Linear Algebra II Peter Philip∗ Lecture Notes Originally Created for the Class of Spring Semester 2019 at LMU Munich Includes Subsequent Corrections and Revisions† September 19, 2021 Contents 1 Affine Subspaces and Geometry 4 1.1 AffineSubspaces ............................... 4 1.2 AffineHullandAffineIndependence . 6 1.3 AffineBases.................................. 10 1.4 BarycentricCoordinates and Convex Sets. ..... 12 1.5 AffineMaps .................................. 14 1.6 AffineGeometry................................ 20 2 Duality 22 2.1 LinearFormsandDualSpaces. 22 2.2 Annihilators.................................. 27 2.3 HyperplanesandLinearSystems . 31 2.4 DualMaps................................... 34 3 Symmetric Groups 38 ∗E-Mail:
[email protected] †Resources used in the preparation of this text include [Bos13, For17, Lan05, Str08]. 1 CONTENTS 2 4 Multilinear Maps and Determinants 46 4.1 MultilinearMaps ............................... 46 4.2 Alternating Multilinear Maps and Determinants . ...... 49 4.3 DeterminantsofMatricesandLinearMaps . .... 57 5 Direct Sums and Projections 71 6 Eigenvalues 76 7 Commutative Rings, Polynomials 87 8 CharacteristicPolynomial,MinimalPolynomial 106 9 Jordan Normal Form 119 10 Vector Spaces with Inner Products 136 10.1 Definition,Examples . 136 10.2 PreservingNorm,Metric,InnerProduct . 138 10.3Orthogonality .................................145 10.4TheAdjointMap ...............................152 10.5 Hermitian,Unitary,andNormalMaps . 158 11 Definiteness of Quadratic Matrices over K 172 A Multilinear Maps 175 B Polynomials in Several Variables 176 C Quotient Rings 192 D Algebraic Field Extensions 199 D.1 BasicDefinitionsandProperties . 199 D.2 AlgebraicClosure...............................205 CONTENTS 3 References 212 1 AFFINE SUBSPACES AND GEOMETRY 4 1 Affine Subspaces and Geometry 1.1 Affine Subspaces Definition 1.1. Let V be a vector space over the field F . Then M V is called an affine subspace of V if, and only if, there exists a vector v V and a (vector)⊆ subspace U V such that M = v + U.