2004-2005 Annual Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ASTRONET IR Final Word Doc for Printing with Logo
ASTRONET: Infrastructure Roadmap Update Ian Robson The ASTRONET Science Vision and Infrastructure Roadmap were published in 2007 and 2008 respectively and presented a strategic plan for the development of European Astronomy. A requirement was to have a light-touch update of these midway through the term. The Science Vision was updated in 2013 and the conclusions were fed into the Roadmap update. This was completed following the outcome of the ESA decisions on the latest missions. The community has been involved through a variety of processes and the final version of the update has been endorsed by the ASTRONET Executive. ASTRONET was created by a group of European funding agencies in order to establish a strategic planning mechanism for all of European astronomy . It covers the whole astronomical domain, from the Sun and Solar System to the limits of the observable Universe, and from radioastronomy to gamma-rays and particles, on the ground as well as in space; but also theory and computing, outreach, training and recruitment of the vital human resources. And, importantly, ASTRONET aims to engage all astronomical communities and relevant funding agencies on the new map of Europe. http://www.astronet-eu.org/ ASTRONET has been supported by the EC since 2005 as an ERA-NET . Despite the formidable challenges of establishing such a comprehensive plan, ASTRONET reached that goal with the publication of its Infrastructure Roadmap in November 2008. Building on this remarkable achievement, the present project will proceed to the implementation stage, a very significant new step towards the coordination and integration of European resources in the field. -
Inferring Kilonova Population Properties with a Hierarchical Bayesian Framework I : Non-Detection Methodology and Single-Event Analyses
Draft version July 16, 2021 Typeset using LATEX twocolumn style in AASTeX631 Inferring kilonova population properties with a hierarchical Bayesian framework I : Non-detection methodology and single-event analyses Siddharth R. Mohite,1, 2, ∗ Priyadarshini Rajkumar,3 Shreya Anand,4 David L. Kaplan,1 Michael W. Coughlin,5 Ana Sagues-Carracedo´ ,6 Muhammed Saleem,5 Jolien Creighton,1 Patrick R. Brady,1 Tomas´ Ahumada,7 Mouza Almualla,8 Igor Andreoni,4 Mattia Bulla,9 Matthew J. Graham,4 Mansi M. Kasliwal,4 Stephen Kaye,10 Russ R. Laher,11 Kyung Min Shin,12 David L. Shupe,11 and Leo P. Singer13, 14 1Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin{Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA 2Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA 3Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409-1051, USA 4Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 5School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 6The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 7Department of Astronomy, University of Maryland, College Park, MD 20742, USA 8Department of Physics, American University of Sharjah, PO Box 26666, Sharjah, UAE 9The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 10Caltech Optical Observatories, California -
J-PLUS: on the Identification of New Cluster
A&A 622, A178 (2019) https://doi.org/10.1051/0004-6361/201731348 Astronomy & © ESO 2019 Astrophysics J-PLUS: On the identification of new cluster members in the double galaxy cluster A2589 and A2593 using PDFs A. Molino1,2, M. V. Costa-Duarte1,3, C. Mendes de Oliveira1, A. J. Cenarro4, G. B. Lima Neto1, E. S. Cypriano1, L. Sodré Jr1, P. Coelho1, M. Chow-Martínez5,6, R. Monteiro-Oliveira7,1, L. Sampedro1,2, D. Cristobal-Hornillos4, J. Varela4, A. Ederoclite4, A. L. Chies-Santos7, W. Schoenell1, T. Ribeiro8, A. Marín-Franch4, C. López-Sanjuan4, J. D. Hernández-Fernández1, A. Cortesi1, H. Vázquez Ramió4, W. Santos Jr1, N. Cibirka1, P. Novais1, E. Pereira1, J. A. Hernández-Jimenez1, Y. Jimenez-Teja9, M. Moles4, N. Benítez2, and R. Dupke9 1 Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Rua do Matão 1226, 05508-090 São Paulo, Brazil e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía. IAA-CSIC. Glorieta de la astronomía s/n, 18008 Granada, Spain 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 4 Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan 1, 44001 Teruel, Spain 5 Departamento de Astronomía, DCNE, Universidad de Guanajuato, Apdo. Postal 144, CP 36000 Guanajuato, Mexico 6 Instituto de Geología y Geofísica - Centro de Investigaciones Geocientíficas/Universidad Nacional Autónoma de Nicaragua, Managua, Rotonda Universitaria 200 metros al Este, Managua, Nicaragua 7 Departamento de Astronomía, Instituto de Física, Universidade Federal do Rio Grande do Sul, 15051 Porto Alegre RS, Brazil 8 Departamento de Física, Universidade Federal de Sergipe, Av. -
Combining Dark Energy Survey Science Verification Data with Near
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 16 October 2018 (MN LATEX style file v2.2) Combining Dark Energy Survey Science Verification Data with Near Infrared Data from the ESO VISTA Hemisphere Survey Manda Banerji1⋆, S. Jouvel1, H. Lin2, R. G. McMahon3,4, O. Lahav1, F. J. Castander5, F. B. Abdalla1, E. Bertin6, S. E. Bosman3, A. Carnero7,8, M. Carrasco Kind9, L. N. da Costa7,8, D. Gerdes10, J. Gschwend7,8, M. Lima11,8, M. A. G. Maia7,8, A. Merson3, C. Miller10, R. Ogando7,8, P. Pellegrini7,8, S. Reed3, R. Saglia12,C.Sanchez´ 13, S. Allam14,2, J. Annis2, G. Bernstein15, J. Bernstein16, R. Bernstein17, D. Capozzi18, M. Childress19,20, Carlos E. Cunha21, T. M. Davis22,20, D. L. DePoy23, S. Desai24,25, H. T. Diehl2, P. Doel1, J. Findlay3, D. A. Finley2, B. Flaugher2, J. Frieman2, E. Gaztanaga5, K. Glazebrook26, C. Gonzalez-Fern´ andez´ 3, E. Gonzalez-Solares3, K. Honscheid27, M. J. Irwin3, M. J. Jarvis28,29, A. Kim30, S. Koposov3, K. Kuehn31, A. Kupcu-Yoldas3, D. Lagattuta26,20, J. R. Lewis3, C. Lidman31, M. Makler32, J. Marriner2, Jennifer L. Marshall23, R. Miquel13,33, Joseph J. Mohr24,25,12, E. Neilsen2, J. Peoples2, M. Sako15, E. Sanchez34, V. Scarpine2, R. Schindler35, M. Schubnell10, I. Sevilla34, R. Sharp36, M. Soares-Santos2, M. E. C. Swanson37, G. Tarle11, J. Thaler38, D. Tucker2, S. A. Uddin26,20, R. Wechsler21, W. Wester2, F. Yuan38,19, J. Zuntz39 16 October 2018 ABSTRACT We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near infrared data from the ESO VISTA Hemisphere Survey (VHS). -
Surveys with Small Optical Telescopes
SMALL-TELESCOPE SURVEYS Surveys with small optical telescopes Downloaded from https://academic.oup.com/astrogeo/article-abstract/60/6/6.14/5625003 by Institute of Child Health/University College London user on 04 March 2020 Tony Lynas-Gray reviews the odern astrophysics owes its exist- 1976) detectors, surveys were extended into history of surveys with small ence to small-telescope surveys the near-infrared. Moreover, images and Mdating back to the 18th century, spectra obtained using CCDs and digitized telescopes and explains why they for example Flamsteed (1725). In the 19th photographic plates are in a machine-read- are still vital to support the work century, Argelander’s survey based on able form and amenable to processing with of much larger telescopes. visual observations with small telescopes modern numerical methods. and meridian circles culminated in the 1859 In this article I summarize some of the publication of the Bonner Durchmusterung more important surveys – and results – (BD), a catalogue of northern hemisphere carried out so far with small telescopes stars brighter than ninth magnitude, with (having an aperture of no more than 2 m). accompanying charts (Batten 1991). The BD Modern networks of small tele scopes catalogue was later extended to the south- operated robotically are expected to ern hemisphere by the Córdoba Durch- continue survey work for the foreseeable musterung (CD; 1892 onwards) prepared future: small telescopes in general need to using Argelander’s method, and the Cape be retained for follow-up observations of Photographic Durchmusterung (CPD; 1885 brighter targets of interest discovered in onwards) based on photographic plates. -
Fast and Accurate Estimation for Astrophysical Problems in Large Databases
Fast and Accurate Estimation for Astrophysical Problems in Large Databases Joseph Richards Thesis Proposal August 18, 2009 Abstract In this proposed thesis, I will develop efficient non-parametric methods for parameter estima- tion in large databases of high-dimensional, noisy data. Specifically, I plan to continue exploring the efficacy of the diffusion map method of data transformation, used in conjunction with the Nystr¨omextension, in uncovering underlying structure in complicated, high-dimensional data sets. I will explore models that effectively exploit this structure to accurately estimate scien- tific parameters of interest. Additionally, I will formulate multi-scale methods that generate data-driven bases within local partitions to allow for the modeling of more complicated data. The proposed methods will be tested on three research problems in astrophysics: estimation of star formation history (SFH) in galaxies using spectra from the Sloan Digital Sky Survey (SDSS), photometric redshift estimation using data from the SDSS Photometric Survey and the Canada-France-Hawaii Telescope Legacy Survey, and detection of classes of quasar and outliers using SDSS spectra. Preliminary work has already shown promise in the proposed methods for both SFH estimation (Richards et al. 2009) and photometric redshift estimation (Freeman et al. 2009). 1 Astronomical survey data Technological advancements in observational astronomy have caused a recent flood of astronomical surveys that collect data from billions of objects.1 Modern surveys amass data for different -
Astro2010: the Astronomy and Astrophysics Decadal Survey
Astro2010: The Astronomy and Astrophysics Decadal Survey Notices of Interest 1. 4 m space telescope for terrestrial planet imaging and wide field astrophysics Point of Contact: Roger Angel, University of Arizona Summary Description: The proposed 4 m telescope combines capabilities for imaging terrestrial exoplanets and for general astrophysics without compromising either. Extremely high contrast imaging at very close inner working angle, as needed for terrestrial planet imaging, is accomplished by the powerful phase induced amplitude apodization method (PIAA) developed by Olivier Guyon. This method promises 10-10 contrast at 2.0 l/D angular separation, i.e. 50 mas for a 4 m telescope at 500 nm wavelength. The telescope primary mirror is unobscured with off-axis figure, as needed to achieve such high contrast. Despite the off-axis primary, the telescope nevertheless provides also a very wide field for general astrophysics. A 3 mirror anastigmat design by Jim Burge delivers a 6 by 24 arcminute field whose mean wavefront error of 12 nm rms, i.e.diffraction limited at 360 nm wavelength. Over the best 10 square arcminutes the rms error is 7 nm, for diffraction limited imaging at 200 nm wavelength. Any of the instruments can be fed by part or all of the field, by means of a flat steering mirror at the exit pupil. To allow for this, the field is curved with a radius equal to the distance from the exit pupil. The entire optical system fits in a 4 m diameter cylinder, 8 m long. Many have considered that only by using two spacecraft, a conventional on-axis telescope and a remote occulter, could high contrast and wide field imaging goals be reconciled. -
WG 3.2 National-Scale Facilities
National Facilities A report to the National Committee for Astronomy for the Australian Astronomy Decadal Plan 2006-2015 By Working Group 3.2 September 2005 Executive Summary Australia’s national facilities for observational astronomy are the Anglo-Australian Observatory (AAO) and the Australia Telescope National Facility (ATNF). In the period covered by this Decadal Plan the United Kingdom will substantially reduce its contribution to the operations budget of the AAO. In consequence, a major issue for this WG to consider is the future funding of the AAO. In addition to the AAO and ATNF, several Australian universities operate observing facilities that have a significant role at a national level: either by offering observing time to outside users or by providing infrastructure as in the case of the ANU’s Siding Spring Observatory (SSO). Rather than duplicate the detailed discussions of these facilities, the three Facilities WG chairs agreed to assign facilities like SSO into one or the other WGs: this was for practical reasons and does not imply any judgement about the status of the respective university facilities. Our discussions at this stage of the Decadal Plan process were independent of the scientific priorities from the science WGs, so are based mainly on strategic issues informed by the submissions we received and our own experience as users (and senior staff) of national facilities. The lack of a detailed science case at this stage of the process makes it hard to assign relative ranks to all the facilities discussed. However we have identified the top and bottom items: • In all our discussions there was unqualified support for the AAO and ATNF as our two national facilities. -
The 6Df Galaxy Survey Is a Very Effective Means of Determining the True Mass Distribution in the Local Universe
**TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The 6dF Galaxy Survey Ken-ichi Wakamatsu Faculty of Engineering, Gifu University, Gifu 501-1192, Japan Matthew Colless Mount Stromlo & Siding Spring Observatories, ACT 2611, Australia Tom Jarrett IPAC, Caltech, MS 100-22, Pasadena, CA 91125, USA Quentin Parker Macquarie University, Sydney 2109, Australia William Saunders Anglo-Australian Observatory, Epping NSW 2121, Australia Fred Watson Anglo-Australian Observatory, Coonabarabran NSW 2357, Australia Abstract. The 6dF Galaxy Survey (6dFGS) 1 is a spectroscopic sur- vey of the entire southern sky with |b| > 10◦, based on the 2MASS near infrared galaxy catalog. It is conducted with the 6dF multi-fiber spec- trograph attached to the 1.2-m UK Schmidt Telescope. The survey will produce redshifts for some 170,000 galaxies, and peculiar velocities for about 15,000 and is expected to be complete by June 2005. arXiv:astro-ph/0306104v1 5 Jun 2003 1. Introduction In order to reveal large-scale structures at intermediate and large distances, ex- tensive galaxy redshift surveys have been carried out, e.g. the 2dFGRS and SDSS, and the Hubble- and Subaru-deep field surveys. There is now an ur- gent need to study the large-scale structure of the Local Universe that can be compared with the above deeper surveys. However to do this required hemi- 1Member of Science Advisory Group: M. Colless (Chair; ANU, Australia), J. Huchra (CfA, USA), T. Jarrett (IPAC, USA), O. Lahav (Cambridge, UK), J. Lucey (Dahram, UK), G. Mamon (IAP, France), Q. Parker (Maquarie Univ. Australia), D. Proust (Meudon, France), E. -
Atlas: a High-Cadence All-Sky Survey System
Draft version March 30, 2018 Typeset using LATEX preprint style in AASTeX61 ATLAS: A HIGH-CADENCE ALL-SKY SURVEY SYSTEM J. L. Tonry,1 L. Denneau,1 A. N. Heinze,1 B. Stalder,2 K. W. Smith,3 S. J. Smartt,3 C. W. Stubbs,4 H. J. Weiland,1 and A. Rest5, 6 1Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 2LSST, 950 N. Cherry Ave, Tucson, AZ 85719 3Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK 4Department of Physics, Harvard University, Cambridge, MA 02138, USA 5Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 6Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA ABSTRACT Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the \Asteroid Terrestrial-impact Last Alert System" (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m < 19) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. -
Not Yet Imagined: a Study of Hubble Space Telescope Operations
NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe. -
Astronet SV for Publication New Cover Final
ASTRONET: Science Vision Update Ian Robson This is the update to the ASTRONET Science Vision for European Astronomy report that was published in 2007. The update is current as of February 2013. One of its key roles is to feed into the ASTRONET Infrastructure Roadmap update that will be published in late 2014. ASTRONET was created by a group of European funding agencies in order to establish a strategic planning mechanism for all of European astronomy . It covers the whole astronomical domain, from the Sun and Solar System to the limits of the observable Universe, and from radioastronomy to gamma-rays and particles, on the ground as well as in space; but also theory and computing, outreach, training and recruitment of the vital human resources. And, importantly, ASTRONET aims to engage all astronomical communities and relevant funding agencies on the new map of Europe. http://www.astronet-eu.org/ ASTRONET has been supported by the EC since 2005 as an ERA-NET. Despite the formidable challenges of establishing such a comprehensive plan, ASTRONET reached that goal with the publication of its Infrastructure Roadmap in November 2008. Building on this remarkable achievement, the present project will proceed to the implementation stage, a very significant new step towards the coordination and integration of European resources in the field. Acknowledgements: I would like to thank all those who contributed to this update of the Science Vision Document, especially those mentioned in Appendix 1. Ian Robson March 2013 ‘It is a pleasure to welcome the publication of this update which builds upon the very successful initial Science Vision.