A Characterization of General Position Sets in Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Super Domination Number of Graphs
On the super domination number of graphs Douglas J. Klein1, Juan A. Rodr´ıguez-Vel´azquez1,2, Eunjeong Yi1 1Texas A&M University at Galveston Foundational Sciences, Galveston, TX 77553, United States 2Universitat Rovira i Virgili, Departament d’Enginyeria Inform`atica i Matem`atiques Av. Pa¨ısos Catalans 26, 43007 Tarragona, Spain Email addresses: [email protected], [email protected],[email protected] April 24, 2018 Abstract The open neighbourhood of a vertex v of a graph G is the set N(v) consisting of all vertices adjacent to v in G. For D ⊆ V (G), we define D = V (G) \ D. A set D ⊆ V (G) is called a super dominating set of G if for every vertex u ∈ D, there exists v ∈ D such that N(v) ∩ D = {u}. The super domination number of G is the minimum cardinality among all super dominating sets in G. In this article, we obtain closed formulas and tight bounds for the super domination number of G in terms of several invariants of G. Furthermore, the particular cases of corona product graphs and Cartesian product graphs are considered. Keywords: Super domination number; Domination number; Cartesian product; Corona product. AMS Subject Classification numbers: 05C69; 05C70 ; 05C76 1 Introduction arXiv:1705.00928v2 [math.CO] 23 Apr 2018 The open neighbourhood of a vertex v of a graph G is the set N(v) consisting of all vertices adjacent to v in G. For D ⊆ V (G), we define D = V (G) \ D. A set D ⊆ V (G) is dominating in G if every vertex in D has at least one neighbour in D, i.e., N(u) ∩ D =6 ∅ for every u ∈ D. -
Merging Peg Solitaire in Graphs
Marquette University e-Publications@Marquette Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science, Faculty Research and Publications Department of (-2019) 7-17-2017 Merging Peg Solitaire in Graphs John Engbers Marquette University, [email protected] Ryan Weber Marquette University Follow this and additional works at: https://epublications.marquette.edu/mscs_fac Part of the Computer Sciences Commons, Mathematics Commons, and the Statistics and Probability Commons Recommended Citation Engbers, John and Weber, Ryan, "Merging Peg Solitaire in Graphs" (2017). Mathematics, Statistics and Computer Science Faculty Research and Publications. 629. https://epublications.marquette.edu/mscs_fac/629 INVOLVE 11:1 (2018) :-msp dx.doi.org/10.2140/involve.2018.11.53 Merging peg solitaire on graphs John Engbers and Ryan Weber (Communicated by Anant Godbole) Peg solitaire has recently been generalized to graphs. Here, pegs start on all but one of the vertices in a graph. A move takes pegs on adjacent vertices x and y, with y also adjacent to a hole on vertex z, and jumps the peg on x over the peg on y to z, removing the peg on y. The goal of the game is to reduce the number of pegs to one. We introduce the game merging peg solitaire on graphs, where a move takes pegs on vertices x and z (with a hole on y) and merges them to a single peg on y. When can a confguration on a graph, consisting of pegs on all vertices but one, be reduced to a confguration with only a single peg? We give results for a number of graph classes, including stars, paths, cycles, complete bipartite graphs, and some caterpillars. -
Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
Discussiones Mathematicae General Algebra and Applications 40 (2020) 143–157 doi:10.7151/dmgaa.1344 GRAPH VARIETIES AXIOMATIZED BY SEMIMEDIAL, MEDIAL, AND SOME OTHER GROUPOID IDENTITIES Erkko Lehtonen Technische Universit¨at Dresden Institut f¨ur Algebra 01062 Dresden, Germany e-mail: [email protected] and Chaowat Manyuen Department of Mathematics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: [email protected] Abstract Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodis- tributive, commutative, idempotent, unipotent, zeropotent, alternative). Keywords: graph algebra, groupoid, identities, semimediality, mediality. 2010 Mathematics Subject Classification: 05C25, 03C05. 1. Introduction Graph algebras were introduced by Shallon [10] in 1979 with the purpose of providing examples of nonfinitely based finite algebras. Let us briefly recall this concept. Given a directed graph G = (V, E) without multiple edges, the graph algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦, ∞) of type (2, 0), 144 E. Lehtonen and C. Manyuen where ∞ is an element not belonging to V and the binary operation ◦ is defined by the rule u, if (u, v) ∈ E, u ◦ v := (∞, otherwise, for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition uv. Using this representation, we may view any algebraic property of a graph algebra as a property of the graph with which it is associated. -
Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth∗
Counting independent sets in graphs with bounded bipartite pathwidth∗ Martin Dyery Catherine Greenhillz School of Computing School of Mathematics and Statistics University of Leeds UNSW Sydney, NSW 2052 Leeds LS2 9JT, UK Australia [email protected] [email protected] Haiko M¨uller∗ School of Computing University of Leeds Leeds LS2 9JT, UK [email protected] 7 August 2019 Abstract We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair's work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights. 1 Introduction There is a well-known bijection between matchings of a graph G and independent sets in the line graph of G. We will show that we can approximate the number of independent sets ∗A preliminary version of this paper appeared as [19]. yResearch supported by EPSRC grant EP/S016562/1 \Sampling in hereditary classes". zResearch supported by Australian Research Council grant DP190100977. 1 in graphs for which all bipartite induced subgraphs are well structured, in a sense that we will define precisely. -
Decomposition of Wheel Graphs Into Stars, Cycles and Paths
Malaya Journal of Matematik, Vol. 9, No. 1, 456-460, 2021 https://doi.org/10.26637/MJM0901/0076 Decomposition of wheel graphs into stars, cycles and paths M. Subbulakshmi1 and I. Valliammal2* Abstract Let G = (V;E) be a finite graph with n vertices. The Wheel graph Wn is a graph with vertex set fv0;v1;v2;:::;vng and edge-set consisting of all edges of the form vivi+1 and v0vi where 1 ≤ i ≤ n, the subscripts being reduced modulo n. Wheel graph of (n + 1) vertices denoted by Wn. Decomposition of Wheel graph denoted by D(Wn). A star with 3 edges is called a claw S3. In this paper, we show that any Wheel graph can be decomposed into following ways. 8 (n − 2d)S ; d = 1;2;3;::: if n ≡ 0 (mod 6) > 3 > >[(n − 2d) − 1]S3 and P3; d = 1;2;3::: if n ≡ 1 (mod 6) > <[(n − 2d) − 1]S3 and P2; d = 1;2;3;::: if n ≡ 2 (mod 6) D(Wn) = . (n − 2d)S and C ; d = 1;2;3;::: if n ≡ 3 (mod 6) > 3 3 > >(n − 2d)S3 and P3; d = 1;2;3::: if n ≡ 4 (mod 6) > :(n − 2d)S3 and P2; d = 1;2;3;::: if n ≡ 5 (mod 6) Keywords Wheel Graph, Decomposition, claw. AMS Subject Classification 05C70. 1Department of Mathematics, G.V.N. College, Kovilpatti, Thoothukudi-628502, Tamil Nadu, India. 2Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India. *Corresponding author: [email protected]; [email protected] Article History: Received 01 November 2020; Accepted 30 January 2021 c 2021 MJM. -
Forbidding Subgraphs
Graph Theory and Additive Combinatorics Lecturer: Prof. Yufei Zhao 2 Forbidding subgraphs 2.1 Mantel’s theorem: forbidding a triangle We begin our discussion of extremal graph theory with the following basic question. Question 2.1. What is the maximum number of edges in an n-vertex graph that does not contain a triangle? Bipartite graphs are always triangle-free. A complete bipartite graph, where the vertex set is split equally into two parts (or differing by one vertex, in case n is odd), has n2/4 edges. Mantel’s theorem states that we cannot obtain a better bound: Theorem 2.2 (Mantel). Every triangle-free graph on n vertices has at W. Mantel, "Problem 28 (Solution by H. most bn2/4c edges. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven 10, 60 —61, 1907. We will give two proofs of Theorem 2.2. Proof 1. G = (V E) n m Let , a triangle-free graph with vertices and x edges. Observe that for distinct x, y 2 V such that xy 2 E, x and y N(x) must not share neighbors by triangle-freeness. Therefore, d(x) + d(y) ≤ n, which implies that d(x)2 = (d(x) + d(y)) ≤ mn. ∑ ∑ N(y) x2V xy2E y On the other hand, by the handshake lemma, ∑x2V d(x) = 2m. Now by the Cauchy–Schwarz inequality and the equation above, Adjacent vertices have disjoint neigh- borhoods in a triangle-free graph. !2 ! 4m2 = ∑ d(x) ≤ n ∑ d(x)2 ≤ mn2; x2V x2V hence m ≤ n2/4. -
Arxiv:2106.16130V1 [Math.CO] 30 Jun 2021 in the Special Case of Cyclohedra, and by Cardinal, Langerman and P´Erez-Lantero [5] in the Special Case of Tree Associahedra
LAGOS 2021 Bounds on the Diameter of Graph Associahedra Jean Cardinal1;4 Universit´elibre de Bruxelles (ULB) Lionel Pournin2;4 Mario Valencia-Pabon3;4 LIPN, Universit´eSorbonne Paris Nord Abstract Graph associahedra are generalized permutohedra arising as special cases of nestohedra and hypergraphic polytopes. The graph associahedron of a graph G encodes the combinatorics of search trees on G, defined recursively by a root r together with search trees on each of the connected components of G − r. In particular, the skeleton of the graph associahedron is the rotation graph of those search trees. We investigate the diameter of graph associahedra as a function of some graph parameters. It is known that the diameter of the associahedra of paths of length n, the classical associahedra, is 2n − 6 for a large enough n. We give a tight bound of Θ(m) on the diameter of trivially perfect graph associahedra on m edges. We consider the maximum diameter of associahedra of graphs on n vertices and of given tree-depth, treewidth, or pathwidth, and give lower and upper bounds as a function of these parameters. Finally, we prove that the maximum diameter of associahedra of graphs of pathwidth two is Θ(n log n). Keywords: generalized permutohedra, graph associahedra, tree-depth, treewidth, pathwidth 1 Introduction The vertices and edges of a polyhedron form a graph whose diameter (often referred to as the diameter of the polyhedron for short) is related to a number of computational problems. For instance, the question of how large the diameter of a polyhedron arises naturally from the study of linear programming and the simplex algorithm (see, for instance [27] and references therein). -
The Labeled Perfect Matching in Bipartite Graphs Jérôme Monnot
The Labeled perfect matching in bipartite graphs Jérôme Monnot To cite this version: Jérôme Monnot. The Labeled perfect matching in bipartite graphs. Information Processing Letters, Elsevier, 2005, to appear, pp.1-9. hal-00007798 HAL Id: hal-00007798 https://hal.archives-ouvertes.fr/hal-00007798 Submitted on 5 Aug 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Labeled perfect matching in bipartite graphs J´erˆome Monnot∗ July 4, 2005 Abstract In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V, E) with |V | = 2n vertices such that E contains a perfect matching (of size n), together with a color (or label) function L : E → {c1, . , cq}, the labeled perfect matching problem consists in finding a perfect matching on G that uses a minimum or a maximum number of colors. Keywords: labeled matching; bipartite graphs; NP-complete; approximate algorithms. 1 Introduction Let Π be a NPO problem accepting simple graphs G = (V,E) as instances, edge-subsets E′ ⊆ E verifying a given polynomial-time decidable property Pred as solutions, and the solutions cardinality as objective function; the labeled problem associated to Π, denoted by Labeled Π, seeks, given an instance I = (G, L) where G = (V,E) is a simple graph ′ and L is a mapping from E to {c1,...,cq}, in finding a subset E verifying Pred that optimizes the size of the set L(E′)= {L(e): e ∈ E′}. -
Coalition Graphs of Paths, Cycles, and Trees
Discussiones Mathematicae Graph Theory xx (xxxx) 1–16 https://doi.org/10.7151/dmgt.2416 COALITION GRAPHS OF PATHS, CYCLES, AND TREES Teresa W. Haynes Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37604 e-mail: [email protected] Jason T. Hedetniemi Department of Mathematics Wilkes Honors College Florida Atlantic University Jupiter, FL 33458 e-mail: [email protected] Stephen T. Hedetniemi School of Computing Clemson University Clemson, SC 29634 e-mail: [email protected] Alice A. McRae and Raghuveer Mohan Computer Science Department Appalachian State University Boone, NC 28608 e-mail: [email protected] [email protected] Abstract A coalition in a graph G =(V,E) consists of two disjoint sets of vertices V1 and V2, neither of which is a dominating set of G but whose union V1 ∪V2 is a dominating set of G. A coalition partition in a graph G of order n = |V | 2 Haynes, Hedetniemi, Hedetniemi, McRae and Mohan is a vertex partition π = {V1,V2,...,Vk} of V such that every set Vi either is a dominating set consisting of a single vertex of degree n − 1, or is not a dominating set but forms a coalition with another set Vj which is not a dominating set. Associated with every coalition partition π of a graph G is a graph called the coalition graph of G with respect to π, denoted CG(G, π), the vertices of which correspond one-to-one with the sets V1,V2,...,Vk of π and two vertices are adjacent in CG(G, π) if and only if their corresponding sets in π form a coalition. -
Efficient Domination and Polarity
Efficient Domination and Polarity Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) Universität Rostock Fakultät für Informatik und Elektrotechnik vorgelegt von Ragnar Christopher Nevries Gutachter: Prof. Dr. Andreas Brandstädt, Institut für Informatik, Universität Rostock Prof. Dr. Peter Widmayer, Institut für Theoretische Informatik, ETH Zürich Prof. Dr. Jing Huang, Mathematics and Statistics, University of Victoria eingereicht am 5. Februar 2014 verteidigt am 25. Juli 2014 Abstract This thesis considers Efficient Domination, Efficient Edge Domination, Polar- ity, and Monopolarity, graph problems that ask for a vertex or edge subset that is a packing and a covering at the same time. Efficient Domination seeks for an independent vertex subset D such that all other vertices have exactly one neighbor in D. Here, packing means that the vertices of D must not be too close to each other and, in contrast, covering requires that they have to be near to the other vertices. Efficient Edge Domination is the edge version of Efficient Domination. Polarity asks for a vertex subset that induces a complete multipartite graph—the packing aspect—and that contains a vertex of every induced P3—the covering aspect. Monopolarity is the special case of Polarity where the complete multipartite graph has to be edgeless. Since all these problems are NP-complete in general, for each problem a lot of effort has been put into separating the graph classes on which the problem remains NP-complete from those that admit an efficient algorithm. This thesis pursues both directions. On the one hand, we introduce a framework for our NP-completeness proofs and use it to sharpen known results for all mentioned problems. -
Lecture 9-10: Extremal Combinatorics 1 Bipartite Forbidden Subgraphs 2 Graphs Without Any 4-Cycle
MAT 307: Combinatorics Lecture 9-10: Extremal combinatorics Instructor: Jacob Fox 1 Bipartite forbidden subgraphs We have seen the Erd}os-Stonetheorem which says that given a forbidden subgraph H, the extremal 1 2 number of edges is ex(n; H) = 2 (1¡1=(Â(H)¡1)+o(1))n . Here, o(1) means a term tending to zero as n ! 1. This basically resolves the question for forbidden subgraphs H of chromatic number at least 3, since then the answer is roughly cn2 for some constant c > 0. However, for bipartite forbidden subgraphs, Â(H) = 2, this answer is not satisfactory, because we get ex(n; H) = o(n2), which does not determine the order of ex(n; H). Hence, bipartite graphs form the most interesting class of forbidden subgraphs. 2 Graphs without any 4-cycle Let us start with the ¯rst non-trivial case where H is bipartite, H = C4. I.e., the question is how many edges G can have before a 4-cycle appears. The answer is roughly n3=2. Theorem 1. For any graph G on n vertices, not containing a 4-cycle, 1 p E(G) · (1 + 4n ¡ 3)n: 4 Proof. Let dv denote the degree of v 2 V . Let F denote the set of \labeled forks": F = f(u; v; w):(u; v) 2 E; (u; w) 2 E; v 6= wg: Note that we do not care whether (v; w) is an edge or not. We count the size of F in two possible ways: First, each vertex u contributes du(du ¡ 1) forks, since this is the number of choices for v and w among the neighbors of u. -
From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time
From Tree-Depth to Shrub-Depth, Evaluating MSO-Properties in Constant Parallel Time Yijia Chen Fudan University August 5th, 2019 Parameterized Complexity and Practical Computing, Bergen Courcelle’s Theorem Theorem (Courcelle, 1990) Every problem definable in monadic second-order logic (MSO) can be decided in linear time on graphs of bounded tree-width. In particular, the 3-colorability problem can be solved in linear time on graphs of bounded tree-width. Model-checking monadic second-order logic (MSO) on graphs of bounded tree-width is fixed-parameter tractable. Monadic second-order logic MSO is the restriction of second-order logic in which every second-order variable is a set variable. A graph G is 3-colorable if and only if _ ^ G j= 9X19X29X3 8u Xiu ^ 8u :(Xiu ^ Xju) 16i63 16i<j63 ! ^ ^8u8v Euv ! :(Xiu ^ Xiv) . 16i63 MSO can also characterize Sat,Connectivity,Independent-Set,Dominating-Set, etc. Can we do better than linear time? Constant Parallel Time = AC0-Circuits. 0 A family of Boolean circuits Cn n2N areAC -circuits if for every n 2 N n (i) Cn computes a Boolean function from f0, 1g to f0, 1g; (ii) the depth of Cn is bounded by a fixed constant; (iii) the size of Cn is polynomially bounded in n. AC0 and parallel computation AC0-circuits parallel computation # of input gates length of input depth # of parallel computation steps size # of parallel processes AC0 and logic Theorem (Barrington, Immerman, and Straubing, 1990) A problem can be decided by a family of dlogtime uniform AC0-circuits if and only if it is definable in first-order logic (FO) with arithmetic.