UCLA Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Quasi-Expectations and Amenable Von Neumann
PROCEEDINGS OI THE „ „ _„ AMERICAN MATHEMATICAL SOCIETY Volume 71, Number 2, September 1978 QUASI-EXPECTATIONSAND AMENABLEVON NEUMANN ALGEBRAS JOHN W. BUNCE AND WILLIAM L. PASCHKE1 Abstract. A quasi-expectation of a C*-algebra A on a C*-subalgebra B is a bounded linear projection Q: A -> B such that Q(xay) = xQ(a)y Vx,y £ B, a e A. It is shown that if M is a von Neumann algebra of operators on Hubert space H for which there exists a quasi-expectation of B(H) on M, then there exists a projection of norm one of B(H) on M, i.e. M is injective. Further, if M is an amenable von Neumann subalgebra of a von Neumann algebra N, then there exists a quasi-expectation of N on M' n N. These two facts yield as an immediate corollary the recent result of A. Cormes that all amenable von Neumann algebras are injective. Let A be a unital C*-algebra and B a unital C*-subalgebra of A. By a quasi-expectation of A on B, we mean a bounded linear projection Q: A -» B such that Q(xay) = xQ(a)y Vx,y G B, a G A. A classical result of J. Tomiyama [13] says that any projection of norm one of A onto F is a quasi-expectation. In what follows, we will show that if M is a von Neumann algebra of operators on Hubert space H, then the existence of a quasi-expec- tation of B(H) on M implies the existence of a projection of norm one of B(H) on M. -
Von Neumann Algebras Form a Model for the Quantum Lambda Calculus∗
Von Neumann Algebras form a Model for the Quantum Lambda Calculus∗ Kenta Cho and Abraham Westerbaan Institute for Computing and Information Sciences Radboud University, Nijmegen, the Netherlands {K.Cho,awesterb}@cs.ru.nl Abstract We present a model of Selinger and Valiron’s quantum lambda calculus based on von Neumann algebras, and show that the model is adequate with respect to the operational semantics. 1998 ACM Subject Classification F.3.2 Semantics of Programming Language Keywords and phrases quantum lambda calculus, von Neumann algebras 1 Introduction In 1925, Heisenberg realised, pondering upon the problem of the spectral lines of the hydrogen atom, that a physical quantity such as the x-position of an electron orbiting a proton is best described not by a real number but by an infinite array of complex numbers [12]. Soon afterwards, Born and Jordan noted that these arrays should be multiplied as matrices are [3]. Of course, multiplying such infinite matrices may lead to mathematically dubious situations, which spurred von Neumann to replace the infinite matrices by operators on a Hilbert space [44]. He organised these into rings of operators [25], now called von Neumann algebras, and thereby set off an explosion of research (also into related structures such as Jordan algebras [13], orthomodular lattices [2], C∗-algebras [34], AW ∗-algebras [17], order unit spaces [14], Hilbert C∗-modules [28], operator spaces [31], effect algebras [8], . ), which continues even to this day. One current line of research (with old roots [6, 7, 9, 19]) is the study of von Neumann algebras from a categorical perspective (see e.g. -
Morita Equivalence and Continuous-Trace C*-Algebras, 1998 59 Paul Howard and Jean E
http://dx.doi.org/10.1090/surv/060 Selected Titles in This Series 60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998 59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998 58 Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov, Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, 1998 57 Marc Levine, Mixed motives, 1998 56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998 55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998 54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997 53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997 52 V. A. Kozlov, V. G. Maz'ya> and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997 51 Jan Maly and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, 1997 50 Jon Aaronson, An introduction to infinite ergodic theory, 1997 49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997 48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997 47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997 46 Stephen Lipscomb, Symmetric inverse semigroups, 1996 45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996 44 J. Amoros, M. Burger, K. Corlette, D. -
Algebra of Operators Affiliated with a Finite Type I Von Neumann Algebra
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA doi: 10.4467/20843828AM.16.005.5377 53(2016), 39{57 ALGEBRA OF OPERATORS AFFILIATED WITH A FINITE TYPE I VON NEUMANN ALGEBRA by Piotr Niemiec and Adam Wegert Abstract. The aim of the paper is to prove that the ∗-algebra of all (closed densely defined linear) operators affiliated with a finite type I von Neumann algebra admits a unique center-valued trace, which turns out to be, in a sense, normal. It is also demonstrated that for no other von Neumann algebras similar constructions can be performed. 1. Introduction. With every von Neumann algebra A one can associate the set Aff(A) of operators (unbounded, in general) which are affiliated with A. In [11] Murray and von Neumann discovered that, surprisingly, Aff(A) turns out to be a unital ∗-algebra when A is finite. This was in fact the first example of a rich set of unbounded operators in which one can define algebraic binary op- erations in a natural manner. This concept was later adapted by Segal [17,18], who distinguished a certain class of unbounded operators (namely, measurable with respect to a fixed normal faithful semi-finite trace) affiliated with an ar- bitrary semi-finite von Neumann algebra and equipped it with a structure of a ∗-algebra (for an alternative proof see e.g. [12] or x2 in Chapter IX of [21]). A more detailed investigations in algebras of the form Aff(A) were initiated by a work of Stone [19], who described their models for commutative A in terms of unbounded continuous functions densely defined on the Gelfand spectrum X of A. -
Set Theory and Von Neumann Algebras
SET THEORY AND VON NEUMANN ALGEBRAS ASGER TORNQUIST¨ AND MARTINO LUPINI Introduction The aim of the lectures is to give a brief introduction to the area of von Neumann algebras to a typical set theorist. The ideal intended reader is a person in the field of (descriptive) set theory, who works with group actions and equivalence relations, and who is familiar with the rudiments of ergodic theory, and perhaps also orbit equivalence. This should not intimidate readers with a different background: Most notions we use in these notes will be defined. The reader is assumed to know a small amount of functional analysis. For those who feel a need to brush up on this, we recommend consulting [Ped89]. What is the motivation for giving these lectures, you ask. The answer is two-fold: On the one hand, there is a strong connection between (non-singular) group actions, countable Borel equiva- lence relations and von Neumann algebras, as we will see in Lecture 3 below. In the past decade, the knowledge about this connection has exploded, in large part due to the work of Sorin Popa and his many collaborators. Von Neumann algebraic techniques have lead to many discoveries that are also of significance for the actions and equivalence relations themselves, for instance, of new cocycle superrigidity theorems. On the other hand, the increased understanding of the connection between objects of ergodic theory, and their related von Neumann algebras, has also made it pos- sible to construct large families of non-isomorphic von Neumann algebras, which in turn has made it possible to prove non-classification type results for the isomorphism relation for various types of von Neumann algebras (and in particular, factors). -
Approximation Properties for Group C*-Algebras and Group Von Neumann Algebras
transactions of the american mathematical society Volume 344, Number 2, August 1994 APPROXIMATION PROPERTIES FOR GROUP C*-ALGEBRAS AND GROUP VON NEUMANN ALGEBRAS UFFE HAAGERUP AND JON KRAUS Abstract. Let G be a locally compact group, let C*(G) (resp. VN(G)) be the C*-algebra (resp. the von Neumann algebra) associated with the left reg- ular representation / of G, let A(G) be the Fourier algebra of G, and let MqA(G) be the set of completely bounded multipliers of A(G). With the com- pletely bounded norm, MqA(G) is a dual space, and we say that G has the approximation property (AP) if there is a net {ua} of functions in A(G) (with compact support) such that ua —»1 in the associated weak '-topology. In par- ticular, G has the AP if G is weakly amenable (•» A(G) has an approximate identity that is bounded in the completely bounded norm). For a discrete group T, we show that T has the AP •» C* (r) has the slice map property for sub- spaces of any C*-algebra -<=>VN(r) has the slice map property for a-weakly closed subspaces of any von Neumann algebra (Property Sa). The semidirect product of weakly amenable groups need not be weakly amenable. We show that the larger class of groups with the AP is stable with respect to semidirect products, and more generally, this class is stable with respect to group exten- sions. We also obtain some results concerning crossed products. For example, we show that the crossed product M®aG of a von Neumann algebra M with Property S„ by a group G with the AP also has Property Sa . -
A Framework to Study Commutation Problems Bulletin De La S
BULLETIN DE LA S. M. F. ALFONS VAN DAELE A framework to study commutation problems Bulletin de la S. M. F., tome 106 (1978), p. 289-309 <http://www.numdam.org/item?id=BSMF_1978__106__289_0> © Bulletin de la S. M. F., 1978, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 106, 1978, p. 289-309. A FRAMEWORK TO STUDY COMMUTATION PROBLEMS BY ALFONS VAN DAELE [Kath. Univ. Leuven] RESUME. — Soient A et B deux algebres involutives d'operateurs sur un espace hil- bertien j^, telles que chacune d'elles soit contenue dans Ie commutant de Fautre. On enonce des conditions suffisantes sur A et B, en termes de certaines applications lineaires, ri : A ->• ^ et n' : B -> J^, pour que chacune de ces algebres engendre Ie commutant de Fautre. Cette structure generalise d'une certaine facon celle d'une algebre hilbertienne a gauche; elle permet de traiter Ie cas ou Falgebre de von Neumann et son commutant n'ont pas la meme grandeur. ABSTRACT. — If A and B are commuting *-algebras of operators on a Hilbert space ^, conditions on A and B are formulated in terms of linear maps T| : A -> ^ and n" : B -»• ^ to ensure that A and B generate each others commutants. -
Notes Which Was Later Published As Springer Lecture Notes No.128: Simplifi- Cation Was Not an Issue, but the Validity of Tomita’S Claim
STRUCTURE OF VON NEUMANN ALGEBRAS OF TYPE III Masamichi Takesaki Abstract. In this lecture, we will show that to every von Neumann algebra M there corresponds unquely a covariant system M, ⌧, R, ✓ on the real line R in such a way that n o f ✓ s M = M , ⌧ ✓s = e− ⌧, M0 M = C, ◦ \ where C is the center off M. In the case that M fis a factor, we have the following commutative square of groups which describes the relation of several important groups such as thef unitary group U(M) of M, the normalizer U(M) of M in M and the cohomology group of the flow of weights: C, R, ✓ : { } e f 1 1 1 ? ? @ ? 1 ? U?(C) ✓ B1( ,?U(C)) 1 −−−−−! yT −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? @ ? 1 U(?M) U(?M) ✓ Z1( ,?U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! Ad Ade ? ? ˙ ? @✓ 1 1 Int?(M) Cnft?r(M) H ( ?, U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? ? ?1 ?1 ?1 y y y Contents Lecture 0. History of Structure Analyis of von Neumann Algebras of Type III. Lecture 1. Covariant System and Crossed Product. Lecture 2: Duality for the Crossed Product by Abelian Groups. Lecture 3: Second Cohomology of Locally Compact Abelian Group. Lecture 4. Arveson Spectrum of an Action of a Locally Compact Abelian Group G on a von Neumann algebra M. 1 2 VON NEUMANN ALGEBRAS OF TYPE III Lecture 5: Connes Spectrum. Lecture 6: Examples. Lecture 7: Crossed Product Construction of a Factor. Lecture 8: Structure of a Factor of Type III. Lecture 9: Hilbert Space Bundle. Lecture 10: The Non-Commutative Flow of Weights on a von Neumann algebra M, I. -
A Correspondence Between Maximal Abelian Sub-Algebras and Linear
Under consideration for publication in Math. Struct. in Comp. Science A Correspondence between Maximal Abelian Sub-Algebras and Linear Logic Fragments THOMAS SEILLER† 1 † I.H.E.S., Le Bois-Marie, 35, Route de Chartres, 91440 Bures-sur-Yvette, France [email protected] Received December 15th, 2014; Revised September 23rd, 2015 We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier (Dix54) and fragments of linear logic. We expose for this purpose a modified construction of Girard’s hyperfinite geometry of interaction (Gir11). The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the interpretation. We also unveil the essential role played by MASAs in previous geometry of interaction constructions. Contents 1 Introduction 1 2 von Neumann Algebras and MASAs 4 3 Geometry of Interaction 14 4 Subjective Truth and Matricial GoI 29 5 Dixmier’s Classification and Linear Logic 46 6 Conclusion 58 References 59 arXiv:1408.2125v2 [math.LO] 23 Sep 2015 1. Introduction 1.1. Geometry of Interaction. Geometry of Interaction is a research program initiated by Girard (Gir89b) a year after his seminal paper on linear logic (Gir87a). Its aim is twofold: define a semantics of proofs that accounts for the dynamics of cut-elimination, and then construct realisability models for linear logic around this semantics of cut-elimination. The first step for defining a GoI model, i.e. a construction that fulfills the geometry of 1 This work was partly supported by the ANR-10-BLAN-0213 Logoi. -
C∗-Algebras, Group Actions and Crossed Products (Lecture Notes)
C∗-ALGEBRAS, GROUP ACTIONS AND CROSSED PRODUCTS (LECTURE NOTES) PIOTR M. SOLTAN Contents 1. Introduction 2 2. Preliminaries 2 3. Topological groups 3 3.1. Groups with topology 3 3.2. Uniform continuity 3 3.3. Integration 4 3.4. Examples 5 4. Some C∗-algebra theory 6 4.1. C∗-algebras 6 4.2. Multipliers 8 4.3. Morphisms of C∗-algebras 11 4.4. Representations of C∗-algebras 13 4.5. One more look at multipliers 14 4.6. Representations of groups in C∗-algebras 14 4.7. Group actions on C∗-algebras 15 5. Crossed products 16 5.1. Definition and uniqueness 16 5.2. Existence 16 5.3. Group C∗-algebras 28 6. Examples 28 6.1. Transformation group C∗-algebras 28 6.2. Crossed product by a finite cyclic group 29 6.3. Crossed product by a finite group acting on itself 30 6.4. C∗-algebra of a semidirect product of groups 31 ∗ 6.5. C (Z2 ∗ Z2) 32 6.6. Reduced crossed products 33 7. Advanced theory 34 7.1. Pontriagin duality for Abelian locally compact groups 34 7.2. C∗-algebra of an Abelian locally compact group 35 7.3. Landstad’s theorem 36 7.4. Takai’s duality for crossed products 37 7.5. Amenable groups 38 References 39 Date: February 22, 2007. 1 2 PIOTR M. SOLTAN 1. Introduction These notes are a draft of a course offered to students of third, fourth and fifth year of theoretical physics. The aim of the course is to familiarize students with concepts of abstract theory of C∗- algebras and group representations. -
Armand Borel 1923–2003
Armand Borel 1923–2003 A Biographical Memoir by Mark Goresky ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ARMAND BOREL May 21, 1923–August 11, 2003 Elected to the NAS, 1987 Armand Borel was a leading mathematician of the twen- tieth century. A native of Switzerland, he spent most of his professional life in Princeton, New Jersey, where he passed away after a short illness in 2003. Although he is primarily known as one of the chief archi- tects of the modern theory of linear algebraic groups and of arithmetic groups, Borel had an extraordinarily wide range of mathematical interests and influence. Perhaps more than any other mathematician in modern times, Borel elucidated and disseminated the work of others. family the Borel of Photo courtesy His books, conference proceedings, and journal publica- tions provide the document of record for many important mathematical developments during his lifetime. By Mark Goresky Mathematical objects and results bearing Borel’s name include Borel subgroups, Borel regulator, Borel construction, Borel equivariant cohomology, Borel-Serre compactification, Bailey- Borel compactification, Borel fixed point theorem, Borel-Moore homology, Borel-Weil theorem, Borel-de Siebenthal theorem, and Borel conjecture.1 Borel was awarded the Brouwer Medal (Dutch Mathematical Society), the Steele Prize (American Mathematical Society) and the Balzan Prize (Italian-Swiss International Balzan Foundation). He was a member of the National Academy of Sciences (USA), the American Academy of Arts and Sciences, the American Philosophical Society, the Finnish Academy of Sciences and Letters, the Academia Europa, and the French Academy of Sciences.1 1 Borel enjoyed pointing out, with some amusement, that he was not related to the famous Borel of “Borel sets." 2 ARMAND BOREL Switzerland and France Armand Borel was born in 1923 in the French-speaking city of La Chaux-de-Fonds in Switzerland. -
The American Mathematical Society
THE AMERICAN MATHEMATICAL SOCIETY Edited by John W. Green and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings . • . • . • . • . • • • . • . 168 PRELIMINARY ANNOUNCEMENT OF MEETING...................... 169 DOCTORATES CONFERRED IN 1961 ••••••••••••••••••••••••••••.•• 173 NEWS ITEMS AND ANNOUNCEMENTS • • • • • • • • • • • • • • • • • • • 189, 194, 195, 202 PERSONAL ITEMS •••••••••••••••••••••••••••••••.••••••••••• 191 NEW AMS PUBLICATIONS •••••••••••••••••••••••••••••••••••.•• 195 LETTERS TO THE EDITOR •.•.•.•••••••••.•••••.••••••••••••••• 196 MEMORANDA TO MEMBERS The Employment Register . • . • . • . • • . • . • • . • . • . • 198 Dues of Reciprocity Members of the Mathematical Society of Japan • . • . • . 198 SUPPLEMENTARY PROGRAM -No. 11 ••••••••••••••••••••••••••••• 199 ABSTRACTS OF CONTRIBUTED PAPERS •.•••••••••••.••••••••••••• 203 ERRATA •••••••••••••••••••••••••••••••••••••••••••••••.• 231 INDEX TO ADVERTISERS • • • • • • • • • • • • • . • . • • • • • • • • • • • . • • • • • • • • • • 243 RESERVATION FORM •••.•.•••••••••••.•••••••••••.••••••••••• 243 MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date a~ch this issue of the NOTICES was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change. This is particularly true of the meetings to which no numbers have yet been assigned. Meet-