Clique-Width and Tree-Width of Sparse Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structural Parameterizations of Clique Coloring
Structural Parameterizations of Clique Coloring Lars Jaffke University of Bergen, Norway lars.jaff[email protected] Paloma T. Lima University of Bergen, Norway [email protected] Geevarghese Philip Chennai Mathematical Institute, India UMI ReLaX, Chennai, India [email protected] Abstract A clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is monochromatic. We initiate the study of structural parameterizations of the Clique Coloring problem which asks whether a given graph has a clique coloring with q colors. For fixed q ≥ 2, we give an O?(qtw)-time algorithm when the input graph is given together with one of its tree decompositions of width tw. We complement this result with a matching lower bound under the Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is unbounded) Clique Coloring is XP parameterized by clique-width. 2012 ACM Subject Classification Mathematics of computing → Graph coloring Keywords and phrases clique coloring, treewidth, clique-width, structural parameterization, Strong Exponential Time Hypothesis Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.49 Related Version A full version of this paper is available at https://arxiv.org/abs/2005.04733. Funding Lars Jaffke: Supported by the Trond Mohn Foundation (TMS). Acknowledgements The work was partially done while L. J. and P. T. L. were visiting Chennai Mathematical Institute. 1 Introduction Vertex coloring problems are central in algorithmic graph theory, and appear in many variants. One of these is Clique Coloring, which given a graph G and an integer k asks whether G has a clique coloring with k colors, i.e. -
Parameterized Algorithms for Recognizing Monopolar and 2
Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs∗ Iyad Kanj1, Christian Komusiewicz2, Manuel Sorge3, and Erik Jan van Leeuwen4 1School of Computing, DePaul University, Chicago, USA, [email protected] 2Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany, [email protected] 3Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany, [email protected] 4Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany, [email protected] October 16, 2018 Abstract A graph G is a (ΠA, ΠB)-graph if V (G) can be bipartitioned into A and B such that G[A] satisfies property ΠA and G[B] satisfies property ΠB. The (ΠA, ΠB)-Recognition problem is to recognize whether a given graph is a (ΠA, ΠB )-graph. There are many (ΠA, ΠB)-Recognition problems, in- cluding the recognition problems for bipartite, split, and unipolar graphs. We present efficient algorithms for many cases of (ΠA, ΠB)-Recognition based on a technique which we dub inductive recognition. In particular, we give fixed-parameter algorithms for two NP-hard (ΠA, ΠB)-Recognition problems, Monopolar Recognition and 2-Subcoloring, parameter- ized by the number of maximal cliques in G[A]. We complement our algo- rithmic results with several hardness results for (ΠA, ΠB )-Recognition. arXiv:1702.04322v2 [cs.CC] 4 Jan 2018 1 Introduction A (ΠA, ΠB)-graph, for graph properties ΠA, ΠB , is a graph G = (V, E) for which V admits a partition into two sets A, B such that G[A] satisfies ΠA and G[B] satisfies ΠB. There is an abundance of (ΠA, ΠB )-graph classes, and important ones include bipartite graphs (which admit a partition into two independent ∗A preliminary version of this paper appeared in SWAT 2016, volume 53 of LIPIcs, pages 14:1–14:14. -
Sub-Coloring and Hypo-Coloring Interval Graphs⋆
Sub-coloring and Hypo-coloring Interval Graphs? Rajiv Gandhi1, Bradford Greening, Jr.1, Sriram Pemmaraju2, and Rajiv Raman3 1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 08102. E-mail: [email protected]. 2 Department of Computer Science, University of Iowa, Iowa City, Iowa 52242. E-mail: [email protected]. 3 Max-Planck Institute for Informatik, Saarbr¨ucken, Germany. E-mail: [email protected]. Abstract. In this paper, we study the sub-coloring and hypo-coloring problems on interval graphs. These problems have applications in job scheduling and distributed computing and can be used as “subroutines” for other combinatorial optimization problems. In the sub-coloring problem, given a graph G, we want to partition the vertices of G into minimum number of sub-color classes, where each sub-color class induces a union of disjoint cliques in G. In the hypo-coloring problem, given a graph G, and integral weights on vertices, we want to find a partition of the vertices of G into sub-color classes such that the sum of the weights of the heaviest cliques in each sub-color class is minimized. We present a “forbidden subgraph” characterization of graphs with sub-chromatic number k and use this to derive a a 3-approximation algorithm for sub-coloring interval graphs. For the hypo-coloring problem on interval graphs, we first show that it is NP-complete and then via reduction to the max-coloring problem, show how to obtain an O(log n)-approximation algorithm for it. 1 Introduction Given a graph G = (V, E), a k-sub-coloring of G is a partition of V into sub-color classes V1,V2,...,Vk; a subset Vi ⊆ V is called a sub-color class if it induces a union of disjoint cliques in G. -
Shrub-Depth a Successful Depth Measure for Dense Graphs Graphs Petr Hlinˇen´Y Faculty of Informatics, Masaryk University Brno, Czech Republic
page.19 Shrub-Depth a successful depth measure for dense graphs graphs Petr Hlinˇen´y Faculty of Informatics, Masaryk University Brno, Czech Republic Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 1 / 19 Shrub-depth measure for dense graphs page.19 Shrub-Depth a successful depth measure for dense graphs graphs Petr Hlinˇen´y Faculty of Informatics, Masaryk University Brno, Czech Republic Ingredients: joint results with J. Gajarsk´y,R. Ganian, O. Kwon, J. Neˇsetˇril,J. Obdrˇz´alek, S. Ordyniak, P. Ossona de Mendez Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 1 / 19 Shrub-depth measure for dense graphs page.19 Measuring Width or Depth? • Being close to a TREE { \•-width" sparse dense tree-width / branch-width { showing a structure clique-width / rank-width { showing a construction Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 2 / 19 Shrub-depth measure for dense graphs page.19 Measuring Width or Depth? • Being close to a TREE { \•-width" sparse dense tree-width / branch-width { showing a structure clique-width / rank-width { showing a construction • Being close to a STAR { \•-depth" sparse dense tree-depth { containment in a structure ??? (will show) Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 2 / 19 Shrub-depth measure for dense graphs page.19 1 Recall: Width Measures Tree-width tw(G) ≤ k if whole G can be covered by bags of size ≤ k + 1, arranged in a \tree-like fashion". Petr Hlinˇen´y, Sparsity, Logic . , Warwick, 2018 3 / 19 Shrub-depth measure for dense graphs page.19 1 Recall: Width Measures Tree-width tw(G) ≤ k if whole G can be covered by bags of size ≤ k + 1, arranged in a \tree-like fashion". -