UCLA Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UCLA Electronic Theses and Dissertations UCLA UCLA Electronic Theses and Dissertations Title On Maximal Amenable Subalgebras of Amalgamated Free Product von Neumann Algebras Permalink https://escholarship.org/uc/item/0xk9x52t Author Leary, Brian Andrew Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles On Maximal Amenable Subalgebras of Amalgamated Free Product von Neumann Algebras A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Brian Andrew Leary 2015 c Copyright by Brian Andrew Leary 2015 Abstract of the Dissertation On Maximal Amenable Subalgebras of Amalgamated Free Product von Neumann Algebras by Brian Andrew Leary Doctor of Philosophy in Mathematics University of California, Los Angeles, 2015 Professor Sorin Popa, Chair In this thesis, we establish a sufficient condition for an amenable von Neumann algebra to be a maximal amenable subalgebra of an amalgamated free product von Neumann algebra. In particular, if P is a diffuse maximal amenable von Neumann subalgebra of a finite von Neumann algebra N1, and B is a von Neumann subalgebra of N1 with the property that no corner of P embeds into B inside N1 in the sense of Popa's intertwining by bimodules, then we conclude that P is a maximal amenable subalgebra of the amalgamated free product of N1 and N2 over B, where N2 is another finite von Neumann algebra containing B. To this end, we utilize Popa's asymptotic orthogonality property. We also observe several special cases in which this intertwining condition holds, and we note a connection to the Pimsner-Popa index in the case when we take P = N1 to be amenable. ii The dissertation of Brian Andrew Leary is approved. Michael Gutperle Dimitri Y. Shlyakhtenko Edward G. Effros Sorin Popa, Committee Chair University of California, Los Angeles 2015 iii To my sister iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 2 Preliminaries ::::::::::::::::::::::::::::::::::::: 5 2.1 Von Neumann Algebra Basics . 5 2.1.1 Definitions . 5 2.1.2 Constructions . 9 2.2 Amenability and Property Gamma . 13 2.3 Subalgebra Structure and Classification . 17 2.4 Asymptotic Orthogonality . 19 2.5 Jones' Basic Construction . 20 2.6 Popa's Intertwining by Bimodules . 20 3 Main Result :::::::::::::::::::::::::::::::::::::: 24 3.1 Amalgamated Free Products . 24 3.2 Maximal Amenability . 25 4 Special Cases ::::::::::::::::::::::::::::::::::::: 33 4.1 Pimsner-Popa index . 33 4.2 Group von Neumann algebra case . 34 4.3 Finite Factor case . 35 4.4 Crossed Product von Neumann Algebra case . 35 4.5 Abelian case . 35 References ::::::::::::::::::::::::::::::::::::::::: 38 v Acknowledgments There are many people I would like to thank for their help and support over the years. To begin, I am deeply thankful for the guidance of my advisor, Sorin Popa, in the completion of this project. In addition to introducing me to this problem, his advice and support over the years have been invaluable to me, and I am extremely grateful for all he has done for me and for my career. I would also like to thank Thomas Sinclair for his mentorship and aid throughout his years at UCLA and beyond. I would like to further thank Jesse Peterson for suggesting the generalization of the main result presented in this thesis, Adrian Ioana for giving me an opportunity to speak about my work, Edward Effros and Dimitri Shlyakhtenko for teaching my first courses in this subject, and all the operator algebras grad students at UCLA during my time here, including Owen, Adam, Dom, Paul, Brent, Andreas, Alin, and Ian. Their contributions to student-run seminars were vital to my education in this field. Among these, I want to single out Ben Hayes for his help, as he has been a selfless, endless fount of knowledge, and, most importantly, a great friend to me. Non-operator-theoretic influences include the limitless support of my family. I thank my mother for her love and care, my father for sharing his advice and experiences on surviving grad school and academia, my sister for always talking to me about important things, and my brother for always talking to me about absolutely everything else. I would also like to offer my thanks to the numerous people who made my life in Los Angeles better. Thank you to Tori, who was the only person I knew when I moved to LA, and who was responsible for more fun experiences in the city than I can count; to Rob and Bailey for everything they've done, and for being my closest friends for many years; to Lee for his friendship, competitive foosball skills, and for giving my sister a reason to stay in LA; to Julie for being among my favorite people that I've met here; and to Miranda, Johann, Siddharth, Bryon, and Stephanie for their contributions to making my time in this city memorable. I am truly indebted to all of you. vi Vita 2008{2009 Teaching Assistant, Mathematics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania. Taught sections of Math 127 (an introduction to rigorous mathematics). 2009 B.S. (Mathematics), Carnegie Mellon University. 2009 M.S. (Mathematics), Carnegie Mellon University. 2009{2013 Teaching Assistant, Mathematics Department, University of California - Los Angeles, California. 2011 M.A. (Mathematics), UCLA. 2013{2015 Research Assistant, Mathematics Department, UCLA. 2015 Graduate Student Instructor, Mathematics Department, UCLA. Lecturer for Math 3C (probability for life sciences). Publications and Presentations On maximal amenable subalgebras in amalgamated free products, in preparation. Workshop on von Neumann algebras and ergodic theory, UCLA, September 2014, On max- imal amenable subalgebras of amalgamated free product von Neumann algebras. vii CHAPTER 1 Introduction The goal of this work is to establish maximal amenability results in certain amalgamated free product von Neumann algebras by using Popa's asymptotic orthogonality method. In the origins of the subject in the 1930s and 1940s, Murray and von Neumann gave the basic definitions of factoriality, type decomposition, and other isomorphism invariant properties in what are now known as von Neumann algebras, and they constructed the first examples. One such construction was the approximately finite dimensional II1 factor R, which can be realized as the tensor product of countably infinitely many copies of the space of 2 × 2 matrices over the complex numbers. They were also able to prove that, up to iso- morphism, R was the unique approximately finite dimensional factor of type II1. Moreover, they showed that every infinite dimensional factor contains a copy of R. Later, Connes [Con76] was able to show that the property of a factor M ⊂ B(H) being approximately finite dimensional is equivalent to amenability, which is the existence of an M-central state on B(H) that extends the trace on M, and is also equivalent to injectivity, which is the existence of a conditional expectation from B(H) onto M. In Kadison's 1967 list of problems on von Neumann algebras [Kad67], he asked whether every self-adjoint operator in an arbitrary II1 factor can be embedded into some approx- imately finite dimensional subfactor, or equivalently, whether every separable abelian von Neumann subalgebra of a II1 factor could be embedded into some approximately finite di- mensional subfactor. In 1983, Popa [Pop83a] provided a negative answer to the problem by constructing an abelian subalgebra of a II1 factor that is a maximal amenable subalgebra, and hence a maximal approximately finite dimensional subalgebra by Connes' theorem. In particular, he proved that the abelian von Neumann subalgebra Ma of L(Fn) generated by a 1 single generator a of Fn is a maximal amenable subalgebra. His method involved the analysis of Ma-central sequences in L(Fn) through the \asymptotic orthogonality property." To be 0 ! ! precise, he showed that for any free ultrafilter ! on N, any x 2 Ma \ (L(Fn) Ma ), and 2 ! any y1; y2 2 L(Fn) Ma, we have that y1x and xy2 are perpendicular in L (L(Fn) ). Then 0 using the strong mixingness of Ma inside L(Fn), he showed that L(Fn) \ Ma had a non-zero atomic part, and from this he was able to conclude maximal amenability. In the last decade, there have been many more results about maximal amenable subalge- bras. In 2010, Cameron, Fang, Ravichandran, and White [CFR10] showed that the Laplacian masa in L(Fn) is maximal amenable by modifying R˘adulescu's proof of singularity of the Laplacian masa to show that it also had the asymptotic orthogonality property. In 2010, Jolissaint [Jol10] gave conditions on a subgroup H of Γ that imply that L(H) is a maximal amenable subalgebra of L(Γ) by first establishing the asymptotic orthogonality property. A special case of this showed that L(H1) is maximal amenable in the group von Neumann algebra of the amalgamated free product group L(H1 ∗Z H2), where H1 is infinite and abelian and Z is a finite common subgroup. In 2013, Boutonnet and Carderi [BC13] expanded Jolis- saint's work to show that for any infinite maximal amenable subgroup H of a hyperbolic group Γ, L(H) is maximal amenable inside L(Γ). Houdayer [Hou14b] proved in 2014, among other things, that any diffuse amenable von Neumann algebra can be realized as a maximal amenable subalgebra with expectation inside a full nonamenable type III1 factor by defining a relative version of the asymptotic orthogonality property that we will use in this thesis. Finally, Boutonnet and Carderi [BC14] in 2014 gave an alternative method of establishing maximal amenability in the specific cases of von Neumann algebras arising from groups, and their method was the first result that did not use Popa's asymptotic orthogonality. Other maximal amenable von Neumann algebra results have been given by Brothier [Bro14], Hou- dayer [Hou14a], Gao [Gao10], Hou [Hou08], Fang [Fan07], Shen [She06], Str˘atil˘aand Zsid´o [SZ99], and Ge [Ge96].
Recommended publications
  • Quasi-Expectations and Amenable Von Neumann
    PROCEEDINGS OI THE „ „ _„ AMERICAN MATHEMATICAL SOCIETY Volume 71, Number 2, September 1978 QUASI-EXPECTATIONSAND AMENABLEVON NEUMANN ALGEBRAS JOHN W. BUNCE AND WILLIAM L. PASCHKE1 Abstract. A quasi-expectation of a C*-algebra A on a C*-subalgebra B is a bounded linear projection Q: A -> B such that Q(xay) = xQ(a)y Vx,y £ B, a e A. It is shown that if M is a von Neumann algebra of operators on Hubert space H for which there exists a quasi-expectation of B(H) on M, then there exists a projection of norm one of B(H) on M, i.e. M is injective. Further, if M is an amenable von Neumann subalgebra of a von Neumann algebra N, then there exists a quasi-expectation of N on M' n N. These two facts yield as an immediate corollary the recent result of A. Cormes that all amenable von Neumann algebras are injective. Let A be a unital C*-algebra and B a unital C*-subalgebra of A. By a quasi-expectation of A on B, we mean a bounded linear projection Q: A -» B such that Q(xay) = xQ(a)y Vx,y G B, a G A. A classical result of J. Tomiyama [13] says that any projection of norm one of A onto F is a quasi-expectation. In what follows, we will show that if M is a von Neumann algebra of operators on Hubert space H, then the existence of a quasi-expec- tation of B(H) on M implies the existence of a projection of norm one of B(H) on M.
    [Show full text]
  • Von Neumann Algebras Form a Model for the Quantum Lambda Calculus∗
    Von Neumann Algebras form a Model for the Quantum Lambda Calculus∗ Kenta Cho and Abraham Westerbaan Institute for Computing and Information Sciences Radboud University, Nijmegen, the Netherlands {K.Cho,awesterb}@cs.ru.nl Abstract We present a model of Selinger and Valiron’s quantum lambda calculus based on von Neumann algebras, and show that the model is adequate with respect to the operational semantics. 1998 ACM Subject Classification F.3.2 Semantics of Programming Language Keywords and phrases quantum lambda calculus, von Neumann algebras 1 Introduction In 1925, Heisenberg realised, pondering upon the problem of the spectral lines of the hydrogen atom, that a physical quantity such as the x-position of an electron orbiting a proton is best described not by a real number but by an infinite array of complex numbers [12]. Soon afterwards, Born and Jordan noted that these arrays should be multiplied as matrices are [3]. Of course, multiplying such infinite matrices may lead to mathematically dubious situations, which spurred von Neumann to replace the infinite matrices by operators on a Hilbert space [44]. He organised these into rings of operators [25], now called von Neumann algebras, and thereby set off an explosion of research (also into related structures such as Jordan algebras [13], orthomodular lattices [2], C∗-algebras [34], AW ∗-algebras [17], order unit spaces [14], Hilbert C∗-modules [28], operator spaces [31], effect algebras [8], . ), which continues even to this day. One current line of research (with old roots [6, 7, 9, 19]) is the study of von Neumann algebras from a categorical perspective (see e.g.
    [Show full text]
  • Morita Equivalence and Continuous-Trace C*-Algebras, 1998 59 Paul Howard and Jean E
    http://dx.doi.org/10.1090/surv/060 Selected Titles in This Series 60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998 59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998 58 Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov, Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, 1998 57 Marc Levine, Mixed motives, 1998 56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998 55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998 54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997 53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997 52 V. A. Kozlov, V. G. Maz'ya> and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997 51 Jan Maly and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, 1997 50 Jon Aaronson, An introduction to infinite ergodic theory, 1997 49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997 48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997 47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997 46 Stephen Lipscomb, Symmetric inverse semigroups, 1996 45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996 44 J. Amoros, M. Burger, K. Corlette, D.
    [Show full text]
  • Algebra of Operators Affiliated with a Finite Type I Von Neumann Algebra
    UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA doi: 10.4467/20843828AM.16.005.5377 53(2016), 39{57 ALGEBRA OF OPERATORS AFFILIATED WITH A FINITE TYPE I VON NEUMANN ALGEBRA by Piotr Niemiec and Adam Wegert Abstract. The aim of the paper is to prove that the ∗-algebra of all (closed densely defined linear) operators affiliated with a finite type I von Neumann algebra admits a unique center-valued trace, which turns out to be, in a sense, normal. It is also demonstrated that for no other von Neumann algebras similar constructions can be performed. 1. Introduction. With every von Neumann algebra A one can associate the set Aff(A) of operators (unbounded, in general) which are affiliated with A. In [11] Murray and von Neumann discovered that, surprisingly, Aff(A) turns out to be a unital ∗-algebra when A is finite. This was in fact the first example of a rich set of unbounded operators in which one can define algebraic binary op- erations in a natural manner. This concept was later adapted by Segal [17,18], who distinguished a certain class of unbounded operators (namely, measurable with respect to a fixed normal faithful semi-finite trace) affiliated with an ar- bitrary semi-finite von Neumann algebra and equipped it with a structure of a ∗-algebra (for an alternative proof see e.g. [12] or x2 in Chapter IX of [21]). A more detailed investigations in algebras of the form Aff(A) were initiated by a work of Stone [19], who described their models for commutative A in terms of unbounded continuous functions densely defined on the Gelfand spectrum X of A.
    [Show full text]
  • Set Theory and Von Neumann Algebras
    SET THEORY AND VON NEUMANN ALGEBRAS ASGER TORNQUIST¨ AND MARTINO LUPINI Introduction The aim of the lectures is to give a brief introduction to the area of von Neumann algebras to a typical set theorist. The ideal intended reader is a person in the field of (descriptive) set theory, who works with group actions and equivalence relations, and who is familiar with the rudiments of ergodic theory, and perhaps also orbit equivalence. This should not intimidate readers with a different background: Most notions we use in these notes will be defined. The reader is assumed to know a small amount of functional analysis. For those who feel a need to brush up on this, we recommend consulting [Ped89]. What is the motivation for giving these lectures, you ask. The answer is two-fold: On the one hand, there is a strong connection between (non-singular) group actions, countable Borel equiva- lence relations and von Neumann algebras, as we will see in Lecture 3 below. In the past decade, the knowledge about this connection has exploded, in large part due to the work of Sorin Popa and his many collaborators. Von Neumann algebraic techniques have lead to many discoveries that are also of significance for the actions and equivalence relations themselves, for instance, of new cocycle superrigidity theorems. On the other hand, the increased understanding of the connection between objects of ergodic theory, and their related von Neumann algebras, has also made it pos- sible to construct large families of non-isomorphic von Neumann algebras, which in turn has made it possible to prove non-classification type results for the isomorphism relation for various types of von Neumann algebras (and in particular, factors).
    [Show full text]
  • Approximation Properties for Group C*-Algebras and Group Von Neumann Algebras
    transactions of the american mathematical society Volume 344, Number 2, August 1994 APPROXIMATION PROPERTIES FOR GROUP C*-ALGEBRAS AND GROUP VON NEUMANN ALGEBRAS UFFE HAAGERUP AND JON KRAUS Abstract. Let G be a locally compact group, let C*(G) (resp. VN(G)) be the C*-algebra (resp. the von Neumann algebra) associated with the left reg- ular representation / of G, let A(G) be the Fourier algebra of G, and let MqA(G) be the set of completely bounded multipliers of A(G). With the com- pletely bounded norm, MqA(G) is a dual space, and we say that G has the approximation property (AP) if there is a net {ua} of functions in A(G) (with compact support) such that ua —»1 in the associated weak '-topology. In par- ticular, G has the AP if G is weakly amenable (•» A(G) has an approximate identity that is bounded in the completely bounded norm). For a discrete group T, we show that T has the AP •» C* (r) has the slice map property for sub- spaces of any C*-algebra -<=>VN(r) has the slice map property for a-weakly closed subspaces of any von Neumann algebra (Property Sa). The semidirect product of weakly amenable groups need not be weakly amenable. We show that the larger class of groups with the AP is stable with respect to semidirect products, and more generally, this class is stable with respect to group exten- sions. We also obtain some results concerning crossed products. For example, we show that the crossed product M®aG of a von Neumann algebra M with Property S„ by a group G with the AP also has Property Sa .
    [Show full text]
  • A Framework to Study Commutation Problems Bulletin De La S
    BULLETIN DE LA S. M. F. ALFONS VAN DAELE A framework to study commutation problems Bulletin de la S. M. F., tome 106 (1978), p. 289-309 <http://www.numdam.org/item?id=BSMF_1978__106__289_0> © Bulletin de la S. M. F., 1978, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 106, 1978, p. 289-309. A FRAMEWORK TO STUDY COMMUTATION PROBLEMS BY ALFONS VAN DAELE [Kath. Univ. Leuven] RESUME. — Soient A et B deux algebres involutives d'operateurs sur un espace hil- bertien j^, telles que chacune d'elles soit contenue dans Ie commutant de Fautre. On enonce des conditions suffisantes sur A et B, en termes de certaines applications lineaires, ri : A ->• ^ et n' : B -> J^, pour que chacune de ces algebres engendre Ie commutant de Fautre. Cette structure generalise d'une certaine facon celle d'une algebre hilbertienne a gauche; elle permet de traiter Ie cas ou Falgebre de von Neumann et son commutant n'ont pas la meme grandeur. ABSTRACT. — If A and B are commuting *-algebras of operators on a Hilbert space ^, conditions on A and B are formulated in terms of linear maps T| : A -> ^ and n" : B -»• ^ to ensure that A and B generate each others commutants.
    [Show full text]
  • Notes Which Was Later Published As Springer Lecture Notes No.128: Simplifi- Cation Was Not an Issue, but the Validity of Tomita’S Claim
    STRUCTURE OF VON NEUMANN ALGEBRAS OF TYPE III Masamichi Takesaki Abstract. In this lecture, we will show that to every von Neumann algebra M there corresponds unquely a covariant system M, ⌧, R, ✓ on the real line R in such a way that n o f ✓ s M = M , ⌧ ✓s = e− ⌧, M0 M = C, ◦ \ where C is the center off M. In the case that M fis a factor, we have the following commutative square of groups which describes the relation of several important groups such as thef unitary group U(M) of M, the normalizer U(M) of M in M and the cohomology group of the flow of weights: C, R, ✓ : { } e f 1 1 1 ? ? @ ? 1 ? U?(C) ✓ B1( ,?U(C)) 1 −−−−−! yT −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? @ ? 1 U(?M) U(?M) ✓ Z1( ,?U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! Ad Ade ? ? ˙ ? @✓ 1 1 Int?(M) Cnft?r(M) H ( ?, U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? ? ?1 ?1 ?1 y y y Contents Lecture 0. History of Structure Analyis of von Neumann Algebras of Type III. Lecture 1. Covariant System and Crossed Product. Lecture 2: Duality for the Crossed Product by Abelian Groups. Lecture 3: Second Cohomology of Locally Compact Abelian Group. Lecture 4. Arveson Spectrum of an Action of a Locally Compact Abelian Group G on a von Neumann algebra M. 1 2 VON NEUMANN ALGEBRAS OF TYPE III Lecture 5: Connes Spectrum. Lecture 6: Examples. Lecture 7: Crossed Product Construction of a Factor. Lecture 8: Structure of a Factor of Type III. Lecture 9: Hilbert Space Bundle. Lecture 10: The Non-Commutative Flow of Weights on a von Neumann algebra M, I.
    [Show full text]
  • A Correspondence Between Maximal Abelian Sub-Algebras and Linear
    Under consideration for publication in Math. Struct. in Comp. Science A Correspondence between Maximal Abelian Sub-Algebras and Linear Logic Fragments THOMAS SEILLER† 1 † I.H.E.S., Le Bois-Marie, 35, Route de Chartres, 91440 Bures-sur-Yvette, France [email protected] Received December 15th, 2014; Revised September 23rd, 2015 We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier (Dix54) and fragments of linear logic. We expose for this purpose a modified construction of Girard’s hyperfinite geometry of interaction (Gir11). The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the interpretation. We also unveil the essential role played by MASAs in previous geometry of interaction constructions. Contents 1 Introduction 1 2 von Neumann Algebras and MASAs 4 3 Geometry of Interaction 14 4 Subjective Truth and Matricial GoI 29 5 Dixmier’s Classification and Linear Logic 46 6 Conclusion 58 References 59 arXiv:1408.2125v2 [math.LO] 23 Sep 2015 1. Introduction 1.1. Geometry of Interaction. Geometry of Interaction is a research program initiated by Girard (Gir89b) a year after his seminal paper on linear logic (Gir87a). Its aim is twofold: define a semantics of proofs that accounts for the dynamics of cut-elimination, and then construct realisability models for linear logic around this semantics of cut-elimination. The first step for defining a GoI model, i.e. a construction that fulfills the geometry of 1 This work was partly supported by the ANR-10-BLAN-0213 Logoi.
    [Show full text]
  • C∗-Algebras, Group Actions and Crossed Products (Lecture Notes)
    C∗-ALGEBRAS, GROUP ACTIONS AND CROSSED PRODUCTS (LECTURE NOTES) PIOTR M. SOLTAN Contents 1. Introduction 2 2. Preliminaries 2 3. Topological groups 3 3.1. Groups with topology 3 3.2. Uniform continuity 3 3.3. Integration 4 3.4. Examples 5 4. Some C∗-algebra theory 6 4.1. C∗-algebras 6 4.2. Multipliers 8 4.3. Morphisms of C∗-algebras 11 4.4. Representations of C∗-algebras 13 4.5. One more look at multipliers 14 4.6. Representations of groups in C∗-algebras 14 4.7. Group actions on C∗-algebras 15 5. Crossed products 16 5.1. Definition and uniqueness 16 5.2. Existence 16 5.3. Group C∗-algebras 28 6. Examples 28 6.1. Transformation group C∗-algebras 28 6.2. Crossed product by a finite cyclic group 29 6.3. Crossed product by a finite group acting on itself 30 6.4. C∗-algebra of a semidirect product of groups 31 ∗ 6.5. C (Z2 ∗ Z2) 32 6.6. Reduced crossed products 33 7. Advanced theory 34 7.1. Pontriagin duality for Abelian locally compact groups 34 7.2. C∗-algebra of an Abelian locally compact group 35 7.3. Landstad’s theorem 36 7.4. Takai’s duality for crossed products 37 7.5. Amenable groups 38 References 39 Date: February 22, 2007. 1 2 PIOTR M. SOLTAN 1. Introduction These notes are a draft of a course offered to students of third, fourth and fifth year of theoretical physics. The aim of the course is to familiarize students with concepts of abstract theory of C∗- algebras and group representations.
    [Show full text]
  • Armand Borel 1923–2003
    Armand Borel 1923–2003 A Biographical Memoir by Mark Goresky ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ARMAND BOREL May 21, 1923–August 11, 2003 Elected to the NAS, 1987 Armand Borel was a leading mathematician of the twen- tieth century. A native of Switzerland, he spent most of his professional life in Princeton, New Jersey, where he passed away after a short illness in 2003. Although he is primarily known as one of the chief archi- tects of the modern theory of linear algebraic groups and of arithmetic groups, Borel had an extraordinarily wide range of mathematical interests and influence. Perhaps more than any other mathematician in modern times, Borel elucidated and disseminated the work of others. family the Borel of Photo courtesy His books, conference proceedings, and journal publica- tions provide the document of record for many important mathematical developments during his lifetime. By Mark Goresky Mathematical objects and results bearing Borel’s name include Borel subgroups, Borel regulator, Borel construction, Borel equivariant cohomology, Borel-Serre compactification, Bailey- Borel compactification, Borel fixed point theorem, Borel-Moore homology, Borel-Weil theorem, Borel-de Siebenthal theorem, and Borel conjecture.1 Borel was awarded the Brouwer Medal (Dutch Mathematical Society), the Steele Prize (American Mathematical Society) and the Balzan Prize (Italian-Swiss International Balzan Foundation). He was a member of the National Academy of Sciences (USA), the American Academy of Arts and Sciences, the American Philosophical Society, the Finnish Academy of Sciences and Letters, the Academia Europa, and the French Academy of Sciences.1 1 Borel enjoyed pointing out, with some amusement, that he was not related to the famous Borel of “Borel sets." 2 ARMAND BOREL Switzerland and France Armand Borel was born in 1923 in the French-speaking city of La Chaux-de-Fonds in Switzerland.
    [Show full text]
  • The American Mathematical Society
    THE AMERICAN MATHEMATICAL SOCIETY Edited by John W. Green and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings . • . • . • . • . • • • . • . 168 PRELIMINARY ANNOUNCEMENT OF MEETING...................... 169 DOCTORATES CONFERRED IN 1961 ••••••••••••••••••••••••••••.•• 173 NEWS ITEMS AND ANNOUNCEMENTS • • • • • • • • • • • • • • • • • • • 189, 194, 195, 202 PERSONAL ITEMS •••••••••••••••••••••••••••••••.••••••••••• 191 NEW AMS PUBLICATIONS •••••••••••••••••••••••••••••••••••.•• 195 LETTERS TO THE EDITOR •.•.•.•••••••••.•••••.••••••••••••••• 196 MEMORANDA TO MEMBERS The Employment Register . • . • . • . • • . • . • • . • . • . • 198 Dues of Reciprocity Members of the Mathematical Society of Japan • . • . • . 198 SUPPLEMENTARY PROGRAM -No. 11 ••••••••••••••••••••••••••••• 199 ABSTRACTS OF CONTRIBUTED PAPERS •.•••••••••••.••••••••••••• 203 ERRATA •••••••••••••••••••••••••••••••••••••••••••••••.• 231 INDEX TO ADVERTISERS • • • • • • • • • • • • • . • . • • • • • • • • • • • . • • • • • • • • • • 243 RESERVATION FORM •••.•.•••••••••••.•••••••••••.••••••••••• 243 MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date a~ch this issue of the NOTICES was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change. This is particularly true of the meetings to which no numbers have yet been assigned. Meet-
    [Show full text]