Galaxy Populations in Galaxy Clusters Selected by the Sunyaev-Zeldovich Effect
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
PUBLICATIONS Publications (As of Dec 2020): 335 on Refereed Journals, 90 Selected from Non-Refereed Journals. Citations From
PUBLICATIONS Publications (as of Sep 2021): 350 on refereed journals, 92 selected from non-refereed journals. Citations from ADS: 32263, H-index= 97. Refereed 350. Caminha, G.B.; Suyu, S.H.; Grillo, C.; Rosati, P.; et al. 2021 Galaxy cluster strong lensing cosmography: cosmological constraints from a sample of regular galaxy clusters, submitted to A&A 349. Mercurio, A..; Rosati, P., Biviano, A. et al. 2021 CLASH-VLT: Abell S1063. Cluster assembly history and spectroscopic catalogue, submitted to A&A, (arXiv:2109.03305) 348. G. Granata et al. (9 coauthors including P. Rosati) 2021 Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: the case of Abell S1063, submitted to A&A, (arXiv:2107.09079) 347. E. Vanzella et al. (19 coauthors including P. Rosati) 2021 High star cluster formation efficiency in the strongly lensed Sunburst Lyman-continuum galaxy at z = 2:37, submitted to A&A, (arXiv:2106.10280) 346. M.G. Paillalef et al. (9 coauthors including P. Rosati) 2021 Ionized gas kinematics of cluster AGN at z ∼ 0:8 with KMOS, MNRAS, 506, 385 6 crediti 345. M. Scalco et al. (12 coauthors including P. Rosati) 2021 The HST large programme on Centauri - IV. Catalogue of two external fields, MNRAS, 505, 3549 344. P. Rosati et al. 2021 Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities, Experimental Astronomy, 2021ExA...tmp...79R (arXiv:2104.09535) 343. N.R. Tanvir et al. (33 coauthors including P. Rosati) 2021 Exploration of the high-redshift universe enabled by THESEUS, Experimental Astronomy, 2021ExA...tmp...97T (arXiv:2104.09532) 342. -
October 2017 BRAS Newsletter
October 2017 Issue Next Meeting: Monday, October 9th at 7PM at HRPO nd (2 Mondays, Highland Road Park Observatory) October Program: BRAS President John Nagle will. reveal how he researches and puts together his Observing Notes column for our newsletter each. month. What's In This Issue? HRPO’s Great American Eclipse Event Summary (Page 2) President’s Message Secretary's Summary Outreach Report - FAE Light Pollution Committee Report Recent Forum Entries 20/20 Vision Campaign Messages from the HRPO Spooky Spectrum Observe The Moon Night Natural Sky Conference HRPO 20th Anniversary Observing Notes – Phoenix & Mythology Like this newsletter? See past issues back to 2009 at http://brastro.org/newsletters.html Newsletter of the Baton Rouge Astronomical Society October 2017 President’s Message The first Sidewalk Astronomy of the season was a success. We had a good time, and About 100 people (adult and children) attended. Ben Toman live streamed on the BRAS Facebook page. See his description in this newsletter. A copy of the proposed, revised By-Laws should be in your mail soon. Read through them, and any proposed changes need to be communicated to me before the November meeting. Wally Pursell (who wrote the original and changed by-laws) and I worked last year on getting the By-Laws updated to the current BRAS policies, and we hope the revised By-Laws will need no revisions for a long time. We need more Globe at Night observations – we are behind in the observations compared to last year at this time. We also need observations of variable stars to help in a school project by a new BRAS member, Shreya. -
2004-2005 Annual Report
Anglo-Australian Observatory Annual Report of the Anglo-Australian Telescope Board 1 July 2004 to 30 June 2005 Anglo-Australian Observatory 167 Vimiera Road Eastwood NSW 2122 Australia Postal Address: PO Box 296 Epping NSW 1710 Australia Telephone: (02) 9372 4800 (international) + 61 2 9372 4800 Facsimile: (02) 9372 4880 (international) + 61 2 9372 4880 e-mail: [email protected] Website: http://www.aao.gov.au/ Annual Report Website: http://www.aao.gov.au/annual/ Anglo-Australian Telescope Board Address as above Telephone: (02) 9372 4813 (international) + 61 2 9372 4813 e-mail: [email protected] ABN: 71871323905 © Anglo-Australian Telescope Board 2005 ISSN 1443-8550 Cover: Dome of the UK Schmidt Telescope. Photo courtesy Shaun Amy. Combined H-alpha and Red colour mosaic image of the Vela Supernova remnant taken from several AAO/UK Schmidt Telescope H- alpha survey fields. Image produced by Mike Read and Quentin Parker Cover Design: TTR Print Management Computer Typeset: Anglo-Australian Observatory Picture Credits: The editors would like to thank for their photographs and images throughout this publication Shaun Amy, Stuart Bebb (Physics Photo- graphic Unit, Oxford), Jurek Brzeski, Chris Evans, Kristin Fiegert, David James, Urs Klauser, David Malin, Chris McCowage and Andrew McGrath ii AAO Annual Report 2004–2005 The Honourable Dr Brendan Nelson, MP, Minister for Education, Science and Training Government of the Commonwealth of Australia The Right Honourable Alan Johnson, MP, Secretary of State for Trade and Industry, Government of the United Kingdom of Great Britain and Northern Ireland In accordance with Article 8 of the Agreement between the Australian Government and the Government of the United Kingdom to provide for the establishment and operation of an optical telescope at Siding Spring Mountain in the state of New South Wales, I present herewith a report by the Anglo-Australian Telescope Board for the year from 1 July 2004 to 30 June 2005. -
Arxiv:1409.0850V2 [Astro-Ph.CO] 14 Feb 2015
Accepted by ApJS Preprint typeset using LATEX style emulateapj v. 08/22/09 GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY L. E. Bleem1,2,3, B. Stalder4, T. de Haan5, K. A. Aird6, S. W. Allen7,8,9, D. E. Applegate10, M. L. N. Ashby4, M. Bautz11, M. Bayliss4,12, B. A. Benson2,13,14, S. Bocquet15,16, M. Brodwin17, J. E. Carlstrom1,2,3,14,18, C. L. Chang1,2,18, I. Chiu15,16, H. M. Cho19, A. Clocchiatti20, T. M. Crawford2,14, A. T. Crites2,14,21, S. Desai15,16, J. P. Dietrich15,16, M. A. Dobbs5,22, R. J. Foley4,23,24, W. R. Forman4, E. M. George25,26, M. D. Gladders2,14, A. H. Gonzalez27, N. W. Halverson28, C. Hennig15,16, H. Hoekstra29, G. P. Holder5, W. L. Holzapfel25, J. D. Hrubes6, C. Jones4, R. Keisler2,3,7,8, L. Knox30, A. T. Lee25,31, E. M. Leitch2,14, J. Liu15,16, M. Lueker21,25, D. Luong-Van6, A. Mantz2, D. P. Marrone32, M. McDonald11, J. J. McMahon33, S. S. Meyer2,3,14,18, L. Mocanu2,14, J. J. Mohr15,16,26, S. S. Murray4, S. Padin2,14,21, C. Pryke34, C. L. Reichardt25,35, A. Rest36, J. Ruel12, J. E. Ruhl37, B. R. Saliwanchik37, A. Saro15, J. T. Sayre37, K. K. Schaffer2,18,38, T. Schrabback10, E. Shirokoff21,25, J. Song33,39, H. G. Spieler31, S. A. Stanford30,40, Z. Staniszewski21,37, A. A. Stark4, K. T. Story2,3, C. W. Stubbs4,12, K. Vanderlinde41,42, J. -
2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory
2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table of Contents 0 Executive Summary ....................................................................................... 1 1 Introduction and Overview .............................................................................. 5 2 Science Highlights ........................................................................................... 6 2.1 Highest Resolution Optical Images of Pluto from the Ground ...................... 6 2.2 Dynamical Measurements of Extremely Massive Black Holes ...................... 6 2.3 The Best Standard Candle for Cosmology ...................................................... 7 2.4 Beginning to Solve the Cooling Flow Problem ............................................... 8 2.5 A Disappearing Dusty Disk .............................................................................. 9 2.6 Gas Morphology and Kinematics of Sub-Millimeter Galaxies........................ 9 2.7 No Intermediate-Mass Black Hole at the Center of M71 ............................... 10 3 Operations ...................................................................................................... 11 3.1 Gemini Publications and User Relationships ............................................... 11 3.2 Science Operations ........................................................................................ 12 3.2.1 ITAC Software and Queue Filling Results .................................................. -
Deep Chandra, HST-COS, and Megacam Observations of The
Draft version November 13, 2017 A Preprint typeset using LTEX style emulateapj v. 08/22/09 DEEP CHANDRA, HST-COS, AND MEGACAM OBSERVATIONS OF THE PHOENIX CLUSTER: EXTREME STAR FORMATION AND AGN FEEDBACK ON HUNDRED KILOPARSEC SCALES Michael McDonald1, Brian R. McNamara2,3, Reinout J. van Weeren4, Douglas E. Applegate5, Matthew Bayliss4,6, Marshall W. Bautz1, Bradford A. Benson7,8,9, John E. Carlstrom8,9,10, Lindsey E. Bleem9,10, Marios Chatzikos11, Alastair C. Edge12, Andrew C. Fabian13, Gordon P. Garmire14, Julie Hlavacek-Larrondo15 , Christine Jones-Forman4, Adam B. Mantz16,9, Eric D. Miller1, Brian Stalder17, Sylvain Veilleux18,19, John A. ZuHone1 Draft version November 13, 2017 ABSTRACT We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344- 4243). Deep optical imaging reveals previously-undetected filaments of star formation, extending to radii of ∼50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy 9 reveals a massive (2×10 M⊙), young (∼4.5 Myr) population of stars, consistent with a time-averaged −1 star formation rate of 610 ± 50 M⊙ yr . We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 −1 M⊙ yr ) from the cooling intracluster medium. We confirm the presence of deep X-ray cavities in the inner ∼10 kpc, which are amongst the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2 − 7 × 1045 erg s−1. We provide evidence that the AGN inflating these cavities may have only recently transitioned from “quasar-mode” to “radio-mode”, and may currently be insufficient to completely offset cooling. -
Surveys with Small Optical Telescopes
SMALL-TELESCOPE SURVEYS Surveys with small optical telescopes Downloaded from https://academic.oup.com/astrogeo/article-abstract/60/6/6.14/5625003 by Institute of Child Health/University College London user on 04 March 2020 Tony Lynas-Gray reviews the odern astrophysics owes its exist- 1976) detectors, surveys were extended into history of surveys with small ence to small-telescope surveys the near-infrared. Moreover, images and Mdating back to the 18th century, spectra obtained using CCDs and digitized telescopes and explains why they for example Flamsteed (1725). In the 19th photographic plates are in a machine-read- are still vital to support the work century, Argelander’s survey based on able form and amenable to processing with of much larger telescopes. visual observations with small telescopes modern numerical methods. and meridian circles culminated in the 1859 In this article I summarize some of the publication of the Bonner Durchmusterung more important surveys – and results – (BD), a catalogue of northern hemisphere carried out so far with small telescopes stars brighter than ninth magnitude, with (having an aperture of no more than 2 m). accompanying charts (Batten 1991). The BD Modern networks of small tele scopes catalogue was later extended to the south- operated robotically are expected to ern hemisphere by the Córdoba Durch- continue survey work for the foreseeable musterung (CD; 1892 onwards) prepared future: small telescopes in general need to using Argelander’s method, and the Cape be retained for follow-up observations of Photographic Durchmusterung (CPD; 1885 brighter targets of interest discovered in onwards) based on photographic plates. -
WG 3.2 National-Scale Facilities
National Facilities A report to the National Committee for Astronomy for the Australian Astronomy Decadal Plan 2006-2015 By Working Group 3.2 September 2005 Executive Summary Australia’s national facilities for observational astronomy are the Anglo-Australian Observatory (AAO) and the Australia Telescope National Facility (ATNF). In the period covered by this Decadal Plan the United Kingdom will substantially reduce its contribution to the operations budget of the AAO. In consequence, a major issue for this WG to consider is the future funding of the AAO. In addition to the AAO and ATNF, several Australian universities operate observing facilities that have a significant role at a national level: either by offering observing time to outside users or by providing infrastructure as in the case of the ANU’s Siding Spring Observatory (SSO). Rather than duplicate the detailed discussions of these facilities, the three Facilities WG chairs agreed to assign facilities like SSO into one or the other WGs: this was for practical reasons and does not imply any judgement about the status of the respective university facilities. Our discussions at this stage of the Decadal Plan process were independent of the scientific priorities from the science WGs, so are based mainly on strategic issues informed by the submissions we received and our own experience as users (and senior staff) of national facilities. The lack of a detailed science case at this stage of the process makes it hard to assign relative ranks to all the facilities discussed. However we have identified the top and bottom items: • In all our discussions there was unqualified support for the AAO and ATNF as our two national facilities. -
A New Search Strategy for the Most Massive Central Cluster Black Holes M
A&A 585, A153 (2016) Astronomy DOI: 10.1051/0004-6361/201526873 & c ESO 2016 Astrophysics Unveiling Gargantua: A new search strategy for the most massive central cluster black holes M. Brockamp1, H. Baumgardt2, S. Britzen1, and A. Zensus1 1 Max Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 2 School of Mathematics and Physics, University of Queensland, St. Lucia, QLD 4072, Australia e-mail: [email protected] Received 1 July 2015 / Accepted 13 September 2015 ABSTRACT Aims. We aim to unveil the most massive central cluster black holes in the Universe. Methods. We present a new search strategy, which is based on a black hole mass gain sensitive calorimeter and which links the innermost stellar density profile of a galaxy to the adiabatic growth of its central supermassive black hole (SMBH). As a first step we convert observationally inferred feedback powers into SMBH growth rates using reasonable energy conversion efficiency parame- ters, . In the main part of this paper we use these black hole growth rates, sorted in logarithmically increasing steps encompassing our whole parameter space, to conduct N-body computations of brightest cluster galaxies (BCGs) with the newly developed Muesli soft- ware. For the initial setup of galaxies, we use core-Sérsic models to account for SMBH scouring. Results. We find that adiabatically driven core regrowth is significant at the highest accretion rates. As a result, the most massive black holes should be located in BCGs with less pronounced cores when compared to the predictions of empirical scaling relations, which are usually calibrated in less extreme environments. -
OMB Uniform Guidance
MASSACHUSETTS INSTITUTE OF TECHNOLOGY REPORT ON THE AUDIT OF FEDERAL FINANCIAL ASSISTANCE PROGRAMS IN ACCORDANCE WITH THE OMB Uniform Guidance FOR THE YEAR ENDED JUNE 30, 2016 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Reports on the Audit of Federal Financial Assistance Programs in Accordance with the OMB Uniform Guidance For the Year Ended June 30, 2016 Table of Contents I. Financial Reports Report of Independent Auditors…………………..…………………..……………… 5 Basic Financial Statements of the Institute for the Year Ended June 30, 2016………. 7 II. Schedule of Expenditures of Federal Awards Schedule of Expenditures of Federal Awards for the Year Ended June 30, 2016 …... 43 Notes to the Schedule of Expenditures of Federal Awards………………………….. 45 Appendices to the Schedule of Expenditures of Federal Awards: Appendix A Federal Research Support……………………………………………… 47 Appendix A-1 Federal Research Support – On Campus…………………………….. 48 Appendix A-2 Schedule of Expenditures of Federal Awards - Lincoln Laboratories.. 124 Appendix A-3 Federal Research Support – Passthrough – On Campus……………… 127 Appendix A-4 Highway Planning and Construction Cluster – Passthrough ………… 197 Appendix B Federal Non-Research Support – On Campus………………………….. 198 Appendix C Federal Non-Research Support – Passthrough – On Campus…………... 206 III. Reports on Internal Control and Compliance and Summary of Auditor's Results Report of Independent Auditors on Internal Control over Financial Reporting and on Compliance and Other Matters Based on an Audit of Financial Statements Performed in Accordance with Government Auditing Standards …………………… 216 Report of Independent Auditors on Compliance with Requirements that could have a Direct and Material Effect on each Major Program and on Internal Control over Compliance in Accordance with the OMB Uniform Guidance.. -
Science Highlights
Nancy A. Levenson Science Highlights From standard candles to the serendipitous use of one of the most distant known supernovae to study the interstellar medium in very distant galaxies, learn about four of Gemini’s most recent contributions to the understanding of our universe. The Best Standard Candle for Cosmology Exploding stars offer some of the most precise measurements of cosmic distances. Astrono- mers have long used observations of these supernovae at visible wavelengths for this pur- pose and they provide the basis for the 2011 Nobel Prize in Physics. Supernovae do have some intrinsic differences in visible light, however, so the observations must be corrected; that is, to standardize the candles (to the same absolute luminosity). Visible light also suf- fers from the complication of attenuation Figure 1. by dust anywhere along the line-of-sight, The residual Hubble from the supernova’s host galaxy to our diagram for supernovae vantage point in the Milky Way. observed in the H band (green), compared with In contrast, at near-infrared wavelengths, previous NIR samples Type Ia supernovae serve as the best (blue). The deviation “standard candle” for these determina- of each measurement tions. As Rob Barone-Nugent (University from the overall mean is of Melbourne, Australia) and colleagues plotted against redshift, show in the Monthly Notices of the Royal z, which indicates Astronomical Society, Type Ia supernovae distance. are intrinsically more consistent in their peak luminosity when viewed in the near- infrared (NIR), so they do not require these corrections. Because of this characteristic, the team can measure cosmological distances to an accuracy of 5 percent (Barone-Nugent et al., Monthly Notices of the Royal Astronomical Society, 425: 1007, 2012). -
Setting Book
Background terribly significantly during the period 725-1273 PD, although The first manned interstellar ship departed the Solar System the ability to pick suitable targets for colonization (courtesy of on September 30, 2103. Although no other ship followed for the FTL survey crews) improved enormously. almost fifty years, 2103 CE, became accepted as Year One of the Diaspora, and January 1 of that year became January 1,01 The best speed possible in hyper prior to 1273 PD was about PD for purposes of interstellar dating. fifty times light-speed, a major plus over light-speed vessels but still too slow to tie distant stars together into For over seven centuries after the Prometheus Figure 1 any sort of interstellar community. It was sufficient became the first manned starship, FTL movement to allow establishment of the oldest of the currently remained impossible, leaving generation ships Star Hyper existing interstellar polities, the Solarian League, (followed in the fourth century PD by the Type Limit consisting of the oldest colony worlds within development of practical cryogenic hibernation 0 49.60 LM approximately ninety light-years of Sol. vessels) as the only means of long-distance B 33.42 LM interstellar expansion.The original starships A 28.75 LM The major problem limiting hyper speeds was used fairly straightforward reaction drives with F0 26.42 LM that simply getting into hyper did not create a hydrogen catcher fields to sustain boost after the F1 25.98 LM propulsive effect. Indeed, the initial translation into initial onboard reaction mass was exhausted. Later F2 25.54 LM hyper was a complex energy transfer which reduced generations attempted more esoteric propulsion F3 25.1 OLM a starship's velocity by"bleeding off" momentum.