DNA Hypermethylation and Differential Gene Expression Associated With
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Sequence Overlap Between Autosomal and Sex-Linked Probes on the Illumina Humanmethylation27 Microarray
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 97 (2011) 214–222 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray Yi-an Chen a,b, Sanaa Choufani a, Jose Carlos Ferreira a,b, Daria Grafodatskaya a, Darci T. Butcher a, Rosanna Weksberg a,b,⁎ a Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada b Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada article info abstract Article history: The Illumina Infinium HumanMethylation27 BeadChip (Illumina 27k) microarray is a high-throughput Received 12 August 2010 platform capable of interrogating the human DNA methylome. In a search for autosomal sex-specific DNA Accepted 18 December 2010 methylation using this microarray, we discovered autosomal CpG loci showing significant methylation Available online 4 January 2011 differences between the sexes. However, we found that the majority of these probes cross-reacted with sequences from sex chromosomes. Moreover, we determined that 6–10% of the microarray probes are non- Keywords: specific and map to highly homologous genomic sequences. Using probes targeting different CpGs that are Illumina Infinium HumanMethylation 27 BeadChip exact duplicates of each other, we investigated the precision of these repeat measurements and concluded Non-specific cross-reactive probe that the overall precision of this microarray is excellent. In addition, we identified a small number of probes Sex-specific DNA methylation targeting CpGs that include single-nucleotide polymorphisms. -
The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail. -
The Autoimmune Signature of Hyperinflammatory Multisystem Inflammatory Syndrome in Children Rebecca A. Porritt1,*, Aleksandra Bi
The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children Rebecca A. Porritt1,*, Aleksandra Binek2,*, Lisa Paschold3,*, Magali Noval Rivas1, Angela Mc Ardle2, Lael M. Yonker4,5, Galit Alter4,5,6, Harsha Chandnani7, Merrick Lopez7, Alessio Fasano4,5, Jennifer E. Van Eyk2,8,†, Mascha Binder3,† and Moshe Arditi1,9,† 1Departments of Pediatrics, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars- Sinai Medical Center, Los Angeles, CA, USA. 2Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 3Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle- Wittenberg, 06120 Halle (Saale), Germany 4Massachusetts General Hospital, Mucosal Immunology and Biology Research Center and Department of Pediatrics, Boston, MA, USA. 5Harvard Medical School, Boston, MA, USA. 6Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA. 7Department of Pediatrics, Loma Linda University Hospital, CA, USA. 8Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 9Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA * these authors contributed equally † these senior authors contributed equally Corresponding author: Moshe Arditi, MD 8700 Beverly Blvd. Davis Building, Rooms D4024, 4025, 4027 Los Angeles, CA 90048 Phone:310-423-4471 -
Coordinate Regulation of Long Non-Coding Rnas and Protein-Coding Genes in Germ- Free Mice Joseph Dempsey, Angela Zhang and Julia Yue Cui*
Dempsey et al. BMC Genomics (2018) 19:834 https://doi.org/10.1186/s12864-018-5235-3 RESEARCHARTICLE Open Access Coordinate regulation of long non-coding RNAs and protein-coding genes in germ- free mice Joseph Dempsey, Angela Zhang and Julia Yue Cui* Abstract Background: Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of tissue-specific cellular functions and have been shown to regulate transcriptional and translational processes, acting as signals, decoys, guides, and scaffolds. It has been suggested that some lncRNAs act in cis to regulate the expression of neighboring protein-coding genes (PCGs) in a mechanism that fine-tunes gene expression. Gut microbiome is increasingly recognized as a regulator of development, inflammation, host metabolic processes, and xenobiotic metabolism. However, there is little known regarding whether the gut microbiome modulates lncRNA gene expression in various host metabolic organs. The goals of this study were to 1) characterize the tissue-specific expression of lncRNAs and 2) identify and annotate lncRNAs differentially regulated in the absence of gut microbiome. Results: Total RNA was isolated from various tissues (liver, duodenum, jejunum, ileum, colon, brown adipose tissue, white adipose tissue, and skeletal muscle) from adult male conventional and germ-free mice (n = 3 per group). RNA-Seq was conducted and reads were mapped to the mouse reference genome (mm10) using HISAT. Transcript abundance and differential expression was determined with Cufflinks using the reference databases NONCODE 2016 for lncRNAs and UCSC mm10 for PCGs. Although the constitutive expression of lncRNAs was ubiquitous within the enterohepatic (liver and intestine) and the peripheral metabolic tissues (fat and muscle) in conventional mice, differential expression of lncRNAs by lack of gut microbiota was highly tissue specific. -
Essential Genes and Their Role in Autism Spectrum Disorder
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality. -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Depicting Gene Co-Expression Networks Underlying Eqtls Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal
Depicting gene co-expression networks underlying eQTLs Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal To cite this version: Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal. Depicting gene co-expression networks underlying eQTLs. Haja N. Kadarmideen. Systems Biology in Animal Production and Health vol 2, 2, Springer International Publishing, pp.1-31, 2016, 978-3-319-43330-1. 10.1007/978-3-319-43332-5_1. hal-01390589 HAL Id: hal-01390589 https://hal.archives-ouvertes.fr/hal-01390589 Submitted on 2 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Depicting gene co-expression networks underlying eQTLs Nathalie Villa-Vialaneix, Laurence Liaubet and Magali SanCristobal Abstract Deciphering the biological mechanisms underlying a list of genes whose expression is under partial genetic control (i.e., having at least one eQTL) may not be as easy as for a list of differential genes. Indeed, no specific phenotype (e.g., health or production phenotype) is linked to the list of transcripts under study. There is a need to find a coherent biological interpretation of a list of genes under (partial) genetic control. We propose a pipeline using appropriate statistical tools to build a co-expression network from the list of genes, then to finely depict the network structure. -
Supplementary Methods
Supplementary methods Human lung tissues and tissue microarray (TMA) All human tissues were obtained from the Lung Cancer Specialized Program of Research Excellence (SPORE) Tissue Bank at the M.D. Anderson Cancer Center (Houston, TX). A collection of 26 lung adenocarcinomas and 24 non-tumoral paired tissues were snap-frozen and preserved in liquid nitrogen for total RNA extraction. For each tissue sample, the percentage of malignant tissue was calculated and the cellular composition of specimens was determined by histological examination (I.I.W.) following Hematoxylin-Eosin (H&E) staining. All malignant samples retained contained more than 50% tumor cells. Specimens resected from NSCLC stages I-IV patients who had no prior chemotherapy or radiotherapy were used for TMA analysis by immunohistochemistry. Patients who had smoked at least 100 cigarettes in their lifetime were defined as smokers. Samples were fixed in formalin, embedded in paraffin, stained with H&E, and reviewed by an experienced pathologist (I.I.W.). The 413 tissue specimens collected from 283 patients included 62 normal bronchial epithelia, 61 bronchial hyperplasias (Hyp), 15 squamous metaplasias (SqM), 9 squamous dysplasias (Dys), 26 carcinomas in situ (CIS), as well as 98 squamous cell carcinomas (SCC) and 141 adenocarcinomas. Normal bronchial epithelia, hyperplasia, squamous metaplasia, dysplasia, CIS, and SCC were considered to represent different steps in the development of SCCs. All tumors and lesions were classified according to the World Health Organization (WHO) 2004 criteria. The TMAs were prepared with a manual tissue arrayer (Advanced Tissue Arrayer ATA100, Chemicon International, Temecula, CA) using 1-mm-diameter cores in triplicate for tumors and 1.5 to 2-mm cores for normal epithelial and premalignant lesions. -
Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways
biomolecules Article Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways Aayushi Srivastava 1,2,3,4 , Abhishek Kumar 1,5,6 , Sara Giangiobbe 1, Elena Bonora 7, Kari Hemminki 1, Asta Försti 1,2,3 and Obul Reddy Bandapalli 1,2,3,* 1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; [email protected] (A.S.); [email protected] (A.K.); [email protected] (S.G.); [email protected] (K.H.); [email protected] (A.F.) 2 Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany 3 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany 4 Medical Faculty, Heidelberg University, D-69120 Heidelberg, Germany 5 Institute of Bioinformatics, International Technology Park, Bangalore 560066, India 6 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India 7 S.Orsola-Malphigi Hospital, Unit of Medical Genetics, 40138 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +49-6221-42-1709 Received: 29 August 2019; Accepted: 10 October 2019; Published: 13 October 2019 Abstract: Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family. -
Further Evidence of Involvement of TMEM132E in Autosomal Recessive Nonsyndromic Hearing Impairment
Journal of Human Genetics (2020) 65:187–192 https://doi.org/10.1038/s10038-019-0691-4 BRIEF COMMUNICATION Further evidence of involvement of TMEM132E in autosomal recessive nonsyndromic hearing impairment 1,2 1,2 3 4 2,5 Khurram Liaqat ● Shabir Hussain ● Muhammad Bilal ● Abdul Nasir ● Anushree Acharya ● 3,6 1 7 2,5 3 Raja Hussain Ali ● Shoaib Nawaz ● Muhammad Umair ● Isabelle Schrauwen ● Wasim Ahmad ● Suzanne M. Leal2,5 Received: 17 July 2019 / Revised: 1 October 2019 / Accepted: 9 October 2019 / Published online: 28 October 2019 © The Author(s) 2019. This article is published with open access, corrected publication 2021 Abstract Autosomal-recessive (AR) nonsyndromic hearing impairment (NSHI) displays a high degree of genetic heterogeneity with >100 genes identified. Recently, TMEM132E, which is highly expressed in inner hair cells, was suggested as a novel ARNSHI gene for DFNB99. A missense variant c.1259G>A: p.(Arg420Gln) in TMEM132E was identified that segregated with ARNSHI in a single Chinese family with two affected members. In the present study, a family of Pakistani origin with prelingual profound sensorineural hearing impairment displaying AR mode of inheritance was investigated via exome and 1234567890();,: 1234567890();,: Sanger sequencing. Compound heterozygous variants c.382G>T: p.(Ala128Ser) and c.2204C>T: p.(Pro735Leu) in TMEM132E were observed in affected but not in unaffected family members. TMEM132E variants identified in this and the previously reported ARNSHI family are located in the extracellular domain. In conclusion, we present a second ARNSHI family with TMEM132E variants which strengthens the evidence of the involvement of this gene in the etiology of ARNSHI. -
Quantitative Analysis of Y-Chromosome Gene Expression Across 36 Human Tissues 6 7 8 9 Alexander K
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press 1 2 3 4 5 Quantitative analysis of Y-Chromosome gene expression across 36 human tissues 6 7 8 9 Alexander K. Godfrey1,2, Sahin Naqvi1,2, Lukáš Chmátal1, Joel M. Chick3, 10 Richard N. Mitchell4, Steven P. Gygi3, Helen Skaletsky1,5, David C. Page1,2,5* 11 12 13 1 Whitehead Institute, Cambridge, MA, USA 14 2 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA 15 3 Department of Cell Biology, Harvard Medical School, Boston, MA, USA 16 4 Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 17 5 Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, USA 18 19 20 21 *corresponding author: 22 Email: [email protected] 23 24 25 Running title: 26 Human Y-Chromosome gene expression in 36 tissues 27 28 29 Keywords: 30 Y Chromosome, sex chromosomes, sex differences, EIF1AY, EIF1AX 31 Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press 32 ABSTRACT 33 Little is known about how human Y-Chromosome gene expression directly contributes to 34 differences between XX (female) and XY (male) individuals in non-reproductive tissues. Here, 35 we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues 36 from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly 37 expressed outside the testis, we report many instances of elevated Y-Chromosome gene 38 expression in a non-reproductive tissue.