Alternative Splicing: Regulation, Function and Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Alternative Splicing: Regulation, Function and Evolution Alternative splicing: regulation, function and evolution by Carlos Mart´ıG´omez-Aldarav´ı Licenciado en Biotecnolog´ıa PhD Program in Molecular Biosciences Departamento de Bioqu´ımica,Facultad de Ciencias Universidad Autonoma de Madrid (UAM) 2016-2020 Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Thesis supervisors: Enrique Lara Pezzi F´atimaS´anchez Cabo Abstract Introns populate eukaryotic genes to a variable extent across species, being widespread in vertebrates and mammals. While the evolutionary advantages, if any, of introns, remain unclear, their expansion has provided the opportunity to splice genes in more than a single way, allowing the production of different mRNAs from a single gene through Alternative splicing (AS). AS patterns change during the development of complex organisms and diverge across different tissues and experimental conditions. These highly reproducible changes evidences the existence of a regulatory network that ensures repeatable responses to certain stimuli and suggest that, at least some of them, play a role in the overall physiological response or adaptation. Not surprisingly, perturbation of some elements of this network is often associated with pathological conditions. However, not only we are far from a complete characterization of the molecular mechanisms that drive AS changes in most pathologies like those affecting the heart, but the computational tools that are currently used to study these regulatory networks are limiting our ability to extract all the information that is hidden in the data. It has been long hypothesized that AS contributes to a great expansion of the proteome and facilitates the evolution of new functions from pre-existing ones without gene duplication. While there are very well known examples of how AS enables the production of different functional proteins or mRNAs, the proportion of AS isoforms that are actually functional remains large unknown. Indeed, recent studies from different perspectives, including both transcriptomic, proteomics and sequence evolutionary analysis suggest that this percentage may be rather small and that much of the observed transcriptomic diversity is driven by non-functional noise in the splicing process. In this thesis, we have studied global AS patterns through computational analysis of large RNA-seq datasets to characterize the causes and consequences of AS changes from different perspectives. First, we have analyzed how AS global patterns change during heart development and disease using data from a variety of mouse models. We found that AS changes modulate different biological processes than gene expression ones and are associated to isoform specific protein-protein interactions. Disease patterns partially recapitulate developmental patterns probably through the upregulation of PTBP1, which is sufficient to induce pathological changes in the heart. Second, in an attempt to improve computational tools for identification of regulatory elements, we have developed dSreg. This tool leverages the power of bayesian inference and hierarchical models to pool information across the whole transcriptome to infer, not only the changes in the activities of the underlying regulatory elements, but also the changes in inclusion rates, outperforming competing methods and tools made for both purposes separately. Finally, we have studied the evolutionary process driving AS divergence during mammalian evolution using models of phenotypic evolution in a phylogenetic framework. We found that AS patterns have evolved under weak stabilizing selection that allows widespread variability in AS patterns across species, with only about 5% of the genes probably encoding AS isoforms with different functions. Rates of neutral evolution are high, preventing the identification of adaptive changes at this long evolutionary scale. In summary, this thesis provides new computational tools and knowledge about the evolution and regulation of AS in different biological conditions and helps to better understand its relevance from different persepectives. 2 Resumen Una gran parte de los genes eucariotas est´ancompuestos por exones e intrones. Aunque las ventajas evolutivas de la fragmentaci´onde los genes, en caso de haberlas, no se conocen del todo bien, su ex- pansi´onha permitido procesar los transcritos primarios de varias diferentes maneras, y por tanto, de producir diferentes ARN mensajeros maduros. Potencialmente, esto permite la producci´onde prote´ınas con diferentes funciones mediante splicing alternativo (SA) a partir de un ´unico gen. Los patrones de SA cambian de forma din´amicadurante el desarrollo de los organismos complejos y se diferencian en distintos tejidos y condiciones experimentales. Esto sugiere la existencia de un programa de regulaci´on espec´ıficopara la reproducci´onde estos cambios en diferentes individuos y en respuesta a est´ımulos con- cretos, que dif´ıcilmente se habr´agenerado en ausencia de funci´ony selecci´on.De hecho, la perturbaci´on de algunos de los elementos que forman parte de esta red de regulaci´onse asocia frecuentemente con el desarrollo de diversas patolog´ıas. No obstante, estamos lejos de una completa caracterizaci´onde los mecanismos de regulaci´onque dirigen los cambios en los patrones de SA en la mayur´ıade las patolog´ıas, como las cardiacas. Adem´as,las herramientas computacionales disponibles para estudiar estas redes de regulaci´onpresentan una serie de limitaciones que reducen nuestra capacidad para extraer informaci´on completamente fiable de los datos de transcript´omica. Desde el descubrimiento de los intrones, se ha hipotetizado que el SA permite la expansi´ondel pro- teoma y facilita la evoluci´onde nuevas funciones moleculares a partir de algunas ya existentes sin que haya duplicaci´ong´enica.Aunque se ha caracterizado una importante cantidad de genes que producen iso- formas con diferentes funciones mediante SA, a´unse desconoce c´omo de general es este mecanismo a nivel gen´omico.De hecho, estudios recientes desde diferentes persepectivas, incluyendo tanto transcript´omica como prote´omicay an´alisisevolutivo de las secuencias implicadas, parecen indicar que el porcentaje de genes que generan diferentes isoformas funcionales mediante SA es m´asbien peque~no,y que por tanto gran parte de la diversidad transcripcional se debe a errores en el proceso de splicing. En esta tesis doctoral, se han estudiado los patrones globales de SA mediante an´alisiscomputacional de grandes conjuntos de datos de RNA-seq. Esto ha permitido la caracterizaci´ontanto de las causas como de las consecuencias del SA y sus cambios desde diferentes perspectivas. En primer lugar, se ha analizado c´omoestos patrones cambian durante el desarrollo y la enfermedad cardiaca, empleando datos de rat´oncomo modelo animal. Se ha visto que los cambios en los patrones de SA afectan a diferentes funciones biol´ogicascomparados con la modulaci´onde la expresi´ong´enica.Estos cambios cuantitatives suelen afectar a isoformas de SA con distintos patrones de interacci´onprote´ına-prote´ına. Los patrones de SA en enfermedad recapitulan parcialmente los observados durante el desarrollo, posiblemente mediante la re-expresi´onde la prote´ınareguladora PTBP1, cuya sobre-expresi´onen corazones de ratones sanos es suficiente para inducir cambios patol´ogicos.En segundo lugar, en un intento de mejorar las herramientas computacionales disponibles para la identificaci´onde las prote´ınasreguladoras actuando en diferentes contextos, se ha desarrollado dSreg. Esta herramienta aprovecha el poder la inferencia bayesiana y los modelos jer´arquicospara aunar la informaci´oncontenida a lo largo del transcriptoma e inferir, no s´olo los cambios cuantitativos en los niveles de inclusi´onde eventos concretos, sino tambi´enlos cambios en la 3 actividad de las prote´ınasreguladoras subyacentes a esos cambios de SA. dSreg funciona mejor en ambos aspectos que los m´etodos previamente empleados para cada aplicaci´onpor separado. Finalmente, se han estudiado las fuerzas gen´eticasque dirigen la evoluci´ondel SA como car´actercuantitativo empleando, por primera vez, modelos de evoluci ´onfenot´ıpicaa lo largo de la historia evolutiva de diferentes especies de mam´ıferos.Estos resultados indican que los patrones de SA evolucionan bajo una selecci´onestabilizadora d´ebil,que permite una gran variaci´onen los patrones de SA entre diferentes especies. De este modo, apenas un 5% de los genes codifican isoformas de SA con diferentes funciones. La tasa de evoluci´onneutral es tan alta que impide distinguir cambios aleatorios mediados por la mutaci´ony la deriva gen´etica de aquellos que suponen una adaptaci´on,al menos en esta escala evolutiva tan grande. En resumen, esta tesis proporciona nuevas herramientas computacionales y conocimiento sobre la evoluci´ony la regulaci´on del SA en diferentes condiciones biol´ogicas,y ayuda a entender mejor su relevancia desde diferentes perspectivas. 4 Acknowledgements En primer lugar, me gustar´ıaagradecer a mis directores Enrique y F´atimapor haberme dado la opor- tunidad de hacer la tesis bajo su supervisi´on,por haberme dado libertad y apoyo para desarrollar mis propias ideas e intereses cient´ıficosm´asall´ade los planteados inicialmente, y por haberme acompa~nado a lo largo de este periodo de crecimiento personal y, posiblemente, hasta cient´ıfico. Gracias por vuestro optimismo y buen humor ante mi a veces reinante negatividad. Me gustar´adar las gracias tambi´ena Claus, mi supervisor en Viena, por el tiempo que ha dedicado a ayudarme y ense~narmesobre
Recommended publications
  • The Phylum Vertebrata: a Case for Zoological Recognition Naoki Irie1,2* , Noriyuki Satoh3 and Shigeru Kuratani4
    Irie et al. Zoological Letters (2018) 4:32 https://doi.org/10.1186/s40851-018-0114-y REVIEW Open Access The phylum Vertebrata: a case for zoological recognition Naoki Irie1,2* , Noriyuki Satoh3 and Shigeru Kuratani4 Abstract The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
    [Show full text]
  • Brains of Primitive Chordates 439
    Brains of Primitive Chordates 439 Brains of Primitive Chordates J C Glover, University of Oslo, Oslo, Norway although providing a more direct link to the evolu- B Fritzsch, Creighton University, Omaha, NE, USA tionary clock, is nevertheless hampered by differing ã 2009 Elsevier Ltd. All rights reserved. rates of evolution, both among species and among genes, and a still largely deficient fossil record. Until recently, it was widely accepted, both on morpholog- ical and molecular grounds, that cephalochordates Introduction and craniates were sister taxons, with urochordates Craniates (which include the sister taxa vertebrata being more distant craniate relatives and with hemi- and hyperotreti, or hagfishes) represent the most chordates being more closely related to echinoderms complex organisms in the chordate phylum, particu- (Figure 1(a)). The molecular data only weakly sup- larly with respect to the organization and function of ported a coherent chordate taxon, however, indicat- the central nervous system. How brain complexity ing that apparent morphological similarities among has arisen during evolution is one of the most chordates are imposed on deep divisions among the fascinating questions facing modern science, and it extant deuterostome taxa. Recent analysis of a sub- speaks directly to the more philosophical question stantially larger number of genes has reversed the of what makes us human. Considerable interest has positions of cephalochordates and urochordates, pro- therefore been directed toward understanding the moting the latter to the most closely related craniate genetic and developmental underpinnings of nervous relatives (Figure 1(b)). system organization in our more ‘primitive’ chordate relatives, in the search for the origins of the vertebrate Comparative Appearance of Brains, brain in a common chordate ancestor.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Tunicate Mitogenomics and Phylogenetics: Peculiarities of the Herdmania Momus Mitochondrial Genome and Support for the New Chordate Phylogeny
    Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. Tiratha Raj Singh, Georgia Tsagkogeorga, Frédéric Delsuc, Samuel Blanquart, Noa Shenkar, Yossi Loya, Emmanuel Douzery, Dorothée Huchon To cite this version: Tiratha Raj Singh, Georgia Tsagkogeorga, Frédéric Delsuc, Samuel Blanquart, Noa Shenkar, et al.. Tu- nicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny.. BMC Genomics, BioMed Central, 2009, 10, pp.534. 10.1186/1471-2164-10-534. halsde-00438100 HAL Id: halsde-00438100 https://hal.archives-ouvertes.fr/halsde-00438100 Submitted on 2 Dec 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Genomics BioMed Central Research article Open Access Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny Tiratha Raj Singh†1, Georgia Tsagkogeorga†2, Frédéric Delsuc2, Samuel Blanquart3, Noa
    [Show full text]
  • The Whale Shark Genome Reveals Patterns of Vertebrate Gene Family Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/685743; this version posted June 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The whale shark genome reveals patterns of vertebrate gene family evolution 1 2 3 4 4,5 Milton Tan *,​ Anthony K. Redmond ,​ Helen Dooley ,​ Ryo Nozu ,​ Keiichi Sato ,​ Shigehiro 6 ​ 7 ​ 7 ​ ​ 8 ​ 9 Kuraku ,​ Sergey Koren ,​ Adam M. Phillippy ,​ Alistair D.M. Dove ,​ Timothy D. Read ​ ​ ​ ​ ​ 1. Illinois Natural History Survey at University of Illinois Urbana-Champaign, Champaign, IL, USA. 2. Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland. 3. University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore, MD, USA. 4. Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan. 5. Okinawa Churaumi Aquarium, Motobu, Okinawa, Japan 6. RIKEN Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan. 7. National Human Genome Research Institute, Bethesda, MD, USA. 8. Georgia Aquarium, Atlanta, GA, USA. 9. Department of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA. Keywords: fish, Elasmobranchii, Chondrichthyes, Cartilaginous Fishes, Gnathostomata, comparative genomics, innate immunity, gigantism Abstract Due to their key phylogenetic position, cartilaginous fishes, which includes the largest fish species Rhincodon typus (whale shark), are an important vertebrate lineage for understanding ​ ​ the origin and evolution of vertebrates. However, until recently, this lineage has been understudied in vertebrate genomics. Using newly-generated long read sequences, we produced the best gapless cartilaginous fish genome assembly to date.
    [Show full text]
  • The Whale Shark Genome Reveals Patterns of Vertebrate Gene Family
    RESEARCH ARTICLE The whale shark genome reveals patterns of vertebrate gene family evolution Milton Tan1*, Anthony K Redmond2, Helen Dooley3, Ryo Nozu4, Keiichi Sato4,5, Shigehiro Kuraku6, Sergey Koren7, Adam M Phillippy7, Alistair DM Dove8, Timothy Read9 1Illinois Natural History Survey at University of Illinois Urbana-Champaign, Champaign, United States; 2Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland; 3University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore, United States; 4Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan; 5Okinawa Churaumi Aquarium, Motobu, Okinawa, Japan; 6RIKEN Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan; 7National Human Genome Research Institute, National Institutes of Health, Bethesda, United States; 8Georgia Aquarium, Atlanta, United States; 9Department of Infectious Diseases, Emory University School of Medicine, Atlanta, United States Abstract Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive *For correspondence: immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also [email protected] discovered a new toll-like receptor (TLR29) and three NOD1 copies in the whale shark.
    [Show full text]
  • Development, Anatomy, and Phylogenetic Relationships of Jawless Vertebrates and Tests of Hypotheses About Early Vertebrate Evolution
    Development, Anatomy, and Phylogenetic Relationships of Jawless Vertebrates and Tests of Hypotheses about Early Vertebrate Evolution by Tetsuto Miyashita A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systematics and Evolution Department of Biological Sciences University of Alberta © Tetsuto Miyashita, 2018 ii ABSTRACT The origin and early evolution of vertebrates remain one of the central questions of comparative biology. This clade, which features a breathtaking diversity of complex forms, has generated profound, unresolved questions, including: How are major lineages of vertebrates related to one another? What suite of characters existed in the last common ancestor of all living vertebrates? Does information from seemingly ‘primitive’ groups — jawless vertebrates, cartilaginous fishes, or even invertebrate outgroups — inform us about evolutionary transitions to novel morphologies like the neural crest or jaw? Alfred Romer once likened a search for the elusive vertebrate archetype to a study of the Apocalypse: “That way leads to madness.” I attempt to address these questions using extinct and extant cyclostomes (hagfish, lampreys, and their kin). As the sole living lineage of jawless vertebrates, cyclostomes diverged during the earliest phases of vertebrate evolution. However, precise relationships and evolutionary scenarios remain highly controversial, due to their poor fossil record and specialized morphology. Through a comparative analysis of embryos, I identified significant developmental similarities and differences between hagfish and lampreys, and delineated specific problems to be explored. I attacked the first problem — whether cyclostomes form a clade or represent a grade — in a description and phylogenetic analyses of a new, nearly complete fossil hagfish from the Cenomanian of Lebanon.
    [Show full text]
  • Wnt Evolution and Function Shuffling in Liberal and Conservative Chordate Genomes Ildikó M
    Somorjai et al. Genome Biology (2018) 19:98 https://doi.org/10.1186/s13059-018-1468-3 RESEARCH Open Access Wnt evolution and function shuffling in liberal and conservative chordate genomes Ildikó M. L. Somorjai1,2*, Josep Martí-Solans3, Miriam Diaz-Gracia3, Hiroki Nishida4, Kaoru S. Imai4, Hector Escrivà5, Cristian Cañestro3* and Ricard Albalat3* Abstract Background: What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. Results: We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. Conclusions: Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage.
    [Show full text]
  • Published Version
    PUBLISHED VERSION Diego C García-Bellido, Michael S Y Lee, Gregory D Edgecombe, James B Jago, James G Gehling, and John R Paterson A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group BMC Evolutionary Biology, 2014; 14(1):214-1-214-13 © 2014 Garcia-Bellido et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Originally published at: http://doi.org/10.1186/s12862-014-0214-z PERMISSIONS http://creativecommons.org/licenses/by/4.0/ http://hdl.handle.net/2440/97396 Drawing by Katrina Kenny A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group García-Bellido et al. García-Bellido et al. BMC Evolutionary Biology 2014, 14:214 http://www.biomedcentral.com/1471-2148/14/214 García-Bellido et al. BMC Evolutionary Biology 2014, 14:214 http://www.biomedcentral.com/1471-2148/14/214 RESEARCH ARTICLE Open Access A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group Diego C García-Bellido1,2*†, Michael S Y Lee1,2†, Gregory D Edgecombe3†, James B Jago4, James G Gehling1,2 and John R Paterson5*† Abstract Background: Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum.
    [Show full text]
  • Shuichi Shigeno Yasunori Murakami Tadashi Nomura Editors From
    Diversity and Commonality in Animals Shuichi Shigeno Yasunori Murakami Tadashi Nomura Editors Brain Evolution by Design From Neural Origin to Cognitive Architecture Diversity and Commonality in Animals Series editors Takahiro Asami Matsumoto, Japan Hiroshi Kajihara Sapporo, Japan Kazuya Kobayashi Hirosaki, Japan Osamu Koizumi Fukuoka, Japan Masaharu Motokawa Kyoto, Japan Kiyoshi Naruse Okazaki, Japan Akiko Satoh Hiroshima, Japan Kazufumi Takamune Kumamoto, Japan Hideaki Takeuchi Okayama, Japan Michiyasu Yoshikuni Fukuoka, Japan The book series Diversity and Commonality in Animals publishes refereed volumes on all aspects of zoology, with a special focus on both common and unique features of biological systems for better understanding of animal biology. Originating from a common ancestor, animals share universal mechanisms, but during the process of evolution, a large variety of animals have acquired their unique morphologies and functions to adapt to the environment in the struggle for existence. Topics covered include taxonomy, behavior, developmental biology, endocrinology, neuroscience, and evolution. The series is an official publication of The Zoological Society of Japan. More information about this series at http://www.springer.com/series/13528 Shuichi Shigeno • Yasunori Murakami • Tadashi Nomura Editors Brain Evolution by Design From Neural Origin to Cognitive Architecture 123 Editors Shuichi Shigeno Yasunori Murakami Stazione Zoologica Anton Dohrn Ehime University Naples, Italy Matsuyama, Japan Tadashi Nomura Kyoto Prefectural University of Medicine Kyoto, Japan ISSN 2509-5536 ISSN 2509-5544 (electronic) Diversity and Commonality in Animals ISBN 978-4-431-56467-6 ISBN 978-4-431-56469-0 (eBook) DOI 10.1007/978-4-431-56469-0 Library of Congress Control Number: 2016962454 © Springer Japan KK 2017 This work is subject to copyright.
    [Show full text]
  • Tunicates and Not Cephalochordates Are the Closest Living Relatives of Vertebrates
    Tunicates and not cephalochordates are the closest living relatives of vertebrates. Frédéric Delsuc, Henner Brinkmann, Daniel Chourrout, Herve Philippe To cite this version: Frédéric Delsuc, Henner Brinkmann, Daniel Chourrout, Herve Philippe. Tunicates and not cephalo- chordates are the closest living relatives of vertebrates.. Nature, Nature Publishing Group, 2006, 439 (7079), pp.965-8. 10.1038/nature04336. halsde-00315436 HAL Id: halsde-00315436 https://hal.archives-ouvertes.fr/halsde-00315436 Submitted on 28 Aug 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Tunicates and not cephalochordates are the closest living relatives of vertebrates Frédéric Delsuc 1* , Henner Brinkmann 1, Daniel Chourrout 2 & Hervé Philippe 1 1 Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada 2 Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgaten 55, 5008 Bergen, Norway * Present address: Laboratoire de Paléontologie, Phylogénie et Paléobiologie, Institut des Sciences de l’Evolution, UMR 5554-CNRS, Université Montpellier II, France. Tunicates or urochordates (appendicularians, salps, and sea squirts), cephalochordates (lancelets) and vertebrates (including lamprey and hagfish) constitute the three extant groups of chordate animals.
    [Show full text]
  • Regulation and Evolution of Muscle Development in Tunicates Florian Razy‑Krajka* and Alberto Stolf*
    Razy‑Krajka and Stolf EvoDevo (2019) 10:13 https://doi.org/10.1186/s13227‑019‑0125‑6 EvoDevo REVIEW Open Access Regulation and evolution of muscle development in tunicates Florian Razy‑Krajka* and Alberto Stolf* Abstract For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specifcation, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implica‑ tions and questions raised by these fndings in the broader context of muscle evolution in chordates. Keywords: Muscle, Maternal determinants, Myoplasm, MRF, Cardiopharyngeal mesoderm, Tunicates, Ascidians, Neuromesodermal Introduction detailed review of what is known about muscle develop- Muscles are formed by cells that contract through actin– ment in the tunicates. myosin interactions. Tis common mechanism is per- Tunicates (Fig. 1) are the extant invertebrates most formed with deep variation according to muscle type, closely related to us [81]. Tey are the sister group to the within the same organism as well as across taxa [303, vertebrates, with whom they form a monophyletic group 307]. For instance, the human body contains several known as Olfactores [158]. Te tunicates are a large hundred distinct muscles, including several dozens in group of marine organisms, most of them sessile, though the neck and the head [47, 278]. In vertebrates, muscles many are pelagic. Te vast majority of the Tunicata are can be classifed into three major categories according to suspension flter feeders, though there are some carnivo- their structure regardless of their developmental and evo- rous deep sea tunicates [223].
    [Show full text]