Forbidding Subgraphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
Discussiones Mathematicae General Algebra and Applications 40 (2020) 143–157 doi:10.7151/dmgaa.1344 GRAPH VARIETIES AXIOMATIZED BY SEMIMEDIAL, MEDIAL, AND SOME OTHER GROUPOID IDENTITIES Erkko Lehtonen Technische Universit¨at Dresden Institut f¨ur Algebra 01062 Dresden, Germany e-mail: [email protected] and Chaowat Manyuen Department of Mathematics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: [email protected] Abstract Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodis- tributive, commutative, idempotent, unipotent, zeropotent, alternative). Keywords: graph algebra, groupoid, identities, semimediality, mediality. 2010 Mathematics Subject Classification: 05C25, 03C05. 1. Introduction Graph algebras were introduced by Shallon [10] in 1979 with the purpose of providing examples of nonfinitely based finite algebras. Let us briefly recall this concept. Given a directed graph G = (V, E) without multiple edges, the graph algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦, ∞) of type (2, 0), 144 E. Lehtonen and C. Manyuen where ∞ is an element not belonging to V and the binary operation ◦ is defined by the rule u, if (u, v) ∈ E, u ◦ v := (∞, otherwise, for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition uv. Using this representation, we may view any algebraic property of a graph algebra as a property of the graph with which it is associated. -
Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth∗
Counting independent sets in graphs with bounded bipartite pathwidth∗ Martin Dyery Catherine Greenhillz School of Computing School of Mathematics and Statistics University of Leeds UNSW Sydney, NSW 2052 Leeds LS2 9JT, UK Australia [email protected] [email protected] Haiko M¨uller∗ School of Computing University of Leeds Leeds LS2 9JT, UK [email protected] 7 August 2019 Abstract We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair's work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights. 1 Introduction There is a well-known bijection between matchings of a graph G and independent sets in the line graph of G. We will show that we can approximate the number of independent sets ∗A preliminary version of this paper appeared as [19]. yResearch supported by EPSRC grant EP/S016562/1 \Sampling in hereditary classes". zResearch supported by Australian Research Council grant DP190100977. 1 in graphs for which all bipartite induced subgraphs are well structured, in a sense that we will define precisely. -
Three Conjectures in Extremal Spectral Graph Theory
Three conjectures in extremal spectral graph theory Michael Tait and Josh Tobin June 6, 2016 Abstract We prove three conjectures regarding the maximization of spectral invariants over certain families of graphs. Our most difficult result is that the join of P2 and Pn−2 is the unique graph of maximum spectral radius over all planar graphs. This was conjectured by Boots and Royle in 1991 and independently by Cao and Vince in 1993. Similarly, we prove a conjecture of Cvetkovi´cand Rowlinson from 1990 stating that the unique outerplanar graph of maximum spectral radius is the join of a vertex and Pn−1. Finally, we prove a conjecture of Aouchiche et al from 2008 stating that a pineapple graph is the unique connected graph maximizing the spectral radius minus the average degree. To prove our theorems, we use the leading eigenvector of a purported extremal graph to deduce structural properties about that graph. Using this setup, we give short proofs of several old results: Mantel's Theorem, Stanley's edge bound and extensions, the K}ovari-S´os-Tur´anTheorem applied to ex (n; K2;t), and a partial solution to an old problem of Erd}oson making a triangle-free graph bipartite. 1 Introduction Questions in extremal graph theory ask to maximize or minimize a graph invariant over a fixed family of graphs. Perhaps the most well-studied problems in this area are Tur´an-type problems, which ask to maximize the number of edges in a graph which does not contain fixed forbidden subgraphs. Over a century old, a quintessential example of this kind of result is Mantel's theorem, which states that Kdn=2e;bn=2c is the unique graph maximizing the number of edges over all triangle-free graphs. -
Extremal Graph Theory
Extremal Graph Theory Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Email: [email protected] Basic Question • Let H be a fixed graph. • What is the maximum number of edges in a graph G with n vertices that does not contain H as a subgraph? • This number is denoted ex(n,H). • A graph G with n vertices and ex(n,H) edges that does not contain H is called an extremal graph for H. Mantel’s Theorem (1907) n2 ex(n, K ) 3 4 • The only extremal graph for a triangle is the complete bipartite graph with parts of nearly equal sizes. Complete Bipartite graph Turan’s theorem (1941) t 2 ex(n, K ) n2 t 2(t 1) • Equality holds when n is a multiple of t-1. • The only extremal graph is the complete (t-1)- partite graph with parts of nearly equal sizes. Complete Multipartite Graph Proofs of Turan’s theorem • Many different proofs. • Use different techniques. • Techniques useful in proving other results. • Algorithmic applications. • “BOOK” proofs. Induction • The result is trivial if n <= t-1. • Suppose n >= t and consider a graph G with maximum number of edges and no Kt. • G must contain a Kt-1. • Delete all vertices in Kt-1. • The remaining graph contains at most t 2 (n t 1)2 edges. 2(t 1) Induction • No vertex outside Kt-1 can be joined to all vertices of Kt-1. • Total number of edges is at most t 2 (t 1)(t 2) (n t 1)2 2(t 1) 2 t 2 (n t 1)(t 2) n2 2(t 1) Greedy algorithm • Consider any extremal graph and let v be a vertex with maximum degree ∆. -
An Extremal Problem for Complete Bipartite Graphs
Studia Seientiarum Mathematicarum Hungarica 23 (1988), 319-326 AN EXTREMAL PROBLEM FOR COMPLETE BIPARTITE GRAPHS P. ERDŐS, R. J. FAUDREE, C . C . ROUSSEAU and R . H. SCHELP Dedicated to the memory of Paul Turán Abstract Define f(n, k) to be the largest integer q such that for every graph G of order n and size q, G contains every complete bipartite graph K u, ,, with a+h=n-k . We obtain (i) exact values for f(n, 0) and f(n, 1), (ii) upper and lower bounds for f(n, k) when ku2 is fixed and n is large, and (iii) an upper bound for f(n, lenl) . 1 . Introduction Extremal graph theory, which was initiated by Turán in 1941 [4], is still the source of many interesting and difficult problems . The standard problem is to deter- mine f(n, G), the smallest integer q such that every graph with n vertices and q edges contains a subgraph isomorphic to G . It is striking that whereas Turán completely determined f(n, Km), there is much which is as yet unknown concerning f(n, Ka, b). In this paper, we consider a variant of the extremal problem for complete bipartite graphs . In this variant we ask how many edges must be deleted from K„ so that the resulting graph no longer contains Ka,, for some pair (a, b) with a+b=in . Specifically, we seek to determine an extremal function f(n, k) defined as follows . For in ::- 1, let B,,, denote the class of all graphs G such that GDKa , b for every pair (a, b) with a+b=m . -
The Labeled Perfect Matching in Bipartite Graphs Jérôme Monnot
The Labeled perfect matching in bipartite graphs Jérôme Monnot To cite this version: Jérôme Monnot. The Labeled perfect matching in bipartite graphs. Information Processing Letters, Elsevier, 2005, to appear, pp.1-9. hal-00007798 HAL Id: hal-00007798 https://hal.archives-ouvertes.fr/hal-00007798 Submitted on 5 Aug 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Labeled perfect matching in bipartite graphs J´erˆome Monnot∗ July 4, 2005 Abstract In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V, E) with |V | = 2n vertices such that E contains a perfect matching (of size n), together with a color (or label) function L : E → {c1, . , cq}, the labeled perfect matching problem consists in finding a perfect matching on G that uses a minimum or a maximum number of colors. Keywords: labeled matching; bipartite graphs; NP-complete; approximate algorithms. 1 Introduction Let Π be a NPO problem accepting simple graphs G = (V,E) as instances, edge-subsets E′ ⊆ E verifying a given polynomial-time decidable property Pred as solutions, and the solutions cardinality as objective function; the labeled problem associated to Π, denoted by Labeled Π, seeks, given an instance I = (G, L) where G = (V,E) is a simple graph ′ and L is a mapping from E to {c1,...,cq}, in finding a subset E verifying Pred that optimizes the size of the set L(E′)= {L(e): e ∈ E′}. -
The History of Degenerate (Bipartite) Extremal Graph Problems
The history of degenerate (bipartite) extremal graph problems Zolt´an F¨uredi and Mikl´os Simonovits May 15, 2013 Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary [email protected] and [email protected] Abstract This paper is a survey on Extremal Graph Theory, primarily fo- cusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions. 1 Contents 1 Introduction 4 1.1 Some central theorems of the field . 5 1.2 Thestructureofthispaper . 6 1.3 Extremalproblems ........................ 8 1.4 Other types of extremal graph problems . 10 1.5 Historicalremarks . .. .. .. .. .. .. 11 arXiv:1306.5167v2 [math.CO] 29 Jun 2013 2 The general theory, classification 12 2.1 The importance of the Degenerate Case . 14 2.2 The asymmetric case of Excluded Bipartite graphs . 15 2.3 Reductions:Hostgraphs. 16 2.4 Excluding complete bipartite graphs . 17 2.5 Probabilistic lower bound . 18 1 Research supported in part by the Hungarian National Science Foundation OTKA 104343, and by the European Research Council Advanced Investigators Grant 267195 (ZF) and by the Hungarian National Science Foundation OTKA 101536, and by the European Research Council Advanced Investigators Grant 321104. (MS). 1 F¨uredi-Simonovits: Degenerate (bipartite) extremal graph problems 2 2.6 Classification of extremal problems . 21 2.7 General conjectures on bipartite graphs . 23 3 Excluding complete bipartite graphs 24 3.1 Bipartite C4-free graphs and the Zarankiewicz problem . 24 3.2 Finite Geometries and the C4-freegraphs . -
Finite Geometries
Finite Geometries Gy¨orgyKiss June 26th, 2012, Rogla gyk Finite Geometries Chain of length h : x0 I x1 I ::: I xh where xi 2 P [ L: The distance of two elements d(x; y) : length of the shortest chain joining them. Generalized polygons Let S = (P; L; I) be a connected, finite point-line incidence geometry. P and L are two distinct sets, the elements of P are called points, the elements of L are called lines. I ⊂ (P × L) [ (L × P) is a symmetric relation, called incidence. gyk Finite Geometries The distance of two elements d(x; y) : length of the shortest chain joining them. Generalized polygons Let S = (P; L; I) be a connected, finite point-line incidence geometry. P and L are two distinct sets, the elements of P are called points, the elements of L are called lines. I ⊂ (P × L) [ (L × P) is a symmetric relation, called incidence. Chain of length h : x0 I x1 I ::: I xh where xi 2 P [ L: gyk Finite Geometries Generalized polygons Let S = (P; L; I) be a connected, finite point-line incidence geometry. P and L are two distinct sets, the elements of P are called points, the elements of L are called lines. I ⊂ (P × L) [ (L × P) is a symmetric relation, called incidence. Chain of length h : x0 I x1 I ::: I xh where xi 2 P [ L: The distance of two elements d(x; y) : length of the shortest chain joining them. gyk Finite Geometries Generalized polygons Definition Let n > 1 be a positive integer. -
Lecture 9-10: Extremal Combinatorics 1 Bipartite Forbidden Subgraphs 2 Graphs Without Any 4-Cycle
MAT 307: Combinatorics Lecture 9-10: Extremal combinatorics Instructor: Jacob Fox 1 Bipartite forbidden subgraphs We have seen the Erd}os-Stonetheorem which says that given a forbidden subgraph H, the extremal 1 2 number of edges is ex(n; H) = 2 (1¡1=(Â(H)¡1)+o(1))n . Here, o(1) means a term tending to zero as n ! 1. This basically resolves the question for forbidden subgraphs H of chromatic number at least 3, since then the answer is roughly cn2 for some constant c > 0. However, for bipartite forbidden subgraphs, Â(H) = 2, this answer is not satisfactory, because we get ex(n; H) = o(n2), which does not determine the order of ex(n; H). Hence, bipartite graphs form the most interesting class of forbidden subgraphs. 2 Graphs without any 4-cycle Let us start with the ¯rst non-trivial case where H is bipartite, H = C4. I.e., the question is how many edges G can have before a 4-cycle appears. The answer is roughly n3=2. Theorem 1. For any graph G on n vertices, not containing a 4-cycle, 1 p E(G) · (1 + 4n ¡ 3)n: 4 Proof. Let dv denote the degree of v 2 V . Let F denote the set of \labeled forks": F = f(u; v; w):(u; v) 2 E; (u; w) 2 E; v 6= wg: Note that we do not care whether (v; w) is an edge or not. We count the size of F in two possible ways: First, each vertex u contributes du(du ¡ 1) forks, since this is the number of choices for v and w among the neighbors of u. -
From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time
From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time Yijia Chen Fudan University August 5th, 2019 Parameterized Complexity and Practical Computing, Bergen Courcelle’s Theorem Theorem (Courcelle, 1990) Every problem definable in monadic second-order logic (MSO) can be decided in linear time on graphs of bounded tree-width. In particular, the 3-colorability problem can be solved in linear time on graphs of bounded tree-width. Model-checking monadic second-order logic (MSO) on graphs of bounded tree-width is fixed-parameter tractable. Monadic second-order logic MSO is the restriction of second-order logic in which every second-order variable is a set variable. A graph G is 3-colorable if and only if _ ^ G j= 9X19X29X3 8u Xiu ^ 8u :(Xiu ^ Xju) 16i63 16i<j63 ! ^ ^8u8v Euv ! :(Xiu ^ Xiv) . 16i63 MSO can also characterize Sat,Connectivity,Independent-Set,Dominating-Set, etc. Can we do better than linear time? Constant Parallel Time = AC0-Circuits. 0 A family of Boolean circuits Cn n2N areAC -circuits if for every n 2 N n (i) Cn computes a Boolean function from f0, 1g to f0, 1g; (ii) the depth of Cn is bounded by a fixed constant; (iii) the size of Cn is polynomially bounded in n. AC0 and parallel computation AC0-circuits parallel computation # of input gates length of input depth # of parallel computation steps size # of parallel processes AC0 and logic Theorem (Barrington, Immerman, and Straubing, 1990) A problem can be decided by a family of dlogtime uniform AC0-circuits if and only if it is definable in first-order logic (FO) with arithmetic. -
1 Turán's Theorem
Yuval Wigderson Turandotdotdot January 27, 2020 Ma il mio mistero `echiuso in me Nessun dorma, from Puccini's Turandot Libretto: G. Adami and R. Simoni 1 Tur´an'stheorem How many edges can we place among n vertices in such a way that we make no triangle? This is perhaps the first question asked in the field of extremal graph theory, which is the topic of this talk. Upon some experimentation, one can make the conjecture that the best thing to do is to split the vertices into two classes, of sizes x and n − x, and then connect any two vertices in different classes. This will not contain a triangle, since by the pigeonhole principle, among any three vertices there will be two in the same class, which will not be adjacent. This construction will have x(n − x) edges, and by the AM-GM inequality, we see that this is maximized when x and n − x are as close as possible; namely, our classes should n n n n n2 1 n have sizes b 2 c and d 2 e. Thus, this graph will have b 2 cd 2 e ≈ 4 ≈ 2 2 edges. Indeed, this is the unique optimal construction, as was proved by Mantel in 1907. In 1941, Tur´anconsidered a natural extension of this problem, where we forbid not a triangle, but instead a larger complete graph Kr+1. As before, a natural construction is to split the vertices into r almost-equal classes and connect all pairs of vertices in different classes. Definition 1. -
Treewidth of Chordal Bipartite Graphs
Treewidth of chordal bipartite graphs Citation for published version (APA): Kloks, A. J. J., & Kratsch, D. (1992). Treewidth of chordal bipartite graphs. (Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9228). Utrecht University. Document status and date: Published: 01/01/1992 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.