Linear Algebra II

Total Page:16

File Type:pdf, Size:1020Kb

Linear Algebra II Linear Algebra II Peter Philip∗ Lecture Notes Originally Created for the Class of Spring Semester 2019 at LMU Munich Includes Subsequent Corrections and Revisions† September 19, 2021 Contents 1 Affine Subspaces and Geometry 4 1.1 AffineSubspaces ............................... 4 1.2 AffineHullandAffineIndependence . 6 1.3 AffineBases.................................. 10 1.4 BarycentricCoordinates and Convex Sets. ..... 12 1.5 AffineMaps .................................. 14 1.6 AffineGeometry................................ 20 2 Duality 22 2.1 LinearFormsandDualSpaces. 22 2.2 Annihilators.................................. 27 2.3 HyperplanesandLinearSystems . 31 2.4 DualMaps................................... 34 3 Symmetric Groups 38 ∗E-Mail: [email protected] †Resources used in the preparation of this text include [Bos13, For17, Lan05, Str08]. 1 CONTENTS 2 4 Multilinear Maps and Determinants 46 4.1 MultilinearMaps ............................... 46 4.2 Alternating Multilinear Maps and Determinants . ...... 49 4.3 DeterminantsofMatricesandLinearMaps . .... 57 5 Direct Sums and Projections 71 6 Eigenvalues 76 7 Commutative Rings, Polynomials 87 8 CharacteristicPolynomial,MinimalPolynomial 106 9 Jordan Normal Form 119 10 Vector Spaces with Inner Products 136 10.1 Definition,Examples . 136 10.2 PreservingNorm,Metric,InnerProduct . 138 10.3Orthogonality .................................145 10.4TheAdjointMap ...............................152 10.5 Hermitian,Unitary,andNormalMaps . 158 11 Definiteness of Quadratic Matrices over K 172 A Multilinear Maps 175 B Polynomials in Several Variables 176 C Quotient Rings 192 D Algebraic Field Extensions 199 D.1 BasicDefinitionsandProperties . 199 D.2 AlgebraicClosure...............................205 CONTENTS 3 References 212 1 AFFINE SUBSPACES AND GEOMETRY 4 1 Affine Subspaces and Geometry 1.1 Affine Subspaces Definition 1.1. Let V be a vector space over the field F . Then M V is called an affine subspace of V if, and only if, there exists a vector v V and a (vector)⊆ subspace U V such that M = v + U. We define dim M := dim U∈ to be the dimension of M (this⊆ notion of dimension is well-defined by the following Lem. 1.2(a)). — Thus, the affine subspaces of a vector space V are precisely the translations of vector subspaces U of V , i.e. the cosets of subspaces U, i.e. the elements of quotient spaces V/U. Lemma 1.2. Let V be a vector space over the field F . (a) If M is an affine subspace of V , then the vector subspace corresponding to M is unique, i.e. if M = v1 + U1 = v2 + U2 with v1,v2 V and vector subspaces U1, U2 V , then ∈ ⊆ U = U = u v : u,v M . (1.1) 1 2 { − ∈ } (b) If M = v + U is an affine subspace of V , then the vector v in this representation is unique if, and only if, U = 0 . { } Proof. (a): Let M = v + U with v V and vector subspace U V . Moreover, let 1 1 1 ∈ 1 ⊆ U := u v : u,v M . It suffices to show U1 = U. Suppose, u1 U1. Since v1 M and v{+−u M, we∈ have} u = v + u v U, showing U U.∈ If a U, then there∈ 1 1 ∈ 1 1 1 − 1 ∈ 1 ⊆ ∈ are u1,u2 U1 such that a = v1 + u1 (v1 + u2) = u1 u2 U1, showing U U1, as desired. ∈ − − ∈ ⊆ (b): If U = 0 , then M = v and v is unique. If M = v + U with 0 = u U, then M = v + U ={ v} + u + U with{ v}= v + u. 6 ∈ 6 Definition 1.3. In the situation of Def. 1.1, we call affine subspaces of dimension 0 points, of dimension 1 lines, and of dimension 2 planes – in R2 and R3, such objects are easily visualized and they then coincide with the points, lines, and planes with which one is already familiar. — Affine spaces and vector spaces share many structural properties. In consequence, one can develop a theory of affine spaces that is in many respects analogous to the theory 1 AFFINE SUBSPACES AND GEOMETRY 5 of vector spaces, as will be illustrated by some of the notions and results presented in the following. We start by defining so-called affine combinations, which are, for affine spaces, what linear combinations are for vector spaces: Definition 1.4. Let V be a vector space over the field F with v1,...,vn V and n ∈ λ1,...,λn F , n N. Then i=1 λi vi is called an affine combination of v1,...,vn if, ∈ n ∈ and only if, λi = 1. i=1 P Theorem 1.5.P Let V be a vector space over the field F , = M V . Then M is an affine subspace of V if, and only, if M is closed under∅ affine 6 combinations.⊆ More precisely, the following statements are equivalent: (i) M is an affine subspace of V . n n (ii) If n N, v1,...,vn M, and λ1,...,λn F with i=1 λi =1, then i=1 λi vi M. ∈ ∈ ∈ ∈ P P If char F =2, then (i) and (ii) are also equivalent to1 6 (iii) If v ,v M and λ ,λ F with λ + λ =1, then λ v + λ v M. 1 2 ∈ 1 2 ∈ 1 2 1 1 2 2 ∈ Proof. Exercise. The following Th. 1.6 is the analogon of [Phi19, Th. 5.7] for affine spaces: Theorem 1.6. Let V be a vector space over the field F . (a) Let I = be an index set and (M ) a family of affine subspaces of V . Then the 6 ∅ i i∈I intersection M := i∈I Mi is either empty or it is an affine subspace of V . (b) In contrast to intersections,T unions of affine subspaces are almost never affine sub- spaces. More precisely, if M1 and M2 are affine subspaces of V and char F =2 (i.e. 1 = 1 in F ), then 6 6 − M M is an affine subspace of V M M M M (1.2) 1 ∪ 2 ⇔ 1 ⊆ 2 ∨ 2 ⊆ 1 (where “ ” also holds for char F =2, but cf. Ex. 1.7 below). ⇐ 1 For char F = 2, (iii) does not imply (i) and (ii): Let F := Z2 = 0, 1 . Let V be a vector space over F with #V 4 (e.g. V = F 2). Let p,q,r V be distinct, M{:= }p,q,r (i.e. #M = 3). If ≥ ∈ { } λ1,λ2 F with λ1 +λ2 = 1, then (λ1,λ2) (0, 1), (1, 0) and (iii) is trivially true. On the other hand, v := p ∈+ q + r is an affine combination of p,q,r∈ { , since 1+1+1=1} in F ; but v / M: v = p + q + r = p implies q = r = r, and v = r, q likewise leads to a contradiction (this counterexample∈ was pointed out by Robin Mader).− 1 AFFINE SUBSPACES AND GEOMETRY 6 Proof. (a): Let M = . We use the characterization of Th. 1.5(ii) to show M is an 6 ∅ n affine subspace: If n N, v1,...,vn M, and λ1,...,λn F with k=1 λk = 1, then n ∈ ∈ ∈ v := k=1 λk vk Mi for each i I, implying v M. Thus, M is an affine subspace of V . ∈ ∈ ∈ P P (b): If M1 M2, then M1 M2 = M2, which is an affine subspace of V . If M2 M , then M⊆ M = M ,∪ which is an affine subspace of V . For the converse, we⊆ 1 1 ∪ 2 1 now assume char F = 2, M1 M2, and M1 M2 is an affine subspace of V . We have to show M 6 M . Let 6⊆m M M ∪and m M . Since M M is an 2 ⊆ 1 1 ∈ 1 \ 2 2 ∈ 2 1 ∪ 2 affine subspace, m2 + m2 m1 M1 M2 by Th. 1.5(ii). If m2 + m2 m1 M2, then m = m + m (m− + m∈ m∪) M , in contradiction to m /−M .∈ Thus, 1 2 2 − 2 2 − 1 ∈ 2 1 ∈ 2 m2 + m2 m1 M1. Since char F = 0, we have 2 := 1+1 = 0 in F , implying m = 1 (m−+ m ∈ m )+ 1 m M , i.e.6 M M . 6 2 2 2 2 − 1 2 1 ∈ 1 2 ⊆ 1 2 Example 1.7. Consider F := Z2 = 0, 1 and the vector space V := F over F . Then M := U := (0, 0), (1, 0) = (1, 0){ is} a vector subspace and, in particular, an affine 1 1 { } h{ }i subspace of V . The set M2 := (0, 1) + U1 = (0, 1), (1, 1) is also an affine subspace. Then M M = V is an affine subspace, even{ though neither} M M nor M M . 1 ∪ 2 1 ⊆ 2 2 ⊆ 1 1.2 Affine Hull and Affine Independence Next, we will define the affine hull of a subset A of a vector space, which is the affine analogon to the linear notion of the span of A (which is sometimes also called the linear hull of A): Definition 1.8. Let V be a vector space over the field F , = A V , and ∅ 6 ⊆ := M (V ): A M M is affine subspace of V , M ∈P ⊆ ∧ where we recall that (V ) denotes the power set of V . Then the set P aff A := M M∈M \ is called the affine hull of A. We call A a generating set of aff A. — The following Prop. 1.9 is the analogon of [Phi19, Prop. 5.9] for affine spaces: Proposition 1.9. Let V be a vector space over the field F and = A V . ∅ 6 ⊆ (a) aff A is an affine subspace of V , namely the smallest affine subspace of V containing A. 1 AFFINE SUBSPACES AND GEOMETRY 7 (b) aff A is the set of all affine combinations of elements from A, i.e. n n aff A = λ a : n N λ ,...,λ F a ,...,a A λ =1 .
Recommended publications
  • Sharp Finiteness Principles for Lipschitz Selections: Long Version
    Sharp finiteness principles for Lipschitz selections: long version By Charles Fefferman Department of Mathematics, Princeton University, Fine Hall Washington Road, Princeton, NJ 08544, USA e-mail: [email protected] and Pavel Shvartsman Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] Abstract Let (M; ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness number. Contents 1. Introduction. 2 1.1. Main definitions and main results. 2 1.2. Main ideas of our approach. 3 2. Nagata condition and Whitney partitions on metric spaces. 6 arXiv:1708.00811v2 [math.FA] 21 Oct 2017 2.1. Metric trees and Nagata condition. 6 2.2. Whitney Partitions. 8 2.3. Patching Lemma. 12 3. Basic Convex Sets, Labels and Bases. 17 3.1. Main properties of Basic Convex Sets. 17 3.2. Statement of the Finiteness Theorem for bounded Nagata Dimension. 20 Math Subject Classification 46E35 Key Words and Phrases Set-valued mapping, Lipschitz selection, metric tree, Helly’s theorem, Nagata dimension, Whitney partition, Steiner-type point. This research was supported by Grant No 2014055 from the United States-Israel Binational Science Foundation (BSF). The first author was also supported in part by NSF grant DMS-1265524 and AFOSR grant FA9550-12-1-0425.
    [Show full text]
  • The Continuity of Additive and Convex Functions, Which Are Upper Bounded
    THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS, WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN Rn TARAS BANAKH, ELIZA JABLO NSKA,´ WOJCIECH JABLO NSKI´ Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of n copies of K has non-empty interior in Rn if and only if K is not flat in the sense that the affine hull of K coincides with Rn. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A has non-empty interior in Rn and the set (A − A)+n is a neighborhood of zero in Rn). This implies that a mid-convex function f : D → R, defined on an open convex subset D ⊂ Rn is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D. Let X be a linear topological space over the field of real numbers. A function f : X → R is called additive if f(x + y)= f(x)+ f(y) for all x, y ∈ X. R x+y f(x)+f(y) A function f : D → defined on a convex subset D ⊂ X is called mid-convex if f 2 ≤ 2 for all x, y ∈ D. Many classical results concerning additive or mid-convex functions state that the boundedness of such functions on “sufficiently large” sets implies their continuity.
    [Show full text]
  • Discrete Analytic Convex Geometry Introduction
    Discrete Analytic Convex Geometry Introduction Martin Henk Otto-von-Guericke-Universit¨atMagdeburg Winter term 2012/13 webpage CONTENTS i Contents Preface ii 0 Some basic and convex facts1 1 Support and separate5 2 Radon, Helly, Caratheodory and (a few) relatives9 Index 11 ii CONTENTS Preface The material presented here is stolen from different excellent sources: • First of all: A manuscript of Ulrich Betke on convexity which is partially based on lecture notes given by Peter McMullen. • The inspiring books by { Alexander Barvinok, "A course in Convexity" { G¨unter Ewald, "Combinatorial Convexity and Algebraic Geometry" { Peter M. Gruber, "Convex and Discrete Geometry" { Peter M. Gruber and Cerrit G. Lekkerkerker, "Geometry of Num- bers" { Jiri Matousek, "Discrete Geometry" { Rolf Schneider, "Convex Geometry: The Brunn-Minkowski Theory" { G¨unter M. Ziegler, "Lectures on polytopes" • and some original papers !! and they are part of lecture notes on "Discrete and Convex Geometry" jointly written with Maria Hernandez Cifre but not finished yet. Some basic and convex facts 1 0 Some basic and convex facts n 0.1 Notation. R = x = (x1; : : : ; xn)| : xi 2 R denotes the n-dimensional Pn Euclidean space equipped with the Euclidean inner product hx; yi = i=1 xi yi, n p x; y 2 R , and the Euclidean norm jxj = hx; xi. 0.2 Definition [Linear, affine, positive and convex combination]. Let m 2 n N and let xi 2 R , λi 2 R, 1 ≤ i ≤ m. Pm i) i=1 λi xi is called a linear combination of x1;:::; xm. Pm Pm ii) If i=1 λi = 1 then i=1 λi xi is called an affine combination of x1; :::; xm.
    [Show full text]
  • On Modified L 1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 On Modified l_1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Applied Mathematics Commons, and the Mathematics Commons Recommended Citation Basnet, Man Bahadur, "On Modified l_1-Minimization Problems in Compressed Sensing" (2013). Graduate Theses and Dissertations. 13473. https://lib.dr.iastate.edu/etd/13473 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On modified `-one minimization problems in compressed sensing by Man Bahadur Basnet A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics (Applied Mathematics) Program of Study Committee: Fritz Keinert, Co-major Professor Namrata Vaswani, Co-major Professor Eric Weber Jennifer Davidson Alexander Roitershtein Iowa State University Ames, Iowa 2013 Copyright © Man Bahadur Basnet, 2013. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Jaya and Chandra and to my family (wife Sita, son Manas and daughter Manasi) without whose support, encouragement and love, I would not have been able to complete this work. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . vii ACKNOWLEDGEMENTS . viii ABSTRACT . x CHAPTER 1. INTRODUCTION .
    [Show full text]
  • Non-Linear Inner Structure of Topological Vector Spaces
    mathematics Article Non-Linear Inner Structure of Topological Vector Spaces Francisco Javier García-Pacheco 1,*,† , Soledad Moreno-Pulido 1,† , Enrique Naranjo-Guerra 1,† and Alberto Sánchez-Alzola 2,† 1 Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, CA, Spain; [email protected] (S.M.-P.); [email protected] (E.N.-G.) 2 Department of Statistics and Operation Research, College of Engineering, University of Cadiz, 11519 Puerto Real (CA), Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Inner structure appeared in the literature of topological vector spaces as a tool to charac- terize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set.
    [Show full text]
  • A Framework to Study Commutation Problems Bulletin De La S
    BULLETIN DE LA S. M. F. ALFONS VAN DAELE A framework to study commutation problems Bulletin de la S. M. F., tome 106 (1978), p. 289-309 <http://www.numdam.org/item?id=BSMF_1978__106__289_0> © Bulletin de la S. M. F., 1978, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 106, 1978, p. 289-309. A FRAMEWORK TO STUDY COMMUTATION PROBLEMS BY ALFONS VAN DAELE [Kath. Univ. Leuven] RESUME. — Soient A et B deux algebres involutives d'operateurs sur un espace hil- bertien j^, telles que chacune d'elles soit contenue dans Ie commutant de Fautre. On enonce des conditions suffisantes sur A et B, en termes de certaines applications lineaires, ri : A ->• ^ et n' : B -> J^, pour que chacune de ces algebres engendre Ie commutant de Fautre. Cette structure generalise d'une certaine facon celle d'une algebre hilbertienne a gauche; elle permet de traiter Ie cas ou Falgebre de von Neumann et son commutant n'ont pas la meme grandeur. ABSTRACT. — If A and B are commuting *-algebras of operators on a Hilbert space ^, conditions on A and B are formulated in terms of linear maps T| : A -> ^ and n" : B -»• ^ to ensure that A and B generate each others commutants.
    [Show full text]
  • Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces∗†
    Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces∗y Benjamin Paaßen Christina Göpfert Barbara Hammer This is a preprint of the publication [46] as provided by the authors. The original can be found at the DOI 10.1007/s11063-017-9684-5. Abstract Graph models are relevant in many fields, such as distributed com- puting, intelligent tutoring systems or social network analysis. In many cases, such models need to take changes in the graph structure into ac- count, i.e. a varying number of nodes or edges. Predicting such changes within graphs can be expected to yield important insight with respect to the underlying dynamics, e.g. with respect to user behaviour. However, predictive techniques in the past have almost exclusively focused on sin- gle edges or nodes. In this contribution, we attempt to predict the future state of a graph as a whole. We propose to phrase time series prediction as a regression problem and apply dissimilarity- or kernel-based regression techniques, such as 1-nearest neighbor, kernel regression and Gaussian process regression, which can be applied to graphs via graph kernels. The output of the regression is a point embedded in a pseudo-Euclidean space, which can be analyzed using subsequent dissimilarity- or kernel-based pro- cessing methods. We discuss strategies to speed up Gaussian Processes regression from cubic to linear time and evaluate our approach on two well-established theoretical models of graph evolution as well as two real data sets from the domain of intelligent tutoring systems. We find that simple regression methods, such as kernel regression, are sufficient to cap- ture the dynamics in the theoretical models, but that Gaussian process regression significantly improves the prediction error for real-world data.
    [Show full text]
  • Notes Which Was Later Published As Springer Lecture Notes No.128: Simplifi- Cation Was Not an Issue, but the Validity of Tomita’S Claim
    STRUCTURE OF VON NEUMANN ALGEBRAS OF TYPE III Masamichi Takesaki Abstract. In this lecture, we will show that to every von Neumann algebra M there corresponds unquely a covariant system M, ⌧, R, ✓ on the real line R in such a way that n o f ✓ s M = M , ⌧ ✓s = e− ⌧, M0 M = C, ◦ \ where C is the center off M. In the case that M fis a factor, we have the following commutative square of groups which describes the relation of several important groups such as thef unitary group U(M) of M, the normalizer U(M) of M in M and the cohomology group of the flow of weights: C, R, ✓ : { } e f 1 1 1 ? ? @ ? 1 ? U?(C) ✓ B1( ,?U(C)) 1 −−−−−! yT −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? @ ? 1 U(?M) U(?M) ✓ Z1( ,?U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! Ad Ade ? ? ˙ ? @✓ 1 1 Int?(M) Cnft?r(M) H ( ?, U(C)) 1 −−−−−! y −−−−−! y −−−−−! ✓ Ry −−−−−! ? ? ? ?1 ?1 ?1 y y y Contents Lecture 0. History of Structure Analyis of von Neumann Algebras of Type III. Lecture 1. Covariant System and Crossed Product. Lecture 2: Duality for the Crossed Product by Abelian Groups. Lecture 3: Second Cohomology of Locally Compact Abelian Group. Lecture 4. Arveson Spectrum of an Action of a Locally Compact Abelian Group G on a von Neumann algebra M. 1 2 VON NEUMANN ALGEBRAS OF TYPE III Lecture 5: Connes Spectrum. Lecture 6: Examples. Lecture 7: Crossed Product Construction of a Factor. Lecture 8: Structure of a Factor of Type III. Lecture 9: Hilbert Space Bundle. Lecture 10: The Non-Commutative Flow of Weights on a von Neumann algebra M, I.
    [Show full text]
  • Subspace Concentration of Geometric Measures
    Subspace Concentration of Geometric Measures vorgelegt von M.Sc. Hannes Pollehn geboren in Salzwedel von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. John Sullivan Gutachter: Prof. Dr. Martin Henk Gutachterin: Prof. Dr. Monika Ludwig Gutachter: Prof. Dr. Deane Yang Tag der wissenschaftlichen Aussprache: 07.02.2019 Berlin 2019 iii Zusammenfassung In dieser Arbeit untersuchen wir geometrische Maße in zwei verschiedenen Erweiterungen der Brunn-Minkowski-Theorie. Der erste Teil dieser Arbeit befasst sich mit Problemen in der Lp-Brunn- Minkowski-Theorie, die auf dem Konzept der p-Addition konvexer Körper ba- siert, die zunächst von Firey für p ≥ 1 eingeführt und später von Lutwak et al. für alle reellen p betrachtet wurde. Von besonderem Interesse ist das Zusammen- spiel des Volumens und anderer Funktionale mit der p-Addition. Bedeutsame ofene Probleme in diesem Setting sind die Gültigkeit von Verallgemeinerungen der berühmten Brunn-Minkowski-Ungleichung und der Minkowski-Ungleichung, insbesondere für 0 ≤ p < 1, da die Ungleichungen für kleinere p stärker werden. Die Verallgemeinerung der Minkowski-Ungleichung auf p = 0 wird als loga- rithmische Minkowski-Ungleichung bezeichnet, die wir hier für vereinzelte poly- topale Fälle beweisen werden. Das Studium des Kegelvolumenmaßes konvexer Körper ist ein weiteres zentrales Thema in der Lp-Brunn-Minkowski-Theorie, das eine starke Verbindung zur logarithmischen Minkowski-Ungleichung auf- weist. In diesem Zusammenhang stellen sich die grundlegenden Fragen nach einer Charakterisierung dieser Maße und wann ein konvexer Körper durch sein Kegelvolumenmaß eindeutig bestimmt ist. Letzteres ist für symmetrische konve- xe Körper unbekannt, während das erstere Problem in diesem Fall gelöst wurde.
    [Show full text]
  • The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by E-LIB Dokumentserver - Staats und Universitätsbibliothek Bremen e x3 a h x2 d x1 f b g c The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften - Dr.-Ing. - vorgelegt von Blagoy Genov Fachbereich 3: Mathematik und Informatik The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften - Dr.-Ing. - vorgelegt von Blagoy Genov im Fachbereich 3 (Informatik/Mathematik) der Universit¨atBremen im Juli 2014 Tag der m¨undlichen Pr¨ufung:28. Januar 2015 Gutachter: Prof. Dr. Jan Peleska (Universit¨atBremen) Prof. Dr. Udo Frese (Universit¨atBremen) Erkl¨arung Ich versichere, dass ich die von mir vorgelegte Dissertation selbst¨andigund ohne uner- laubte fremde Hilfe angefertigt habe, dass ich alle benutzen Quellen und Hilfsmittel vollst¨andigangegeben habe und dass alle Stellen, die ich w¨ortlich oder dem Sinne nach aus anderen Arbeiten entnommen habe, kenntlich gemacht worden sind. Ort, Datum Unterschrift 3 Zusammenfassung Die Double-Description-Methode ist ein weit verbreiteter Algorithmus zur Berechnung von konvexen H¨ullenund anderen verwandten Problemen. Wegen seiner unkomplizierten Umsetzung wird er oft in der Praxis bevorzugt, obwohl seine Laufzeitkomplexit¨atnicht durch die Gr¨oßeder Ausgabe beeinflusst wird. Aufgrund seiner zunehmenden Bedeutung in der Programmverifikation und der Analyse von metabolischen Netzwerken ist der Bedarf nach schnellen und zuverl¨assigen Implementierungen in den letzten Jahren rasant gestiegen. Bei den aktuellen Anwendungen besteht erhebliches Potenzial zur Verk¨urzung der Rechenzeit.
    [Show full text]
  • Vector Space and Affine Space
    Preliminary Mathematics of Geometric Modeling (1) Hongxin Zhang & Jieqing Feng State Key Lab of CAD&CG Zhejiang University Contents Coordinate Systems Vector and Affine Spaces Vector Spaces Points and Vectors Affine Combinations, Barycentric Coordinates and Convex Combinations Frames 11/20/2006 State Key Lab of CAD&CG 2 Coordinate Systems Cartesian coordinate system 11/20/2006 State Key Lab of CAD&CG 3 Coordinate Systems Frame Origin O Three Linear-Independent r rur Vectors ( uvw ,, ) 11/20/2006 State Key Lab of CAD&CG 4 Vector Spaces Definition A nonempty set ς of elements is called a vector space if in ς there are two algebraic operations, namely addition and scalar multiplication Examples of vector space Linear Independence and Bases 11/20/2006 State Key Lab of CAD&CG 5 Vector Spaces Addition Addition associates with every pair of vectors and a unique vector which is called the sum of and and is written For 2D vectors, the summation is componentwise, i.e., if and , then 11/20/2006 State Key Lab of CAD&CG 6 Vector Spaces Addition parallelogram illustration 11/20/2006 State Key Lab of CAD&CG 7 Addition Properties Commutativity Associativity Zero Vector Additive Inverse Vector Subtraction 11/20/2006 State Key Lab of CAD&CG 8 Commutativity for any two vectors and in ς , 11/20/2006 State Key Lab of CAD&CG 9 Associativity for any three vectors , and in ς, 11/20/2006 State Key Lab of CAD&CG 10 Zero Vector There is a unique vector in ς called the zero vector and denoted such that for every vector 11/20/2006 State Key Lab of CAD&CG 11 Additive
    [Show full text]
  • Handbook of Generalized Convexity and Generalized Monotonicity Nonconvex Optimization and Its Applications Volume 76
    Handbook of Generalized Convexity and Generalized Monotonicity Nonconvex Optimization and Its Applications Volume 76 Managing Editor: Panos Pardalos University of Florida, U.S.A. Advisory Board: J. R. Birge University of Michigan, U.S.A. Ding-Zhu Du University of Minnesota, U.S.A. C. A. Floudas Princeton University, U.S.A. J. Mockus Lithuanian Academy of Sciences, Lithuania H. D. Sherali Virginia Polytechnic Institute and State University, U.S.A. G. Stavroulakis Technical University Braunschweig, Germany H. Tuy National Centre for Natural Science and Technology, Vietnam Handbook of Generalized Convexity and Generalized Monotonicity Edited by NICOLAS HADJISAVVAS University of Aegean SÁNDOR KOMLÓSI University of Pécs SIEGFRIED SCHAIBLE University of California at Riverside Springer eBook ISBN: 0-387-23393-8 Print ISBN: 0-387-23255-9 ©2005 Springer Science + Business Media, Inc. Print ©2005 Springer Science + Business Media, Inc. Boston All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Springer's eBookstore at: http://ebooks.kluweronline.com and the Springer Global Website Online at: http://www.springeronline.com Contents Preface vii Contributing Authors xvii Part I GENERALIZED CONVEXITY 1 Introduction to Convex and Quasiconvex Analysis 3 Johannes B. G. Frenk, Gábor Kassay 2 Criteria for Generalized Convexity and Generalized Monotonicity 89 in the Differentiable
    [Show full text]