introduction 6 Material Science I Recommended Reading • Askeland & Phulé: Science and Engineering of Materials, 2003 • Barsoum MW: Fundamentals of Ceramics.
    [Show full text]
  • METALLURGY and Materials Science Credentials Metallurgy and Materials Science AAS Degree Metallurgy: Applied Physical Certificate
    Schoolcraft College 2013–2014 Catalog | Areas of Study METALLURGY AND MatERIALS SCIENCE Credentials Metallurgy and Materials Science AAS Degree Metallurgy: Applied Physical certificate ..................................30 cr. First Year—Spring/Summer Session Metallurgy and Materials AAS degree .............................. 63–64 cr. The metallurgy and materials science program has been Social Science Select 1 .................................................................3 Materials Science post-associate certificate .............................16 cr. specifically designed to accommodate most areas of industry POLS 105 Survey of American Government Major Description associated with research, development, manufacturing and materials control. Carefully selecting electives will prepare PSYCH 153 Human Relations In an era of increased emphasis on sustainability and quality students for specialization. Students interested in the labo- SOC 201 Principles of Sociology assurance, knowledge about metals and other materials used ratory control of processing may wish to select electives in English Select 1 .................................................................3 in products, manufacturing processes and construction is ENG 102 English Composition 2 welding, fabrication, manufacturing processes or quality con- invaluable. ENG 106 Business English trol. Likewise, students interested in development or indus- ENG 116 Technical Writing Established in 1966, our metallurgy and materials science trial research may wish to complete electives
    [Show full text]