Pdf (791.91 K)

Total Page:16

File Type:pdf, Size:1020Kb

Pdf (791.91 K) eISSN: 2357-044X Taeckholmia 36 (2016):115-135 Phenetic relationship between Malvaceae s.s. and its related families Eman M. Shamso* and Adel A. Khattab Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt. *Corresponding author:[email protected] Abstract Systematic relationships in the Malvaceae s.s. and allied families were studied on the basis of numerical analysis. 103 macro- and micro morphological attributes including vegetative parts, pollen grains and seeds of 64 taxa belonging to 32 genera of Malvaceae s.s. and allied families (Sterculiaceae, Tiliaceae, Bombacaceae) were scored and the UPGMA clustering analysis was applied to investigate the phenetic relationships and to clarify the circumscription. Four main clusters are recognized viz. Sterculiaceae s.s. cluster, Tiliaceae- Exemplars of Strerculiaceae cluster, Malvaceae s.s. cluster and Bombacaceae s.s. – Exemplars of Sterculiaceae and Malvaceae cluster. The results delimited Sterculiaceae s.s. and Tiliaceae s.s. to containing the genera previously included in tribes Sterculieae and Tilieae respectively; also confirmed and verified the segregation of Byttnerioideae of Sterculiaceae s.l. and Grewioideae of Tiliaceae s.l. to be treated as distinct families Byttneriaceae and Spermanniaceae respectively. Our analysis recommended the treatment of subfamilies Dombeyoideae, Bombacoideae and Malvoideae of Malvaceae s.l. as distinct families: Dombeyaceae, Bombacaceae s.s. and Malvaceae s.s. and the final placement of Gossypium and Hibiscus in either Malvaceae or Bombacaceae is uncertain, as well as the circumscription of Pterospermum is obscure thus further study is necessary for these genera. Key words: Byttneriaceae, Dombeyaceae, Phenetic relationship Spermanniaceae, Sterculiaceae s.s., Tiliaceae s.s. Introduction Malvales s.l. are a group of families Hibiscus (580, including Pavonia, etc.), of flowering plants estimated to contain 339 Sida (200), Abutilon (100), Dombeya (225), genera with 6133 known species Triumfetta (150, Grewia (290) (Stevens l.c.). (Christenhusz, and Byng, 2016) distributed Malvales can often be recognised by throughout the tropical and temperate regions spiral, pulvinate leaves that often have of both hemispheres, three families are palmate venation; stellate or fasciculate hairs endemics: Muntingiaceae (W Tropical or peltate scales, or less often with unicellular America), Sphaerosepalaceae and hairs, sometimes also with glands. Flowers Sarcolaenaceae (Madagascar) (Stevens 2001 in various types of basically cymose onwards 2014); the largest family is inflorescences, or less often solitary, mostly Malvaceae with 244 genera including 4225 bisexual, usually actinomorphic, 5-merous, species and the smallest Muntingiaceae commonly with a double perianth, often represented by 3 species belonging to 3 provided with an epicalyx. Petals free or genera (Christenhusz, and Byng, l.c.). sometimes basally adnate to the filament Members of this order contain many tube, contorted, imbricate or valvate, economically important taxa as fibers sometimes reduced; stamens basically in two (Gossypium); food and flavouring cycles, mostly five to very numerous, the (Theobroma cacao), wood plants (Tilia); as filaments usually connate into a tube. Fruits well as medicinal and ornamental garden usually dry, dehiscent or indehiscent, less plants (Simpson 2010). The largest genera in often fleshy, rarely winged, the capsule terms of number of species are sometimes muricate or spiny, and the seeds Received on 10/11/2016 and accepted on 28/12/2016 Eman M. Shamso and Adel A. Khattab or inside of the carpel walls are sometimes Bombacaceae. Hutchinson (1967) restricted conspicuously hairy. The bark is often very Malvales to include Malvaceae and fibrous and tough because of the stratified developed a new order Tiliales to include phloem. (Stevens 2001 onwards 2014; Tiliaceae, Bombacaceae and Sterculiaceae. Takhtajan 2009). Within the re-circumscribed Malvales were traditionally monophyletic order Malvales, Judd & circumscribed as four main families referred Manchster (1997), Bayer et al. (1999) and by many authors as"Core Malvales" viz.: APG II (2003) merged Tiliaceae, Bombacaceae, Sterculiaceae, Tiliaceae and Bombacaceae, Sterculiaceae with Malvaceae Malvaceae (Cronquist 1988; Takhtajan and subdivided the enlarged family 1997). Major disagreements existed between Malvaceae into nine subfamilies based on different taxonomic treatments and the molecular, morphological and bio- circumscriptions of these families and their geographical data: Byttneroideae (including systematic position have long been tribes Byttnerieae, Lasiopetaleae, problematic. A close relationship among Theobromeae and Hermannieae); these families, however, has generally been Grewioideae (including most genera of recognized since the time of Linnaeus (1753) former Tiliaceae); Tilioideae ( including both and was recently confirmed by Tilia and Craigia); Helicteroideae morphological, anatomical, chemical and (comprising most of the taxa previously molecular data (Chase et al. 1993, Soltis et included in Helictereae and Durioneae); al. 1997, Judd & Manchester 1997, Alverson Sterculioideae (including tribe Sterculieae); et al. 1998, Fay et al. 1998 and Bayer et al. Brownlowioideae; Dombeyoideae; 1999). Bombacoideae (corresponding to former Bentham & Hooker (1862) included Bombacaceae without Durioneae) and Malvaceae, Sterculiaceae and Tiliaceae in the Malvoideae (monophyletic but difficult to "cohort Malvales", and divided the order into delimit from Bombacoideae). three families: Malvaceae (incl. The ndhF cladogram of Alverson et al. Bombacaceae), Tliliaceae (incl. (1999) supported the monophyly of Elaeocarpaceae) and Sterculiaceae with traditional Malvaceae but the other three several tribes. traditional families are non-monophyletic; Schumann (1890-1897) separated and showed nine major lineages within three tribe Elaeocarpeae of Tiliaceae with some well-suported clades, labelled as subfamilies: genera and raised a separate family Malvoideae and Bomacoideae grouped in Elaeocarpaceae, accordingly, the order Malvatheca clade; Byttneroideae and Malvales consists of Tiliaceae, Sterculiaceae, Grewioideae grouped in Byttneriina clade; Malvaceae, Bombacaceae and Sterculioideae, Tilioideae, Helicteroideae, Elaeocarpaceae. The Elaeocarpaceae was Brownlowioideae and Dombeyoideae included in Tiliaceae by most authors grouped in Malvadendrina clade. (Kubitzki although it differ from the Tiliaceae and and Bayer 2003, Stevens 2001 onward, related families in the absence of stellate and 2014). peltate trichomes, the absence of mucilage Phylogenetic studies have shown the cavities or canals (Takhtajan 2009). Edlin core malvales constitute one of four major (1935 b) re-arranged the genera of Malvales clades within an expanded Malvales clade among families and recognized six families which also includes ten families: viz.: Scytopetalaceae, Tiliaceae, Neuradaceae, Thymelaeaceae, Sterculiaceae, Buettneriaceae, Bombacaceae Sphaerosepalaceae, Bixaceae, Cistaceae, and Malvaceae. The main chief of his system Sarcolaenaceae, Dipterocarpaceae, was the re-arrangement of the family Cytinaceae, Muntingiaceae, Malvaceae s.l. Sterculiaceae, so that it comprises only the (incl. Bombacaceae, Tiliaceae, Sterculiaceae, tribe Sterculieae while the tribe Hibisceae has Dombeyaceae and Byttneriaceae) distributed been transferred from the Malvaceae to the among seven monophyletic lineages Bombacaceae; three other genera of the (Alverson et al. 1998 & 1999, Fay et al. Malvaceae have been removed to the 1998, Bayer et al. 1999 and Kubitzki & 116 Phenetic relationship between Malvaceae s.s. Bayer 2003). All these families were Morphological characters previously considered to have malvalean observations: affinities in some traditional treatments (APG Appendix (2) shows the characters and III, 2009 & APG IV, 2016; Le Péchon character states scored for plant, pollen and & Gigord 2014, Stevens 2001 onwards 2014, seed morphology averaged for each OTU. In Shipunov 2016). The same concept was total 103 characters were taken into adopted by Reveal (2012) with slight consideration, comprising eighteen modification in which the order was quantitative and eighty-five qualitative expanded to include more than ten families. characters. Forty-five of the qualitative In Reveal’s system the Sterculiaceae, characters were scored as binary and the Tiliaceae, Bombaceaceae, Dombeyaceae and remaining were scored as multi-state Byttneriaceae were treated as separate characters. families. The recorded measurements of the whole The present study aims at applying plant and leaves were based on mature plant, numerical method for examining all flower descriptions were taken at anthesis morphological variation, inferring phenetic (if available) with the dimensions of sepals relationships among the examined taxa, and petals given in term of length (from base discussing the results obtained with recent to apex) x width (at the broader point), fruit classifications and confirming the position of and seed diameter included spines or wings ( the family Malvaceae s.s. and the allied if present). The data of pollen morphology families were mainly obtained from Erdtman 1952, Hosni & Araffa 1991, El Naggar 2004, Material and Methods Lakshmi 2003, El Husseini 2006, Perven et Plant materials: al. 2004, Perveen & Qaiser 2007, and Hamdy In the present study, sixty-four cultivated and & Shamso 2010. indigenous taxa belonging to thirty-two genera of four families
Recommended publications
  • Elaeocarpus Dentatus Var. Dentatus
    Elaeocarpus dentatus var. dentatus COMMON NAME Hinau SYNONYMS Dicera dentata J.R.Forst. et G.Forst., Elaeocarpus hinau A.Cunn., Elaeocarpus cunninghamii Raoul FAMILY Elaeocarpaceae AUTHORITY Elaeocarpus dentatus (J.R.Forst. et G.Forst.) Vahl var. dentatus FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE Reikorangi Valley. Mar 1986. Photographer: ELADEN Jeremy Rolfe CHROMOSOME NUMBER 2n = 30 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION An image of hinau flowers. Photographer: DoC Canopy tree bearing harsh thin leaves that have obvious pits on the underside and with small teeth along margins. Twigs with small hairs. Adult leaves 10-12cm long by 2-3cm wide, with a sharp tip, Juvenile leaves narrower. Flowers white, lacy, in conspicuous sprays. Fruit purple, oval, 12-15mm long. DISTRIBUTION Endemic. North, and South Island as far South Westland in the west and Christchurch in the east. HABITAT Common tree of mainly coastal and lowland forest though occasionally extending into montane forest. FEATURES Tree up to 20 m tall (usually less), with broad spreading crown. Trunk 1 m diam., bark grey. Branches erect then spreading, branchlets silky hairy when young. Petioles stout, 20-25 mm long. Leaves leathery, (50-)100-120 x 20-30 mm, narrow- to obovate-oblong, broad-obovate, oblanceolate, apex obtuse or abruptly acuminate, dark green and glabrescent above, off-white, silky-hairy below; margins somewhat sinuate, recurved, serrate to subentire. Inflorescence a raceme 100-180 mm long, 8-12(-20)-flowered.
    [Show full text]
  • Elaeocarpaceae
    Brazilian Journal of Botany 35(1):119-123, 2012 Three new species of Sloanea L. (Elaeocarpaceae) from the Central Amazon, Brazil1 AMANDA SHIRLÉIA PINHEIRO BOEIRA2,5, ALBERTO VICENTINI3 and JOSÉ EDUARDO LAHOZ DA SILVA RIBEIRO4 (received: November 3, 2011; accepted: February 16, 2012) ABSTRACT – (Three new species of Sloanea L. (Elaeocarpaceae) from the Central Amazon, Brazil). Three new species of Sloanea L. are recognized based on specimens collected in the Adolpho Ducke Forest Reserve. These new species are morphologically distinct from other Sloanea in the Neotropics in terms of their vegetative and reproductive characters. The Ducke Reserve contains a total of 18 species of Sloanea, and the species closest to these new taxa occur there. Morphological descriptions and illustrations are provided, together with comments concerning morphological similarities with other species, as well as their geographic distributions and their phenologies. Key words - characters, Ducke Forest Reserve, floristic survey, morphology, taxonomy INTRODUCTION Ducke Forest Reserve that are morphologically similar to and possibly related to other species that occur in the The family Elaeocarpaceae comprises 15 genera and same reserve. We present descriptions with commentaries approximately 500 species (Crayn et al. 2006, Heywood concerning the morphologically similar species as well 2007). Sloanea Linnaeu is the second largest genera with as their differences. approximately 180 species distributed throughout the tropics and subtropics, with the exception of the African continent (Smith 1954). According to the identification Material AND METHODS guide of the Adolpho Ducke Forest Reserve (Vicentini We examined herbarium specimens of the genus Sloanea 1999), the family Elaeocarpaceae is represented there prepared during the Projeto Flora (PFRD) floristic survey by 17 species of the genus Sloanea, although four of the Ducke Reserve (Ribeiro et al.
    [Show full text]
  • Dombeya 'Seminole' and D
    452 FLORIDA STATE HORTICULTURAL SOCIETY, 1973 Qarden C\nd landscape Section DOMBEYA 'SEMINOLE' AND D. 'PINWHEEL', NEW CULTIVARS FOR LANDSCAPING IN THE SUBTROPICS Cameron (1), in his revision of Firming erys P. K. SODERHOLM Manual of Gardening for India describes 6 species Agricultural Research Service of Dombeya and 1 Astrapaea wallichii Lndl. (D. U. S. Dept. of Agriculture wallichii (Lindl.) K. Schum.), that were being Miami grown in India in 1904. The Dombeya bulletin of the National Botanic Abstract In April, 1973 the Subtropical Horti Gardens, Lucknow, India, describes 8 species and culture Research Unit, Miami, released two cul- 10 hybrids from the period 1913-25 (6). It is not tivars of Dombeya to nurserymen in subtropical clear whether all of these were to be found at areas of the United States. Dombeya 'Seminole', Lucknow, but certainly they were in other loca P.I. 377867, is a hybrid of D. burgessiae, E-29 x tions in India, because it was there that dombeyas D. sp. aff. burgessiae 'Rosemound*. This medium- first received recognition as landscaping plants sized shrub is covered with red flowers from early after their introduction from Africa, Malagasy December through March. Dombeya Tinwheel', Republic, and the Mascarene Islands. P.I. 377868, is a selection from open-pollinated The first Dombeya to be planted at the Sub seedlings of D. sp. S-12 grown at the Miami Sta tropical Horticulture Research Unit (U. S. Plant tion. This small tree with a semi-dense rounded Introduction Station), Miami, was D. spectabilis crown bears purplish pink flowers during October Boj., later reidentified as D.
    [Show full text]
  • Asian Pacific Journal of Tropical Disease
    Asian Pac J Trop Dis 2016; 6(6): 492-501 492 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Disease journal homepage: www.elsevier.com/locate/apjtd Review article doi: 10.1016/S2222-1808(16)61075-7 ©2016 by the Asian Pacific Journal of Tropical Disease. All rights reserved. Phytochemistry, biological activities and economical uses of the genus Sterculia and the related genera: A reveiw Moshera Mohamed El-Sherei1, Alia Yassin Ragheb2*, Mona El Said Kassem2, Mona Mohamed Marzouk2*, Salwa Ali Mosharrafa2, Nabiel Abdel Megied Saleh2 1Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt 2Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt ARTICLE INFO ABSTRACT Article history: The genus Sterculia is represented by 200 species which are widespread mainly in tropical and Received 22 Mar 2016 subtropical regions. Some of the Sterculia species are classified under different genera based Received in revised form 5 Apr 2016 on special morphological features. These are Pterygota Schott & Endl., Firmiana Marsili, Accepted 20 May 2016 Brachychiton Schott & Endl., Hildegardia Schott & Endl., Pterocymbium R.Br. and Scaphium Available online 21 Jun 2016 Schott & Endl. The genus Sterculia and the related genera contain mainly flavonoids, whereas terpenoids, phenolic acids, phenylpropanoids, alkaloids, and other types of compounds including sugars, fatty acids, lignans and lignins are of less distribution. The biological activities such as antioxidant, anti-inflammatory, antimicrobial and cytotoxic activities have Keywords: been reported for several species of the genus. On the other hand, there is confusion on the Sterculia Pterygota systematic position and classification of the genus Sterculia.
    [Show full text]
  • Phylogenetic Reconstruction Prompts Taxonomic Changes in Sauropus, Synostemon and Breynia (Phyllanthaceae Tribe Phyllantheae)
    Blumea 59, 2014: 77–94 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X684484 Phylogenetic reconstruction prompts taxonomic changes in Sauropus, Synostemon and Breynia (Phyllanthaceae tribe Phyllantheae) P.C. van Welzen1,2, K. Pruesapan3, I.R.H. Telford4, H.-J. Esser 5, J.J. Bruhl4 Key words Abstract Previous molecular phylogenetic studies indicated expansion of Breynia with inclusion of Sauropus s.str. (excluding Synostemon). The present study adds qualitative and quantitative morphological characters to molecular Breynia data to find more resolution and/or higher support for the subgroups within Breynia s.lat. However, the results show molecular phylogeny that combined molecular and morphological characters provide limited synergy. Morphology confirms and makes the morphology infrageneric groups recognisable within Breynia s.lat. The status of the Sauropus androgynus complex is discussed. Phyllanthaceae Nomenclatural changes of Sauropus species to Breynia are formalised. The genus Synostemon is reinstated. Sauropus Synostemon Published on 1 September 2014 INTRODUCTION Sauropus in the strict sense (excluding Synostemon; Pruesapan et al. 2008, 2012) and Breynia are two closely related tropical A phylogenetic analysis of tribe Phyllantheae (Phyllanthaceae) Asian-Australian genera with up to 52 and 35 species, respec- using DNA sequence data by Kathriarachchi et al. (2006) pro- tively (Webster 1994, Govaerts et al. 2000a, b, Radcliffe-Smith vided a backbone phylogeny for Phyllanthus L. and related 2001). Sauropus comprises mainly herbs and shrubs, whereas genera. Their study recommended subsuming Breynia L. (in- species of Breynia are always shrubs. Both genera share bifid cluding Sauropus Blume), Glochidion J.R.Forst. & G.Forst., or emarginate styles, non-apiculate anthers, smooth seeds and and Synostemon F.Muell.
    [Show full text]
  • The Age of Chocolate: a Diversification History of Theobroma and Malvaceae
    ORIGINAL RESEARCH published: 10 November 2015 doi: 10.3389/fevo.2015.00120 The age of chocolate: a diversification history of Theobroma and Malvaceae James E. Richardson 1, 2*, Barbara A. Whitlock 3, Alan W. Meerow 4 and Santiago Madriñán 5 1 Programa de Biología, Universidad del Rosario, Bogotá, Colombia, 2 Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, UK, 3 Department of Biology, University of Miami, Coral Gables, FL, USA, 4 United States Department of Agriculture—ARS—SHRS, National Clonal Germplasm Repository, Miami, FL, USA, 5 Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia Dated molecular phylogenies of broadly distributed lineages can help to compare patterns of diversification in different parts of the world. An explanation for greater Neotropical diversity compared to other parts of the tropics is that it was an accident of the Andean orogeny. Using dated phylogenies, of chloroplast ndhF and nuclear DNA WRKY sequence datasets, generated using BEAST we demonstrate that the diversification of the genera Theobroma and Herrania occurred from 12.7 (11.6–14.9 [95% HPD]) million years ago (Ma) and thus coincided with Andean uplift from the mid-Miocene and that this lineage had a faster diversification rate than other major clades in Malvaceae. We also demonstrate that Theobroma cacao, the source of chocolate, diverged from its most recent common ancestor 9.9 (7.7–12.9 [95% HPD]) Ma, in the Edited by: Federico Luebert, mid-to late-Miocene, suggesting that this economically important species has had ample Universität Bonn, Germany time to generate significant within-species genetic diversity that is useful information Reviewed by: for a developing chocolate industry.
    [Show full text]
  • Invasive Plants in Southern Forests
    Invasive Plants in Southern Forests United States Department of Agriculture A Field Guide for the Identification of Invasive PlantsSLIGHTLY inREVISED NOVEMBERSouthern 2015 Forests United States Forest Service Department Southern Research Station James H. Miller, Erwin B. Chambliss, and Nancy J. Loewenstein of Agriculture General Technical Report SRS–­­119 Authors: James H. Miller, Emeritus Research Ecologist, and Erwin B. Chambliss, Research Technician, Forest Available without charge from the Service, U.S. Department of Agriculture, Southern Research Station, Auburn University, AL 36849; and Southern Research Station Nancy J. Loewenstein, Research Fellow and Alabama Cooperative Extension System Specialist for Also available online at Forest Invasive Plants, School of Forestry and Wildlife Sciences, Auburn University, AL 36849. www.srs.fs.usda.gov/pubs/35292 and invasive.org, or as a free download for iPhones and iPads at the AppStore Front Cover Upper left—Chinese lespedeza (Lespedeza cuneata) infestation that developed from dormant seed in the soil seed bank after a forest thinning operation. Upper right—Kudzu (Pueraria montana) infestation within the urban-wildland interface. Lower left—Chinese privet (Ligustrum sinense) and dormant kudzu invading and replacing a pine- hardwood stand. Lower right—Cogongrass (Imperata cylindrica) infestation under mature slash pine (Pinus elliottii). Funding support for all printings provided by the Southern Research Station, Insect, Disease, and Invasive Plants Research Work Unit, and Forest Health Protection, Southern Region, Asheville, NC. First Printed April 2010 Slightly Revised February 2012 Revised August 2013 Reprinted January 2015 Slightly Revised November 2015 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 www.srs.fs.usda.gov i A Field Guide for the Identification of Invasive Plants in Southern Forests James H.
    [Show full text]
  • Distribution of Flavonoids Among Malvaceae Family Members – a Review
    Distribution of flavonoids among Malvaceae family members – A review Vellingiri Vadivel, Sridharan Sriram, Pemaiah Brindha Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, Tamil Nadu, India Abstract Since ancient times, Malvaceae family plant members are distributed worldwide and have been used as a folk remedy for the treatment of skin diseases, as an antifertility agent, antiseptic, and carminative. Some compounds isolated from Malvaceae members such as flavonoids, phenolic acids, and polysaccharides are considered responsible for these activities. Although the flavonoid profiles of several Malvaceae family members are REVIEW REVIEW ARTICLE investigated, the information is scattered. To understand the chemical variability and chemotaxonomic relationship among Malvaceae family members summation of their phytochemical nature is essential. Hence, this review aims to summarize the distribution of flavonoids in species of genera namely Abelmoschus, Abroma, Abutilon, Bombax, Duboscia, Gossypium, Hibiscus, Helicteres, Herissantia, Kitaibelia, Lavatera, Malva, Pavonia, Sida, Theobroma, and Thespesia, Urena, In general, flavonols are represented by glycosides of quercetin, kaempferol, myricetin, herbacetin, gossypetin, and hibiscetin. However, flavonols and flavones with additional OH groups at the C-8 A ring and/or the C-5′ B ring positions are characteristic of this family, demonstrating chemotaxonomic significance. Key words: Flavones, flavonoids, flavonols, glycosides, Malvaceae, phytochemicals INTRODUCTION connate at least at their bases, but often forming a tube around the pistils. The pistils are composed of two to many connate he Malvaceae is a family of flowering carpels. The ovary is superior, with axial placentation, with plants estimated to contain 243 genera capitate or lobed stigma. The flowers have nectaries made with more than 4225 species.
    [Show full text]
  • Isolation and Characterization of Mucilage from Abroma Augusta And
    l o rna f Dr ou ug J l D a e Chatterjee et al., Int J Drug Dev & Res 2016, 8:4 n v o e i l t o International Journal of Drug Development a p n m r e e e e t n n n n n I I t t t a n h d c r R a e e s and Research Research Article Isolation and Characterization of Mucilage from Abroma augusta and its Application in Pharmaceutical Suspension Preparation Chandrima Chatterjee*, Sonia Auddy and Surabhi Chaudhuri Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India *Corresponding author: Chandrima Chatterjee, Assistant Professor, Bengal College of Pharmaceutical Sciences and Research, Bidhannagar, Durgapur, West Bengal-713 212, India, Tel: +917699000447; Fax: +91432534972; E-mail: [email protected] Received September 27, 2016; Accepted October 13, 2016; Published October 19, 2016 Abstract The purpose of the study is to formulate a new, cheap and effective natural suspending agent that can be used as a potential alternative for traditional suspending agents. This present study was concerned with the extraction of mucilage and its evaluation from A. augusta. The various physical, Physico-chemical and phytochemical properties of the mucilage were analyzed using standard procedures. Suspending properties is found to be the most desired properties of a pharmaceutical suspension preparation. Mucilage obtained from the species was assessed by observing particle size, flow rate, viscosity and pH. Results: The mucilage obtained was found to be advantageous to use as a suspending agent in a suspension in a very cost effective manner.
    [Show full text]
  • An Evolutionary Perspective on Human Cross-Sensitivity to Tree Nut and Seed Allergens," Aliso: a Journal of Systematic and Evolutionary Botany: Vol
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 33 | Issue 2 Article 3 2015 An Evolutionary Perspective on Human Cross- sensitivity to Tree Nut and Seed Allergens Amanda E. Fisher Rancho Santa Ana Botanic Garden, Claremont, California, [email protected] Annalise M. Nawrocki Pomona College, Claremont, California, [email protected] Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Evolution Commons, and the Nutrition Commons Recommended Citation Fisher, Amanda E. and Nawrocki, Annalise M. (2015) "An Evolutionary Perspective on Human Cross-sensitivity to Tree Nut and Seed Allergens," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 33: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol33/iss2/3 Aliso, 33(2), pp. 91–110 ISSN 0065-6275 (print), 2327-2929 (online) AN EVOLUTIONARY PERSPECTIVE ON HUMAN CROSS-SENSITIVITY TO TREE NUT AND SEED ALLERGENS AMANDA E. FISHER1-3 AND ANNALISE M. NAWROCKI2 1Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, California 91711 (Current affiliation: Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840); 2Pomona College, 333 North College Way, Claremont, California 91711 (Current affiliation: Amgen Inc., [email protected]) 3Corresponding author ([email protected]) ABSTRACT Tree nut allergies are some of the most common and serious allergies in the United States. Patients who are sensitive to nuts or to seeds commonly called nuts are advised to avoid consuming a variety of different species, even though these may be distantly related in terms of their evolutionary history.
    [Show full text]
  • Pourquoi Les Mahots ?
    II. BACOMAR : Pourquoi les Mahots ? Richesse et importance écologique des Dombeyoideae Un questionnement permanent pour les botanistes Un support et un modèle exemplaires PROJET BACOMAR SOMMAIRE 1.Contexte général 3 2.L’archipel des Mascareignes : une biodiversité exceptionnelle 3 3.Richesse et importance écologique des Dombeyoideae (Mahots) dans les écosystèmes réunionnais 3 3.1.Une richesse exceptionnelle ......................................................................................... 4 3.2.Une importance écologique indéniable ......................................................................... 4 3.3.Un groupe utile dans le cadre de la restauration écologique......................................... 5 4.Les Mahots : un questionnement permanent pour les botanistes et les naturalistes 6 5.Les Mahots : un support et un modèle exemplaire pour retracer l’histoire évolutive de la flore des Mascareignes 6 6.Une approche innovante alliant « Identification Assistée par Ordinateur » (IAO) et techniques moléculaires 7 6.1.IKBS : Un outil bien adapté au projet MAHOTS ............................................................ 7 6.2.L’approche moléculaire ou comment statuer sur les affinités entre espèces de Mahots8 7.Un projet aux objectifs précis et explicites 9 8.Des retombées attendues pour les communautés locale, nationale et internationale 9 8.1.Développement des connaissances et des outils de gestion sur les écosystèmes de La Réunion..............................................................................................................................
    [Show full text]
  • The Fossil Record of Angiosperm Families in Relation to Baraminology
    The Proceedings of the International Conference on Creationism Volume 7 Article 31 2013 The Fossil Record of Angiosperm Families in Relation to Baraminology Roger W. Sanders Bryan College Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Sanders, Roger W. (2013) "The Fossil Record of Angiosperm Families in Relation to Baraminology," The Proceedings of the International Conference on Creationism: Vol. 7 , Article 31. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol7/iss1/31 Proceedings of the Seventh International Conference on Creationism. Pittsburgh, PA: Creation Science Fellowship THE FOSSIL RECORD OF ANGIOSPERM FAMILIES IN RELATION TO BARAMINOLOGY Roger W. Sanders, Ph.D., Bryan College #7802, 721 Bryan Drive, Dayton, TN 37321 USA KEYWORDS: Angiosperms, flowering plants, fossils, baramins, Flood, post-Flood continuity criterion, continuous fossil record ABSTRACT To help estimate the number and boundaries of created kinds (i.e., baramins) of flowering plants, the fossil record has been analyzed. To designate the status of baramin, a criterion is applied that tests whether some but not all of a group’s hierarchically immediate subgroups have a fossil record back to the Flood (accepted here as near the Cretaceous-Paleogene boundary).
    [Show full text]