ATR16 Syndrome: Mechanisms Linking Monosomy to Phenotype 2 3 4 Christian Babbs,*1 Jill Brown,1 Sharon W

Total Page:16

File Type:pdf, Size:1020Kb

ATR16 Syndrome: Mechanisms Linking Monosomy to Phenotype 2 3 4 Christian Babbs,*1 Jill Brown,1 Sharon W bioRxiv preprint doi: https://doi.org/10.1101/768895; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ATR16 Syndrome: Mechanisms Linking Monosomy to Phenotype 2 3 4 Christian Babbs,*1 Jill Brown,1 Sharon W. Horsley,1 Joanne Slater,1 Evie Maifoshie,1 5 Shiwangini Kumar,2 Paul Ooijevaar,3 Marjolein Kriek,3 Amanda Dixon-McIver,2 6 Cornelis L. Harteveld,3 Joanne Traeger-Synodinos,4 Douglas Higgs1 and Veronica 7 Buckle*1 8 9 10 11 12 1. MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular 13 Medicine, University of Oxford, Oxford, UK. 14 15 2. IGENZ Ltd, Auckland, New Zealand. 16 17 3. Department of Clinical Genetics, Leiden University Medical Center, Leiden, The 18 Netherlands. 19 20 4. Department of Medical Genetics, National and Kapodistrian University of Athens, 21 Greece. 22 23 24 25 *Authors for correspondence 26 [email protected] 27 [email protected] 28 29 1 bioRxiv preprint doi: https://doi.org/10.1101/768895; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 3 Background: Sporadic deletions removing 100s-1000s kb of DNA, and 4 variable numbers of poorly characterised genes, are often found in patients 5 with a wide range of developmental abnormalities. In such cases, 6 understanding the contribution of the deletion to an individual’s clinical 7 phenotype is challenging. 8 Methods: Here, as an example of this common phenomenon, we analysed 9 34 patients with simple deletions of ~177 to ~2000 kb affecting one allele of 10 the well characterised, gene dense, distal region of chromosome 16 11 (16p13.3), referred to as ATR-16 syndrome. We characterised precise 12 deletion extent and screened for genetic background effects, telomere 13 position effect and compensatory up regulation of hemizygous genes. 14 Results: We find the risk of developmental and neurological abnormalities 15 arises from much smaller terminal chromosome 16 deletions (~400 kb) than 16 previously reported. Beyond this, the severity of ATR-16 syndrome increases 17 with deletion size, but there is no evidence that critical regions determine the 18 developmental abnormalities associated with this disorder. Surprisingly, we 19 find no evidence of telomere position effect or compensatory upregulation of 20 hemizygous genes, however, genetic background effects substantially modify 21 phenotypic abnormalities. 22 Conclusions: Using ATR-16 as a general model of disorders caused by 23 sporadic copy number variations, we show the degree to which individuals 24 with contiguous gene syndromes are affected is not simply related to the 25 number of genes deleted but also depends on their genetic background. We 26 also show there is no critical region defining the degree of phenotypic 27 abnormalities in ATR-16 syndrome and this has important implications for 28 genetic counselling. 29 2 bioRxiv preprint doi: https://doi.org/10.1101/768895; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Introduction 2 3 Cytogenetic, molecular genetic, and more recently, next generation sequencing 4 (NGS) approaches have revealed copy number variations (CNVs) in the human 5 genome ranging from 1 to 1000s kb (Iafrate et al., 2004; MacDonald et al., 2014). 6 CNVs are common in normal individuals and have been identified in ~35% of the 7 human genome (Iafrate et al., 2004). When present as hemizygous events, in 8 phenotypically “normal” individuals, these imbalances are considered benign; 9 however, CNVs are also amongst the most common causes of human genetic 10 disease and they have been associated with a wide range of developmental 11 disabilities present in up to 14% of the population (Kaminsky et al., 2011). 12 CNVs have been shown to play an important role in neurodevelopmental 13 disorders including autism spectrum disorder, bipolar disorder, and schizophrenia as 14 well as influencing broader manifestations such as learning disabilities, abnormal 15 physical characteristics and seizures (reviewed in Merikangas et al., 2009). Some 16 CNVs occur recurrently in association with one particular phenotype: for example, 17 deletions within 16p11.2 and/or chromosome 22q are frequently associated with 18 autism, and deletions within 15q13.3 and 1q21.1 are found in schizophrenia. 19 However, the impact of most sporadic CNVs on phenotype is much less clear 20 (Merikangas et al., 2009). Difficulty in interpreting CNVs particularly occurs when 21 they result from complex rearrangements such as those associated with unbalanced 22 translocations, inversions, and imprinting effects. 23 To understand the principles and mechanisms by which CNVs lead to 24 developmental abnormalities we have simplified the issue by studying the 25 relationship between uncomplicated deletions within the region ~0.3 to ~2 Mb in the 26 sub-telomeric region of chromosome 16 and the resulting phenotypes. The 34 27 individuals studied here (comprising 11 new and 23 previously reported cases) 28 represent a cohort of patients with the α-thalassaemia mental retardation contiguous 29 gene syndrome, involving the chromosomal region 16p13.3, termed ATR-16 30 syndrome (MIM 141750) (Wilkie et al., 1990). 31 Individuals studied here have monosomy for various extents of the gene-rich 32 telomeric region at 16p13.3 and all have α-thalassemia resulting from loss of both 33 paralogous α-globin genes. Some patients also have mental retardation (MR), 34 developmental abnormalities and/or speech delay and facial dysmorphism. The most 35 severe cases also manifest abnormalities of the axial skeleton. By precisely defining 36 the endpoints of deletions within 16p13.3 we address whether the associated 37 neurological and developmental defects are simply related to the size of the deletions 3 bioRxiv preprint doi: https://doi.org/10.1101/768895; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 and the number of genes removed, whether there are critical haploinsufficient genes 2 within this region and whether similar sized deletions always lead to the same 3 phenotypes. Our findings suggest that while the loss of an increased number of 4 genes tends to underlie more severe phenotypic abnormalities, the genetic 5 background in which these deletions occur contributes to the occurrence of mental 6 retardation and developmental abnormalities. 7 Finally, this subgroup of ATR-16 patients also allowed us to address two 8 long-standing questions associated with large sub-cytogenetic deletions: those of 9 compensatory gene expression and telomere proximity effect (TPE) in cases of 10 telomere repaired chromosomal breakages. 11 4 bioRxiv preprint doi: https://doi.org/10.1101/768895; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Methods 2 3 Patients 4 Ethical approval was obtained under the title “Establishing the molecular basis for 5 atypical forms of thalassaemia” (reference number MREC: 03/8/097) with written 6 consent from patients and/or parents. Here we focus on a cohort of patients with 7 pure monosomy within 16p13.3 to clarify the effect of the deletion. Number of familial 8 cases. 9 10 Fluorescence in situ Hybridisation (FISH) 11 FISH studies were carried out on fixed chromosome preparations as previously 12 described (Buckle and Rack, 1993) from seven patients (OY, TY, SH, MY, YA using 13 a series of cosmids covering the terminal 2 Mb of chromosome 16p (Supplementary 14 Table 1). FISH studies were also performed using probes specific for the sub- 15 telomeric regions of each chromosome in order to exclude any cryptic chromosomal 16 rearrangements. Subtelomeric rearrangements were detected as previously 17 described (Knight et al., 1997 and Horsley et al., 2001). 18 . 19 20 Southern Blotting 21 Single copy probes labelled with α32P-dCTP were synthesized and used to hybridize 22 Southern blots of DNA isolated from transformed lymphoblastoid cells. 23 24 PCR Detection of Chromosomal Deletions 25 DNA was extracted from mouse/human hybrid cell lines or transformed 26 lymphoblastoid lines. Based on FISH results with chromosome 16 cosmids, primer 27 pairs were designed located at regular intervals across the breakpoint clone. To 28 refine the 16p breakpoint, PCR amplification was performed using normal and 29 abnormal patient hybrid DNA obtained from mouse erythroleukemia (MEL cells) 30 fused to patient cells and selected to contain a single copy of human chromosome 16 31 generated as previously described (Zeitlin & Weatherall, 1983) as template. A 32 positive PCR indicated the sequence was present; a negative PCR indicated it was 33 deleted. All reactions were carried out in 1.5 mM MgCl2, 200 μM dNTPs, 2U of 34 FastStart Taq DNA polymerase (Roche), 1x FastStart PCR Reaction buffer (Roche) 35 (50mM Tris-HCl, 10 mM KCl, 5 mM (NH4)2SO4, pH 8.3). A list of the primer pairs is 36 shown in Supplementary Table 2. 37 5 bioRxiv preprint doi: https://doi.org/10.1101/768895; this version posted October 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Telomere Anchored PCR Amplification 3 Telomere-anchored PCR was undertaken using a primer containing canonical 4 telomeric repeats in conjunction with a reverse primer specific for the normal 16p 5 sequence (primer sequences provided in Supplementary Table 2).
Recommended publications
  • Regulation and Dysregulation of Chromosome Structure in Cancer
    Regulation and Dysregulation of Chromosome Structure in Cancer The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Hnisz, Denes et al. “Regulation and Dysregulation of Chromosome Structure in Cancer.” Annual Review of Cancer Biology 2, 1 (March 2018): 21–40 © 2018 Annual Reviews As Published https://doi.org/10.1146/annurev-cancerbio-030617-050134 Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/117286 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Regulation and dysregulation of chromosome structure in cancer Denes Hnisz1*, Jurian Schuijers1, Charles H. Li1,2, Richard A. Young1,2* 1 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA 2 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA * Corresponding authors Corresponding Authors: Denes Hnisz Whitehead Institute for Biomedical Research 455 Main Street Cambridge, MA 02142 Tel: (617) 258-7181 Fax: (617) 258-0376 [email protected] Richard A. Young Whitehead Institute for Biomedical Research 455 Main Street Cambridge, MA 02142 Tel: (617) 258-5218 Fax: (617) 258-0376 [email protected] 1 Summary Cancer arises from genetic alterations that produce dysregulated gene expression programs. Normal gene regulation occurs in the context of chromosome loop structures called insulated neighborhoods, and recent studies have shown that these structures are altered and can contribute to oncogene dysregulation in various cancer cells. We review here the types of genetic and epigenetic alterations that influence neighborhood structures and contribute to gene dysregulation in cancer, present models for insulated neighborhoods associated with the most prominent human oncogenes, and discuss how such models may lead to further advances in cancer diagnosis and therapy.
    [Show full text]
  • In Silico Prediction of High-Resolution Hi-C Interaction Matrices
    ARTICLE https://doi.org/10.1038/s41467-019-13423-8 OPEN In silico prediction of high-resolution Hi-C interaction matrices Shilu Zhang1, Deborah Chasman 1, Sara Knaack1 & Sushmita Roy1,2* The three-dimensional (3D) organization of the genome plays an important role in gene regulation bringing distal sequence elements in 3D proximity to genes hundreds of kilobases away. Hi-C is a powerful genome-wide technique to study 3D genome organization. Owing to 1234567890():,; experimental costs, high resolution Hi-C datasets are limited to a few cell lines. Computa- tional prediction of Hi-C counts can offer a scalable and inexpensive approach to examine 3D genome organization across multiple cellular contexts. Here we present HiC-Reg, an approach to predict contact counts from one-dimensional regulatory signals. HiC-Reg pre- dictions identify topologically associating domains and significant interactions that are enri- ched for CCCTC-binding factor (CTCF) bidirectional motifs and interactions identified from complementary sources. CTCF and chromatin marks, especially repressive and elongation marks, are most important for HiC-Reg’s predictive performance. Taken together, HiC-Reg provides a powerful framework to generate high-resolution profiles of contact counts that can be used to study individual locus level interactions and higher-order organizational units of the genome. 1 Wisconsin Institute for Discovery, 330 North Orchard Street, Madison, WI 53715, USA. 2 Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, USA. *email: [email protected] NATURE COMMUNICATIONS | (2019) 10:5449 | https://doi.org/10.1038/s41467-019-13423-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13423-8 he three-dimensional (3D) organization of the genome has Results Temerged as an important component of the gene regulation HiC-Reg for predicting contact count using Random Forests.
    [Show full text]
  • New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
    Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Renal Cell Neoplasms Contain Shared Tumor Type–Specific Copy Number Variations
    The American Journal of Pathology, Vol. 180, No. 6, June 2012 Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ajpath.2012.01.044 Tumorigenesis and Neoplastic Progression Renal Cell Neoplasms Contain Shared Tumor Type–Specific Copy Number Variations John M. Krill-Burger,* Maureen A. Lyons,*† The annual incidence of renal cell carcinoma (RCC) has Lori A. Kelly,*† Christin M. Sciulli,*† increased steadily in the United States for the past three Patricia Petrosko,*† Uma R. Chandran,†‡ decades, with approximately 58,000 new cases diag- 1,2 Michael D. Kubal,§ Sheldon I. Bastacky,*† nosed in 2010, representing 3% of all malignancies. Anil V. Parwani,*†‡ Rajiv Dhir,*†‡ and Treatment of RCC is complicated by the fact that it is not a single disease but composes multiple tumor types with William A. LaFramboise*†‡ different morphological characteristics, clinical courses, From the Departments of Pathology* and Biomedical and outcomes (ie, clear-cell carcinoma, 82% of RCC ‡ Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania; cases; type 1 or 2 papillary tumors, 11% of RCC cases; † the University of Pittsburgh Cancer Institute, Pittsburgh, chromophobe tumors, 5% of RCC cases; and collecting § Pennsylvania; and Life Technologies, Carlsbad, California duct carcinoma, approximately 1% of RCC cases).2,3 Benign renal neoplasms are subdivided into papillary adenoma, renal oncocytoma, and metanephric ade- Copy number variant (CNV) analysis was performed on noma.2,3 Treatment of RCC often involves surgical resec- renal cell carcinoma (RCC) specimens (chromophobe, tion of a large renal tissue component or removal of the clear cell, oncocytoma, papillary type 1, and papillary entire affected kidney because of the relatively large size of type 2) using high-resolution arrays (1.85 million renal tumors on discovery and the availability of a life-sus- probes).
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • DNA Replication Stress Response Involving PLK1, CDC6, POLQ
    DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, E. Leconte, V. Schilling, K. Gordien, L. Brouchet, Mb Delisle, et al. To cite this version: C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, et al.. DNA replica- tion stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis, Nature Publishing Group: Open Access Journals - Option C, 2012, 1, pp.e30. 10.1038/oncsis.2012.29. hal-00817701 HAL Id: hal-00817701 https://hal.archives-ouvertes.fr/hal-00817701 Submitted on 9 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Citation: Oncogenesis (2012) 1, e30; doi:10.1038/oncsis.2012.29 & 2012 Macmillan Publishers Limited All rights reserved 2157-9024/12 www.nature.com/oncsis ORIGINAL ARTICLE DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C Allera-Moreau1,2,7, I Rouquette2,7, B Lepage3, N Oumouhou3, M Walschaerts4, E Leconte5, V Schilling1, K Gordien2, L Brouchet2, MB Delisle1,2, J Mazieres1,2, JS Hoffmann1, P Pasero6 and C Cazaux1 Lung cancer is the leading cause of cancer deaths worldwide.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Imputation of Exome Sequence Variants Into Population- Based Samples and Blood-Cell-Trait-Associated Loci in African Americans: NHLBI GO Exome Sequencing Project
    ARTICLE Imputation of Exome Sequence Variants into Population- Based Samples and Blood-Cell-Trait-Associated Loci in African Americans: NHLBI GO Exome Sequencing Project Paul L. Auer,1,17 Jill M. Johnsen,2,3,17 Andrew D. Johnson,4,17 Benjamin A. Logsdon,1,17 Leslie A. Lange,5,17 Michael A. Nalls,6 Guosheng Zhang,5 Nora Franceschini,5 Keolu Fox,3 Ethan M. Lange,5 Stephen S. Rich,7 Christopher J. O’Donnell,4 Rebecca D. Jackson,8 Robert B. Wallace,9 Zhao Chen,10 Timothy A. Graubert,11 James G. Wilson,12 Hua Tang,13,17 Guillaume Lettre,14,17 Alex P. Reiner,1,6,17,* Santhi K. Ganesh,15,17 and Yun Li5,16,17,* Researchers have successfully applied exome sequencing to discover causal variants in selected individuals with familial, highly pene- trant disorders. We demonstrate the utility of exome sequencing followed by imputation for discovering low-frequency variants asso- ciated with complex quantitative traits. We performed exome sequencing in a reference panel of 761 African Americans and then imputed newly discovered variants into a larger sample of more than 13,000 African Americans for association testing with the blood cell traits hemoglobin, hematocrit, white blood count, and platelet count. First, we illustrate the feasibility of our approach by demon- strating genome-wide-significant associations for variants that are not covered by conventional genotyping arrays; for example, one such association is that between higher platelet count and an MPL c.117G>T (p.Lys39Asn) variant encoding a p.Lys39Asn amino À acid substitution of the thrombpoietin receptor gene (p ¼ 1.5 3 10 11).
    [Show full text]
  • Depicting Gene Co-Expression Networks Underlying Eqtls Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal
    Depicting gene co-expression networks underlying eQTLs Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal To cite this version: Nathalie Vialaneix, Laurence Liaubet, Magali San Cristobal. Depicting gene co-expression networks underlying eQTLs. Haja N. Kadarmideen. Systems Biology in Animal Production and Health vol 2, 2, Springer International Publishing, pp.1-31, 2016, 978-3-319-43330-1. 10.1007/978-3-319-43332-5_1. hal-01390589 HAL Id: hal-01390589 https://hal.archives-ouvertes.fr/hal-01390589 Submitted on 2 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Depicting gene co-expression networks underlying eQTLs Nathalie Villa-Vialaneix, Laurence Liaubet and Magali SanCristobal Abstract Deciphering the biological mechanisms underlying a list of genes whose expression is under partial genetic control (i.e., having at least one eQTL) may not be as easy as for a list of differential genes. Indeed, no specific phenotype (e.g., health or production phenotype) is linked to the list of transcripts under study. There is a need to find a coherent biological interpretation of a list of genes under (partial) genetic control. We propose a pipeline using appropriate statistical tools to build a co-expression network from the list of genes, then to finely depict the network structure.
    [Show full text]
  • Cargo Specific Regulation of Cytoplasmic Dynein by Effector Proteins
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Cargo Specific Regulation Of Cytoplasmic Dynein By Effector Proteins Mara Olenick University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, Biophysics Commons, and the Cell Biology Commons Recommended Citation Olenick, Mara, "Cargo Specific Regulation Of Cytoplasmic Dynein By Effector Proteins" (2018). Publicly Accessible Penn Dissertations. 3167. https://repository.upenn.edu/edissertations/3167 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3167 For more information, please contact [email protected]. Cargo Specific Regulation Of Cytoplasmic Dynein By Effector Proteins Abstract Axonal transport is vital for the development and survival of neurons. The transport of cargo and organelles from the axon to the cell body is driven almost completely by the molecular motor, cytoplasmic dynein. Yet, it remains unclear how dynein is spatially and temporally regulated given the variety of cargo that must be properly localized to maintain cellular function. Previous work has suggested that adaptor proteins provide a mechanism for cargo-specific egulationr of motors. During my thesis work, I have investigated the role of mammalian Hook proteins, Hook1 and Hook3, as potential motor adaptors. Using optogenetic and single molecule assays, I found that Hook proteins interact with both dynein and dynactin, to effectively activate dynein motility, inducing longer run lengths and higher velocities than the previously characterized dynein activator, BICD2. In addition, I found that complex formation requires the N-terminal domain of Hook proteins, which resembles the calponin-homology domain of EB proteins yet cannot bind directly to microtubules.
    [Show full text]