1 Cliques and Independent Sets Definition 1 a Set of Vertices Is Called Independent If No Two Vertices in the Set Are Adjacent

Total Page:16

File Type:pdf, Size:1020Kb

1 Cliques and Independent Sets Definition 1 a Set of Vertices Is Called Independent If No Two Vertices in the Set Are Adjacent 1 Cliques and Independent Sets Definition 1 A set of vertices is called independent if no two vertices in the set are adjacent. A set of vertices is called a clique if every two vertices in the set are adjacent. An independent set (resp. a clique) is called maximal, if no other independent set(resp. a clique) contains it. An independent set (resp. a clique) is called maximum, if its cardi- nality is maximal among all independent sets (resp. cliques) in the graph. α(G) (resp. ω(G)) denotes the maximum size of an independent set (resp. a clique) in a graph G; π(G) denotes the maximum size of a matching in a graph G; 1 Find a maximum independent set and a maximum clique Problem: Given n 1 and p (1 p n), construct a graph with n vertices ≥ ≤ ≤ and clique-size p, which contains the maximum number of edges. ≤ Dual Problem: Given n 1 and p (1 p n), construct an n-vertex graph with ≥ ≤ ≤ the minimal number of edges for which the size of any independent set is p. ≤ Special Case: (p = 2) Find the maximum number of edges in a graph with n vertices and without triangles. 2 Theorem 1 (a) Every triangle-free graph with 2k vertices has at most k2 edges. (b) The only triangle-free graph with 2k vertices and k2 edges is the complete bipartite graph with the partitions of sizes k each. Proof. Induction on k. PART (a). Base. The result is straightforward for k = 1. Inductive step. Let the statement be correct for all triangle-free graphs with 2k 2 vertices, and let G be a triangle-free graph with − 2k vertices. Select an edge (a, b) E(G). The set of all edges of G ∈ consists of (i) the edges in G a, b ; − { } (ii) the edges connecting a, b with the rest of G; and { } (iii) the edge (a, b) itself. By induction, E(G a, b ) (k 1)2. | − { } |≤ − Furthermore, there are at most 2k 2 edges of type (ii). (Explain − why) a b 2k−2 vertices; no triangles e(G) e(G a, b )+2k 2+1 ≤ − { } − (k 1)2 +2k 1= k2 2k +1+2k 1= k2. ≤ − − − − 3 PART (b). Denote T (2k, 2) the complete bipartite graph on 2k vertices with the partitions of sizes k each. It is easy to see that for k = 1, the only triangle-free graph with k2 edges is T (2k, 2). Assume, inductively, that the second part of the Theorem holds for all graphs with 2k 2 vertices, and let G bea2k-vertex triangle-free − graph with k2 edges. Then, as before consider G a, b for some − { } edge ab and analyze the inequality e(G) e(G a, b )+2k 2+1 (k 1)2 +2k 1= k2. ≤ − { } − ≤ − − The following is obvious: for this inequality to be an equality, G − a, b must have exactly (k 1)2 edges and the number of edges { } − connecting a, b with the rest must be equal to 2k 2. { } − The first requirement implies, inductively, that G a, b = T (2k 2, 2), − { } − which in turn, implies that a (resp. b) is adjacent to the vertices of one part of G a, b only. Those parts must be distinct which − { } proves that G = T (2k, 2). 4 Comment. The Theorem above can be expanded to graphs with an arbitrary number n of vertices (even or odd): Theorem 2 2 (a) Every triangle-free graph with n vertices has at most n ⌊ 4 ⌋ edges. 2 (b) The only triangle-free graph with n vertices and n edges ⌊ 4 ⌋ is the complete bipartite graph with the partitions of sizes n ⌊ 2 ⌋ and n+1 . ⌊ 2 ⌋ 5 Definition 2 Given n and p, Tur´an’s graph T (n,p) obtained by partitioning n ver- tices into p disjoint sets of almost the same size (within 1) and setting edges to be all pairs comprised of vertices from different partitions. The sizes of the partitions of T (n,p) are obtained by dividing n by p with a remainder: n = p q + r, where 0 r p 1. × ≤ ≤ − The r partitions of T (n,p) are of size q +1, and the remaining p r − partitions are of size q. It is easy to prove the following Lemma 1 If n p, then T (n,p) is a complete graph on n ver- ≤ tices. For any n 2 and 1 p<n ≥ ≤ p e(T (n + p,p)) = + n(p 1) + e(T (n,p)). 2 − Theorem 3 (Tur´an[1944]) Given positive integers n and p, the number of edges of any graph with n vertices and without a clique of size p +1 is at most e(T (n,p)). 6 Theorem 4 (Tur´an[1944]) Every graph of order n and size m contains an independent set of size n2/(2m + n). ≥ Proof. We present a greedy algorithm which constructs an inde- pendent set whose size is n2/(2m + n). ≥ I = ; ∅ H = G; while (not done) select a vertex v V (H) of the minimal degree in H; ∈ I = I v ; ∪ { } H = H v all the vertices adjacent to v ; − { }−{ } To prove that the algorithm constructs an independent set of size n2/(2m + n), we use induction on n. The statement is obviously ≥ true for the 1-vertex graph. Suppose, the theorem holds for every graph with <n vertices and let G be a graph with n vertices and m edges. Let d be the degree of the vertex v chosen by the algorithm. Con- sider the graph H resulting from the deletion of v and all vertices adjacent to v. Clearly, the degree of every deleted vertex is at least d. Therefore, the total number of edges deleted is at least d(d+1)/2. Thus, m(H) m d(d + 1)/2 and n(H)= n d 1. ≤ − − − Since the algorithm constructs an independent set in H and adjoins v to it, the theorem will be proved if we verify the following inequality (n d 1)2 n2 1+ − − 2(m d(d + 1)/2) + n d 1 ≥ 2m + n − − − 7 The left part can be transformed as follows: (n d 1)2 1+ − − = 2(m d(d + 1)/2) + n d 1 − − − (n (d + 1))2 2m + n + n2 2n(d + 1) 1+ − = − 2m (d + 1)2 + n 2m + n (d + 1)2 − − Let us now denote 2m + n by Q. We must show that Q + n2 2n(d + 1) n2 − . Q (d + 1)2 ≥ Q − Indeed Q2 + Qn2 2nQ(d + 1) Qn2 n2(d + 1)2 − ≥ − (Q n(d + 1))2 0. − ≥ 8 Problem 1 Determine the disconnected n-vertex graphs (n 2) ≥ that have the maximum number of edges. Problem 2 Determine the maximum number of edges in an n- vertex graph (without parallel edges) that has an independent set of size α. Problem 3 Let G be a simple graph with n 4 vertices. Prove ≥ that if G has more than n2/4 edges, then it has a vertex whose deletion leaves a graph with more than (n 1)2/4 edges. − Problem 4 Prove that every n-vertex triangle-free simple graph with the maximum number of edges is isomorphic to K n/2 , n/2 . ⌊ ⌋ ⌈ ⌉ Problem 5 A flat circular city of radius six miles is patrolled by eighteen police cars, which communicate with one another by radio. If the range of a radio is nine miles, show that at any time, there is always at least two cars each of which can communicate with at least five other cars. 9 2 Dominating sets Definition 3 For a graph G, a set D V (G) of vertices is called dominating if ⊆ NG(D) = V (G), that is if every vertex in V (G) is either in D or adjacent to a veretex in D. A dominating set is called minimal if no subsets of D is dominat- ing. A dominating set is called minimum if no smaller set in G is dominating. γ(G) denotes the minumal size of a dominating set in a graph G. Lower and upper bounds for γ(G). Theorem. For a simple graph G, let α(G) denote the maximal size of an independent set, and let diam(G) denote the diameter of G. Then diam(G)+1 γ(G) α(G). ⌈ 3 ⌉≤ ≤ 10 3 Discrete Mathematics revisited. Facts to remember Given set X, the number of subsets of X is given by • X X 2 =2| |. | | The number of all permutations of a set X with n elements is • nn n!= n (n 1) (n 2) ... 2 1 √2πn. × − × − × × × ≈ en The number n of k-subsets of a set X with n elements • k n n! = . k k!(n k)! − n+1/2 • v n nu 2 2 2 u = . u n/2 ≈ tπn √πn 11 4 Ramsey Theory The Simplest Ramsey Type Theorem. In any collection of six people either three of them mutually know each other or three of them mutually do not know each other. Theorem 5 (Ramsey [1930]) For every two positive integers k and l, there exists a smallest integer R(k,l) such that every graph of order R(k,l) contains either a clique on k vertices or an independent set on l vertices. Proof (Erd˝os and Szekeres [1935]). By induction on k and l. The statement is correct if k =2 or if l = 2: R(2,l)= l and R(k, 2) = k. Let k,l 3 and assume, inductively, that the existence of R(k 1,l) ≥ − and R(k,l 1) has been established.
Recommended publications
  • Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
    Discussiones Mathematicae General Algebra and Applications 40 (2020) 143–157 doi:10.7151/dmgaa.1344 GRAPH VARIETIES AXIOMATIZED BY SEMIMEDIAL, MEDIAL, AND SOME OTHER GROUPOID IDENTITIES Erkko Lehtonen Technische Universit¨at Dresden Institut f¨ur Algebra 01062 Dresden, Germany e-mail: [email protected] and Chaowat Manyuen Department of Mathematics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: [email protected] Abstract Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodis- tributive, commutative, idempotent, unipotent, zeropotent, alternative). Keywords: graph algebra, groupoid, identities, semimediality, mediality. 2010 Mathematics Subject Classification: 05C25, 03C05. 1. Introduction Graph algebras were introduced by Shallon [10] in 1979 with the purpose of providing examples of nonfinitely based finite algebras. Let us briefly recall this concept. Given a directed graph G = (V, E) without multiple edges, the graph algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦, ∞) of type (2, 0), 144 E. Lehtonen and C. Manyuen where ∞ is an element not belonging to V and the binary operation ◦ is defined by the rule u, if (u, v) ∈ E, u ◦ v := (∞, otherwise, for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition uv. Using this representation, we may view any algebraic property of a graph algebra as a property of the graph with which it is associated.
    [Show full text]
  • Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth∗
    Counting independent sets in graphs with bounded bipartite pathwidth∗ Martin Dyery Catherine Greenhillz School of Computing School of Mathematics and Statistics University of Leeds UNSW Sydney, NSW 2052 Leeds LS2 9JT, UK Australia [email protected] [email protected] Haiko M¨uller∗ School of Computing University of Leeds Leeds LS2 9JT, UK [email protected] 7 August 2019 Abstract We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair's work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights. 1 Introduction There is a well-known bijection between matchings of a graph G and independent sets in the line graph of G. We will show that we can approximate the number of independent sets ∗A preliminary version of this paper appeared as [19]. yResearch supported by EPSRC grant EP/S016562/1 \Sampling in hereditary classes". zResearch supported by Australian Research Council grant DP190100977. 1 in graphs for which all bipartite induced subgraphs are well structured, in a sense that we will define precisely.
    [Show full text]
  • Forbidding Subgraphs
    Graph Theory and Additive Combinatorics Lecturer: Prof. Yufei Zhao 2 Forbidding subgraphs 2.1 Mantel’s theorem: forbidding a triangle We begin our discussion of extremal graph theory with the following basic question. Question 2.1. What is the maximum number of edges in an n-vertex graph that does not contain a triangle? Bipartite graphs are always triangle-free. A complete bipartite graph, where the vertex set is split equally into two parts (or differing by one vertex, in case n is odd), has n2/4 edges. Mantel’s theorem states that we cannot obtain a better bound: Theorem 2.2 (Mantel). Every triangle-free graph on n vertices has at W. Mantel, "Problem 28 (Solution by H. most bn2/4c edges. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven 10, 60 —61, 1907. We will give two proofs of Theorem 2.2. Proof 1. G = (V E) n m Let , a triangle-free graph with vertices and x edges. Observe that for distinct x, y 2 V such that xy 2 E, x and y N(x) must not share neighbors by triangle-freeness. Therefore, d(x) + d(y) ≤ n, which implies that d(x)2 = (d(x) + d(y)) ≤ mn. ∑ ∑ N(y) x2V xy2E y On the other hand, by the handshake lemma, ∑x2V d(x) = 2m. Now by the Cauchy–Schwarz inequality and the equation above, Adjacent vertices have disjoint neigh- borhoods in a triangle-free graph. !2 ! 4m2 = ∑ d(x) ≤ n ∑ d(x)2 ≤ mn2; x2V x2V hence m ≤ n2/4.
    [Show full text]
  • The Labeled Perfect Matching in Bipartite Graphs Jérôme Monnot
    The Labeled perfect matching in bipartite graphs Jérôme Monnot To cite this version: Jérôme Monnot. The Labeled perfect matching in bipartite graphs. Information Processing Letters, Elsevier, 2005, to appear, pp.1-9. hal-00007798 HAL Id: hal-00007798 https://hal.archives-ouvertes.fr/hal-00007798 Submitted on 5 Aug 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Labeled perfect matching in bipartite graphs J´erˆome Monnot∗ July 4, 2005 Abstract In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V, E) with |V | = 2n vertices such that E contains a perfect matching (of size n), together with a color (or label) function L : E → {c1, . , cq}, the labeled perfect matching problem consists in finding a perfect matching on G that uses a minimum or a maximum number of colors. Keywords: labeled matching; bipartite graphs; NP-complete; approximate algorithms. 1 Introduction Let Π be a NPO problem accepting simple graphs G = (V,E) as instances, edge-subsets E′ ⊆ E verifying a given polynomial-time decidable property Pred as solutions, and the solutions cardinality as objective function; the labeled problem associated to Π, denoted by Labeled Π, seeks, given an instance I = (G, L) where G = (V,E) is a simple graph ′ and L is a mapping from E to {c1,...,cq}, in finding a subset E verifying Pred that optimizes the size of the set L(E′)= {L(e): e ∈ E′}.
    [Show full text]
  • Structural Parameterizations of Clique Coloring
    Structural Parameterizations of Clique Coloring Lars Jaffke University of Bergen, Norway lars.jaff[email protected] Paloma T. Lima University of Bergen, Norway [email protected] Geevarghese Philip Chennai Mathematical Institute, India UMI ReLaX, Chennai, India [email protected] Abstract A clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is monochromatic. We initiate the study of structural parameterizations of the Clique Coloring problem which asks whether a given graph has a clique coloring with q colors. For fixed q ≥ 2, we give an O?(qtw)-time algorithm when the input graph is given together with one of its tree decompositions of width tw. We complement this result with a matching lower bound under the Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is unbounded) Clique Coloring is XP parameterized by clique-width. 2012 ACM Subject Classification Mathematics of computing → Graph coloring Keywords and phrases clique coloring, treewidth, clique-width, structural parameterization, Strong Exponential Time Hypothesis Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.49 Related Version A full version of this paper is available at https://arxiv.org/abs/2005.04733. Funding Lars Jaffke: Supported by the Trond Mohn Foundation (TMS). Acknowledgements The work was partially done while L. J. and P. T. L. were visiting Chennai Mathematical Institute. 1 Introduction Vertex coloring problems are central in algorithmic graph theory, and appear in many variants. One of these is Clique Coloring, which given a graph G and an integer k asks whether G has a clique coloring with k colors, i.e.
    [Show full text]
  • Clique-Width and Tree-Width of Sparse Graphs
    Clique-width and tree-width of sparse graphs Bruno Courcelle Labri, CNRS and Bordeaux University∗ 33405 Talence, France email: [email protected] June 10, 2015 Abstract Tree-width and clique-width are two important graph complexity mea- sures that serve as parameters in many fixed-parameter tractable (FPT) algorithms. The same classes of sparse graphs, in particular of planar graphs and of graphs of bounded degree have bounded tree-width and bounded clique-width. We prove that, for sparse graphs, clique-width is polynomially bounded in terms of tree-width. For planar and incidence graphs, we establish linear bounds. Our motivation is the construction of FPT algorithms based on automata that take as input the algebraic terms denoting graphs of bounded clique-width. These algorithms can check properties of graphs of bounded tree-width expressed by monadic second- order formulas written with edge set quantifications. We give an algorithm that transforms tree-decompositions into clique-width terms that match the proved upper-bounds. keywords: tree-width; clique-width; graph de- composition; sparse graph; incidence graph Introduction Tree-width and clique-width are important graph complexity measures that oc- cur as parameters in many fixed-parameter tractable (FPT) algorithms [7, 9, 11, 12, 14]. They are also important for the theory of graph structuring and for the description of graph classes by forbidden subgraphs, minors and vertex-minors. Both notions are based on certain hierarchical graph decompositions, and the associated FPT algorithms use dynamic programming on these decompositions. To be usable, they need input graphs of "small" tree-width or clique-width, that furthermore are given with the relevant decompositions.
    [Show full text]
  • Lecture 9-10: Extremal Combinatorics 1 Bipartite Forbidden Subgraphs 2 Graphs Without Any 4-Cycle
    MAT 307: Combinatorics Lecture 9-10: Extremal combinatorics Instructor: Jacob Fox 1 Bipartite forbidden subgraphs We have seen the Erd}os-Stonetheorem which says that given a forbidden subgraph H, the extremal 1 2 number of edges is ex(n; H) = 2 (1¡1=(Â(H)¡1)+o(1))n . Here, o(1) means a term tending to zero as n ! 1. This basically resolves the question for forbidden subgraphs H of chromatic number at least 3, since then the answer is roughly cn2 for some constant c > 0. However, for bipartite forbidden subgraphs, Â(H) = 2, this answer is not satisfactory, because we get ex(n; H) = o(n2), which does not determine the order of ex(n; H). Hence, bipartite graphs form the most interesting class of forbidden subgraphs. 2 Graphs without any 4-cycle Let us start with the ¯rst non-trivial case where H is bipartite, H = C4. I.e., the question is how many edges G can have before a 4-cycle appears. The answer is roughly n3=2. Theorem 1. For any graph G on n vertices, not containing a 4-cycle, 1 p E(G) · (1 + 4n ¡ 3)n: 4 Proof. Let dv denote the degree of v 2 V . Let F denote the set of \labeled forks": F = f(u; v; w):(u; v) 2 E; (u; w) 2 E; v 6= wg: Note that we do not care whether (v; w) is an edge or not. We count the size of F in two possible ways: First, each vertex u contributes du(du ¡ 1) forks, since this is the number of choices for v and w among the neighbors of u.
    [Show full text]
  • From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time
    From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time Yijia Chen Fudan University August 5th, 2019 Parameterized Complexity and Practical Computing, Bergen Courcelle’s Theorem Theorem (Courcelle, 1990) Every problem definable in monadic second-order logic (MSO) can be decided in linear time on graphs of bounded tree-width. In particular, the 3-colorability problem can be solved in linear time on graphs of bounded tree-width. Model-checking monadic second-order logic (MSO) on graphs of bounded tree-width is fixed-parameter tractable. Monadic second-order logic MSO is the restriction of second-order logic in which every second-order variable is a set variable. A graph G is 3-colorable if and only if _ ^ G j= 9X19X29X3 8u Xiu ^ 8u :(Xiu ^ Xju) 16i63 16i<j63 ! ^ ^8u8v Euv ! :(Xiu ^ Xiv) . 16i63 MSO can also characterize Sat,Connectivity,Independent-Set,Dominating-Set, etc. Can we do better than linear time? Constant Parallel Time = AC0-Circuits. 0 A family of Boolean circuits Cn n2N areAC -circuits if for every n 2 N n (i) Cn computes a Boolean function from f0, 1g to f0, 1g; (ii) the depth of Cn is bounded by a fixed constant; (iii) the size of Cn is polynomially bounded in n. AC0 and parallel computation AC0-circuits parallel computation # of input gates length of input depth # of parallel computation steps size # of parallel processes AC0 and logic Theorem (Barrington, Immerman, and Straubing, 1990) A problem can be decided by a family of dlogtime uniform AC0-circuits if and only if it is definable in first-order logic (FO) with arithmetic.
    [Show full text]
  • Parameterized Algorithms for Recognizing Monopolar and 2
    Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs∗ Iyad Kanj1, Christian Komusiewicz2, Manuel Sorge3, and Erik Jan van Leeuwen4 1School of Computing, DePaul University, Chicago, USA, [email protected] 2Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany, [email protected] 3Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany, [email protected] 4Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany, [email protected] October 16, 2018 Abstract A graph G is a (ΠA, ΠB)-graph if V (G) can be bipartitioned into A and B such that G[A] satisfies property ΠA and G[B] satisfies property ΠB. The (ΠA, ΠB)-Recognition problem is to recognize whether a given graph is a (ΠA, ΠB )-graph. There are many (ΠA, ΠB)-Recognition problems, in- cluding the recognition problems for bipartite, split, and unipolar graphs. We present efficient algorithms for many cases of (ΠA, ΠB)-Recognition based on a technique which we dub inductive recognition. In particular, we give fixed-parameter algorithms for two NP-hard (ΠA, ΠB)-Recognition problems, Monopolar Recognition and 2-Subcoloring, parameter- ized by the number of maximal cliques in G[A]. We complement our algo- rithmic results with several hardness results for (ΠA, ΠB )-Recognition. arXiv:1702.04322v2 [cs.CC] 4 Jan 2018 1 Introduction A (ΠA, ΠB)-graph, for graph properties ΠA, ΠB , is a graph G = (V, E) for which V admits a partition into two sets A, B such that G[A] satisfies ΠA and G[B] satisfies ΠB. There is an abundance of (ΠA, ΠB )-graph classes, and important ones include bipartite graphs (which admit a partition into two independent ∗A preliminary version of this paper appeared in SWAT 2016, volume 53 of LIPIcs, pages 14:1–14:14.
    [Show full text]
  • Sub-Coloring and Hypo-Coloring Interval Graphs⋆
    Sub-coloring and Hypo-coloring Interval Graphs? Rajiv Gandhi1, Bradford Greening, Jr.1, Sriram Pemmaraju2, and Rajiv Raman3 1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 08102. E-mail: [email protected]. 2 Department of Computer Science, University of Iowa, Iowa City, Iowa 52242. E-mail: [email protected]. 3 Max-Planck Institute for Informatik, Saarbr¨ucken, Germany. E-mail: [email protected]. Abstract. In this paper, we study the sub-coloring and hypo-coloring problems on interval graphs. These problems have applications in job scheduling and distributed computing and can be used as “subroutines” for other combinatorial optimization problems. In the sub-coloring problem, given a graph G, we want to partition the vertices of G into minimum number of sub-color classes, where each sub-color class induces a union of disjoint cliques in G. In the hypo-coloring problem, given a graph G, and integral weights on vertices, we want to find a partition of the vertices of G into sub-color classes such that the sum of the weights of the heaviest cliques in each sub-color class is minimized. We present a “forbidden subgraph” characterization of graphs with sub-chromatic number k and use this to derive a a 3-approximation algorithm for sub-coloring interval graphs. For the hypo-coloring problem on interval graphs, we first show that it is NP-complete and then via reduction to the max-coloring problem, show how to obtain an O(log n)-approximation algorithm for it. 1 Introduction Given a graph G = (V, E), a k-sub-coloring of G is a partition of V into sub-color classes V1,V2,...,Vk; a subset Vi ⊆ V is called a sub-color class if it induces a union of disjoint cliques in G.
    [Show full text]
  • Shrub-Depth a Successful Depth Measure for Dense Graphs Graphs Petr Hlinˇen´Y Faculty of Informatics, Masaryk University Brno, Czech Republic
    page.19 Shrub-Depth a successful depth measure for dense graphs graphs Petr Hlinˇen´y Faculty of Informatics, Masaryk University Brno, Czech Republic Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 1 / 19 Shrub-depth measure for dense graphs page.19 Shrub-Depth a successful depth measure for dense graphs graphs Petr Hlinˇen´y Faculty of Informatics, Masaryk University Brno, Czech Republic Ingredients: joint results with J. Gajarsk´y,R. Ganian, O. Kwon, J. Neˇsetˇril,J. Obdrˇz´alek, S. Ordyniak, P. Ossona de Mendez Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 1 / 19 Shrub-depth measure for dense graphs page.19 Measuring Width or Depth? • Being close to a TREE { \•-width" sparse dense tree-width / branch-width { showing a structure clique-width / rank-width { showing a construction Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 2 / 19 Shrub-depth measure for dense graphs page.19 Measuring Width or Depth? • Being close to a TREE { \•-width" sparse dense tree-width / branch-width { showing a structure clique-width / rank-width { showing a construction • Being close to a STAR { \•-depth" sparse dense tree-depth { containment in a structure ??? (will show) Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 2 / 19 Shrub-depth measure for dense graphs page.19 1 Recall: Width Measures Tree-width tw(G) ≤ k if whole G can be covered by bags of size ≤ k + 1, arranged in a \tree-like fashion". Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 3 / 19 Shrub-depth measure for dense graphs page.19 1 Recall: Width Measures Tree-width tw(G) ≤ k if whole G can be covered by bags of size ≤ k + 1, arranged in a \tree-like fashion".
    [Show full text]
  • A Fast Algorithm for the Maximum Clique Problem Patric R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Applied Mathematics 120 (2002) 197–207 A fast algorithm for the maximum clique problem Patric R. J. Osterg%# ard ∗ Department of Computer Science and Engineering, Helsinki University of Technology, P.O. Box 5400, 02015 HUT, Finland Received 12 October 1999; received in revised form 29 May 2000; accepted 19 June 2001 Abstract Given a graph, in the maximum clique problem, one desires to ÿnd the largest number of vertices, any two of which are adjacent. A branch-and-bound algorithm for the maximum clique problem—which is computationally equivalent to the maximum independent (stable) set problem—is presented with the vertex order taken from a coloring of the vertices and with a new pruning strategy. The algorithm performs successfully for many instances when applied to random graphs and DIMACS benchmark graphs. ? 2002 Elsevier Science B.V. All rights reserved. 1. Introduction We denote an undirected graph by G =(V; E), where V is the set of vertices and E is the set of edges. Two vertices are said to be adjacent if they are connected by an edge. A clique of a graph is a set of vertices, any two of which are adjacent. Cliques with the following two properties have been studied over the last three decades: maximal cliques, whose vertices are not a subset of the vertices of a larger clique, and maximum cliques, which are the largest among all cliques in a graph (maximum cliques are clearly maximal).
    [Show full text]