Evolution and Multiple Origins of Zona Pellucida Genes in Vertebrates Jin-Mei Feng1,*, Hai-Feng Tian2,*, Qiao-Mu Hu2, Yan Meng2 and Han-Bing Xiao2,‡

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Multiple Origins of Zona Pellucida Genes in Vertebrates Jin-Mei Feng1,*, Hai-Feng Tian2,*, Qiao-Mu Hu2, Yan Meng2 and Han-Bing Xiao2,‡ © 2018. Published by The Company of Biologists Ltd | Biology Open (2018) 7, bio036137. doi:10.1242/bio.036137 RESEARCH ARTICLE Evolution and multiple origins of zona pellucida genes in vertebrates Jin-Mei Feng1,*, Hai-Feng Tian2,*, Qiao-Mu Hu2, Yan Meng2 and Han-Bing Xiao2,‡ ABSTRACT characterized glycoproteins possess a common ZP module with Animal egg coats are composed of different glycoproteins collectively approximately 260 amino acids (Litscher and Wassarman, 2014; named zona pellucida (ZP) proteins. The characterized vertebrate Wilburn and Swanson, 2017) and are thus referred to as ZP genes encoding ZP proteins have been classified into six subfamilies, glycoproteins regardless of the species from which the egg envelope and exhibit low similarity to the ZP genes characterized in certain was isolated (Hedrick, 2008). The genes encoding these invertebrates. The origin and evolution of the vertebrate ZP genes glycoproteins have been intensively studied in vertebrates (Conner remain obscure. A search against 97 representative metazoan and Hughes, 2003; Li et al., 2011; Monné et al., 2006; Sano et al., species revealed various numbers (ranging from three to 33) of 2013, 2010; Smith et al., 2005; Yue et al., 2014) and organized into different putative egg-coat ZP genes in all 47 vertebrates and several six ZP gene subfamilies using an inconsistent nomenclature system ZP genes in five invertebrate species, but no putative ZP gene was (ZP1, ZP2 or ZPA, ZP3 or ZPC, ZP4 or ZPB, ZPD and ZPAX) found in the other 45 species. Based on phylogenetic and synteny (Claw and Swanson, 2012; Goudet et al., 2008; Spargo and Hope, analyses, all vertebrate egg-coat ZP genes were classified into 2003). The systematic distribution of ZP genes in vertebrates was eight ZP gene subfamilies. Lineage- and species-specific gene recently reviewed (Litscher and Wassarman, 2014; Shu et al., 2015; duplications and gene losses occurred frequently and represented Wu et al., 2018), although the evolutionary relationships among the main causes of the patchy distribution of the eight ZP gene these ZP gene subfamilies remain unresolved. Based on gene subfamilies in vertebrates. Thorough phylogenetic analyses revealed structure and organization and synteny analyses, the ZP genes in that the vertebrate ZP genes could be traced to three independent vertebrates are thought to have been derived from a common origins but were not orthologues of the characterized invertebrate ancestral gene that generated the ZP3 gene subfamily in one branch ZP genes. Our results suggested that vertebrate egg-coat ZP and the ZPD, ZPAX, ZP2, ZP1 and ZP4 gene subfamilies on the genes should be classified into eight subfamilies, and a putative other branch through an ancient gene duplication event (Claw and evolutionary map is proposed. These findings would aid the Swanson, 2012; Litscher and Wassarman, 2014; Spargo and Hope, functional and evolutionary analyses of these reproductive genes 2003). However, ZPX, which is mainly found in invertebrates, in vertebrates. might be the result of a more ancient duplication event, as determined through a phylogenetic analysis (Wong and Wessel, KEY WORDS: Zona pellucida, Egg coat, Vertebrate, Evolution 2006). Moreover, cloned ZP genes in Xenopus laevis (such as ZPY) have not yet been included in these analyses (Hedrick, 2008). INTRODUCTION Interestingly, ZP proteins and their corresponding coding genes Animal egg coats participate in species-specific sperm-egg have also been characterized in cephalochordates (Branchiostoma recognition during the process of fertilization and protect the belcheri) (Xu et al., 2012), urochordates (Ciona savignyi and Ciona growth of oocytes, eggs and early-developing embryos (Conner intestinalis) (Kürn et al., 2007) and the archeogastropod abalone et al., 2005; Litscher and Wassarman, 2014; Modig et al., 2007). (Haliotis spp.) (Aagaard et al., 2010, 2006). These reports suggest Egg coats are called different names in different organisms, such as an invertebrate origin for vertebrate egg-coat ZP genes (Xu et al., vitelline membranes in echinoderms, chorions in fish, vitelline 2012), although a systematic phylogenetic analysis including both envelopes (VEs) in birds, reptiles and amphibians, and zona invertebrate and vertebrate egg-coat ZPs has not yet been pellucida (ZP) in mammals. conducted. Therefore, the origin and evolution of the vertebrate Egg coats are composed of different numbers of glycoproteins, egg-coat ZP genes and the evolutionary relationships between the which also have different names depending on the methods through vertebrate and invertebrate egg-coat ZP genes have yet to be which they were identified (Goudet et al., 2008). All such resolved. Genomic data of diverse metazoans are becoming increasingly available, and this accumulation of data provides excellent 1 Department of Pathogenic Biology, School of Medicine, Jianghan University, opportunities for addressing the evolution of the egg-coat ZP Wuhan, Hubei Province 430056, China. 2Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery genes. In the present study, a comprehensive taxa-wide investigation Sciences, Wuhan 430223, Hubei Province, China. of egg-coat ZP genes was implemented to analyse their *These authors contributed equally to this work phylogenetic distributions in metazoans. Moreover, phylogenetic ‡Author for correspondence ([email protected]) and synteny analyses were conducted to explore the origin and evolution of egg-coat ZP genes. Our results showed that vertebrate H.-B.X., 0000-0002-6389-8204 egg-coat ZP genes should be classified into eight subfamilies This is an Open Access article distributed under the terms of the Creative Commons Attribution contained within the last common ancestor of vertebrates. In License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. addition, these subfamilies could be further traced back to three ancestral ZP genes during the evolution of early vertebrates, but Received 29 May 2018; Accepted 18 September 2018 these three ancestral vertebrate ZP genes do not appear to have been Biology Open 1 RESEARCH ARTICLE Biology Open (2018) 7, bio036137. doi:10.1242/bio.036137 directly inherited from the few invertebrate egg-coat ZP genes. This be products of the same genomic locus (Table S2). The number of work provides a basis for studying these reproductive genes in ZP genes found in each species ranged from three in mammals to 33 different disciplines and performing functional analyses. in Actinopterygii (Table 1), and our search did not find any putative ZP gene in the other 45 species. RESULTS Phylogenetic analyses of these characterized putative ZP genes Phylogenetic distribution of egg-coat ZP genes and were performed to evaluate the definition of ZP gene subfamilies in modification of the ZP gene subfamily definition vertebrates and explore the distributions of ZP members in each After performing the hmm searches and additional confirmations, representative vertebrate species. A total of 410 ZP module regions a total of 446 ZP genes (smart00241: ZP module) were found in (SMART00241, more than 130 amino acids) were obtained and the genome of the 52 investigated representative species, which aligned. To explore the potential origin of these identified vertebrate included 47 vertebrates and five invertebrates. All the identified ZP ZP genes, previously characterized ZP genes of invertebrates genes (with accession numbers, characteristic domains, genomic (Aagaard et al., 2006; Kürn et al., 2007) as well as those data sources and taxonomic information of the studied species) characterized in this work, were included in the phylogenetic are listed in Table S1. The obtained putative ZP genes are non- analyses. The two phylogenetic trees reconstructed using FastTree redundant, and even the 21 ZP genes from four species that showed and PhyML showed similar topologies, and the ML tree (Fig. 1; high identities (no less than 93%) with each other did not appear to Fig. S1) reconstructed using FastTree is shown here. We found six Table 1. Phylogenetic distribution of the ZP genes in vertebrates Number of Evolutionary lineages Species full name ZP genes Vertebrate; Gnathostomata; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria Homo sapiens 4 Pan troglodytes 4 Pongo abelii 4 Gorilla gorilla 4 Nomascus leucogenys 4 Macaca mulatta 4 Callithrix jacchus 4 Tarsius (Carlito) syrichta 4 Microcebus murinus 3 Otolemur garnettii 4 Oryctolagus cuniculus 4 Rattus norvegicus 4 Mus musculus 3 Ictidomys tridecemlineatus 4 Cavia porcellus 3 Ailuropoda melanoleuca 4 Canis lupus familiaris 4 Mustela putorius furo 4 Felis catus 4 Equus caballus 4 Sus scrofa 3 Bos taurus 3 Myotis lucifugus 3 Vertebrate; Gnathostomata; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Afrotheria Loxodonta africana 5 Vertebrate; Gnathostomata; Tetrapoda; Amniota; Mammalia; Theria; Metatheria Monodelphis domestica 4 Macropuseugenii 4 Sarcophilus harrisii 6 Vertebrate; Gnathostomata; Tetrapoda; Amniota;Monotremata Ornithorhynchus anatinus 13 Vertebrate; Gnathostomata; Tetrapoda; Amniota; Sauria Toxicofera Anolis carolinensis 13 Python bivittatus 6 Archosauria Pelodiscus sinensis 16 Gallus gallus 10 Taeniopygia guttata 6 Alligator sinensis 11 Alligator mississippiensis 11 Vertebrate; Gnathostomata; Tetrapoda; Batrachia Anura; Xenopus Xenopus laevis 13
Recommended publications
  • The Phylum Vertebrata: a Case for Zoological Recognition Naoki Irie1,2* , Noriyuki Satoh3 and Shigeru Kuratani4
    Irie et al. Zoological Letters (2018) 4:32 https://doi.org/10.1186/s40851-018-0114-y REVIEW Open Access The phylum Vertebrata: a case for zoological recognition Naoki Irie1,2* , Noriyuki Satoh3 and Shigeru Kuratani4 Abstract The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
    [Show full text]
  • The Role of Nuclear Lamin B1 in Cell Proliferation and Senescence
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press The role of nuclear lamin B1 in cell proliferation and senescence Takeshi Shimi,1 Veronika Butin-Israeli,1 Stephen A. Adam,1 Robert B. Hamanaka,2 Anne E. Goldman,1 Catherine A. Lucas,1 Dale K. Shumaker,1 Steven T. Kosak,1 Navdeep S. Chandel,2 and Robert D. Goldman1,3 1Department of Cell and Molecular Biology, 2Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA Nuclear lamin B1 (LB1) is a major structural component of the nucleus that appears to be involved in the regulation of many nuclear functions. The results of this study demonstrate that LB1 expression in WI-38 cells decreases during cellular senescence. Premature senescence induced by oncogenic Ras also decreases LB1 expression through a retinoblastoma protein (pRb)-dependent mechanism. Silencing the expression of LB1 slows cell proliferation and induces premature senescence in WI-38 cells. The effects of LB1 silencing on proliferation require the activation of p53, but not pRb. However, the induction of premature senescence requires both p53 and pRb. The proliferation defects induced by silencing LB1 are accompanied by a p53-dependent reduction in mitochondrial reactive oxygen species (ROS), which can be rescued by growth under hypoxic conditions. In contrast to the effects of LB1 silencing, overexpression of LB1 increases the proliferation rate and delays the onset of senescence of WI-38 cells. This overexpression eventually leads to cell cycle arrest at the G1/S boundary.
    [Show full text]
  • Brains of Primitive Chordates 439
    Brains of Primitive Chordates 439 Brains of Primitive Chordates J C Glover, University of Oslo, Oslo, Norway although providing a more direct link to the evolu- B Fritzsch, Creighton University, Omaha, NE, USA tionary clock, is nevertheless hampered by differing ã 2009 Elsevier Ltd. All rights reserved. rates of evolution, both among species and among genes, and a still largely deficient fossil record. Until recently, it was widely accepted, both on morpholog- ical and molecular grounds, that cephalochordates Introduction and craniates were sister taxons, with urochordates Craniates (which include the sister taxa vertebrata being more distant craniate relatives and with hemi- and hyperotreti, or hagfishes) represent the most chordates being more closely related to echinoderms complex organisms in the chordate phylum, particu- (Figure 1(a)). The molecular data only weakly sup- larly with respect to the organization and function of ported a coherent chordate taxon, however, indicat- the central nervous system. How brain complexity ing that apparent morphological similarities among has arisen during evolution is one of the most chordates are imposed on deep divisions among the fascinating questions facing modern science, and it extant deuterostome taxa. Recent analysis of a sub- speaks directly to the more philosophical question stantially larger number of genes has reversed the of what makes us human. Considerable interest has positions of cephalochordates and urochordates, pro- therefore been directed toward understanding the moting the latter to the most closely related craniate genetic and developmental underpinnings of nervous relatives (Figure 1(b)). system organization in our more ‘primitive’ chordate relatives, in the search for the origins of the vertebrate Comparative Appearance of Brains, brain in a common chordate ancestor.
    [Show full text]
  • Molecular Dynamics and Evolutionary Aspects of the Transition from the Fully Grown Oocyte to Embryo
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo Alexei V. Evsikov,1,5 Joel H. Graber,1 J. Michael Brockman,1,2 Aleš Hampl,3 Andrea E. Holbrook,1 Priyam Singh,1,2 John J. Eppig,1 Davor Solter,1,4 and Barbara B. Knowles1 1The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 2 Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; 3Masaryk University Brno and Institute of Experimental Medicine, 625 00 Brno, Czech Republic; 4Max Planck Institute of Immunobiology, 79108 Freiburg, Germany Fully grown oocytes (FGOs) contain all the necessary transcripts to activate molecular pathways underlying the oocyte-to-embryo transition (OET). To elucidate this critical period of development, an extensive survey of the FGO transcriptome was performed by analyzing 19,000 expressed sequence tags of the Mus musculus FGO cDNA library. Expression of 5400 genes and transposable elements is reported. For a majority of genes expressed in mouse FGOs, homologs transcribed in eggs of Xenopus laevis or Ciona intestinalis were found, pinpointing evolutionary conservation of most regulatory cascades underlying the OET in chordates. A large proportion of identified genes belongs to several gene families with oocyte-restricted expression, a likely result of lineage-specific genomic duplications. Gene loss by mutation and expression in female germline of retrotransposed genes specific to M. musculus is documented. These findings indicate rapid diversification of genes involved in female reproduction. Comparison of the FGO and two-cell embryo transcriptomes demarcated the processes important for oogenesis from those involved in OET and identified novel motifs in maternal mRNAs associated with transcript stability.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,727 Baden Et Al
    USOO5981727A United States Patent (19) 11 Patent Number: 5,981,727 Baden et al. (45) Date of Patent: Nov. 9, 1999 54 PLANT GROUP 2 PROMOTERS AND USES OTHER PUBLICATIONS THEREOF Oommen et al (1994) The Plant Cell 6: 1789–1803. 75 Inventors: Catherine S. Baden, Martinez, Pamela Lewin, (1985) In: Genes II, Wiley and Sons, NY, pp. Dunsmuir, Piedmont; Kathleen Y. Lee, 182-183. Oakland, all of Calif. Van Haaven et al (1991) Plant Mol Biol 17: 615-630. 73 Assignee: DNA Plant Technology Corporation, Pear et al (1989) Plant Mol Biol 13: 639-651. Oakland, Calif. Primary Examiner Elizabeth F. McElwain 21 Appl. No.: 08/761,549 Attorney, Agent, or Firm Townsend and Townsend and 22 Filed: Dec. 6, 1996 Crew Related U.S. Application Data 57 ABSTRACT This invention relates to compositions and methods useful in 63 Continuation of application No. 08/289,458, Aug. 12, 1994, the production of transgenic plants. In particular, the inven Pat. No. 5,608,144. tion relates to Group 2 (Gp2) plant promoter Sequences and 51 Int. Cl. ............................ C12N 15700;s CO7H 21/04 to expressionp cassettes containingg Gp2Op.4 planlplant ppromoter 52 U.S. Cl. ...................... 536/23.6; 536/24.1; 435/1723 Sequences. The invention also relates to vectors and trans 58 Field of Search ........................... 800/205; 435/69.1, genic plants containing Gp2 plant promoter Sequences that 435/172.3, 419, 536/24.1, 23.6 are operably linked to heterologous DNA sequences. In addition, the invention relates to methods of producing 56) References Cited transgenic plants by using vectors containing Gp2 promoter Sequences.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Tunicate Mitogenomics and Phylogenetics: Peculiarities of the Herdmania Momus Mitochondrial Genome and Support for the New Chordate Phylogeny
    Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. Tiratha Raj Singh, Georgia Tsagkogeorga, Frédéric Delsuc, Samuel Blanquart, Noa Shenkar, Yossi Loya, Emmanuel Douzery, Dorothée Huchon To cite this version: Tiratha Raj Singh, Georgia Tsagkogeorga, Frédéric Delsuc, Samuel Blanquart, Noa Shenkar, et al.. Tu- nicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny.. BMC Genomics, BioMed Central, 2009, 10, pp.534. 10.1186/1471-2164-10-534. halsde-00438100 HAL Id: halsde-00438100 https://hal.archives-ouvertes.fr/halsde-00438100 Submitted on 2 Dec 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Genomics BioMed Central Research article Open Access Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny Tiratha Raj Singh†1, Georgia Tsagkogeorga†2, Frédéric Delsuc2, Samuel Blanquart3, Noa
    [Show full text]
  • Comparative Mrna and Mirna Expression in European
    Heredity (2019) 122:172–186 https://doi.org/10.1038/s41437-018-0090-1 ARTICLE Comparative mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis aries) provides novel insights into the genetic mechanisms for female reproductive success 1 1,2 1,2 3 1,2 1,2 1,2 Ji Yang ● Xin Li ● Yin-Hong Cao ● Kisun Pokharel ● Xiao-Ju Hu ● Ze-Hui Chen ● Song-Song Xu ● 3 3 3 1 Jaana Peippo ● Mervi Honkatukia ● Juha Kantanen ● Meng-Hua Li Received: 12 January 2018 / Revised: 20 March 2018 / Accepted: 18 April 2018 / Published online: 21 May 2018 © The Author(s) 2018. This article is published with open access Abstract Prolific breeds of domestic sheep (Ovis aries) are important genetic resources due to their reproductive performance, which is characterized by multiple lambs per birth and out-of-season breeding. However, the lack of a comprehensive understanding of the genetic mechanisms underlying the important reproductive traits, particularly from the evolutionary genomics perspective, has impeded the efficient advancement of sheep breeding. Here, for the first time, by performing RNA-sequencing we built a de novo transcriptome assembly of ovarian and endometrial tissues in European mouflon (Ovis 1234567890();,: 1234567890();,: musimon) and performed an mRNA–miRNA integrated expression profiling analysis of the wild species and a highly prolific domestic sheep breed, the Finnsheep. We identified several novel genes with differentially expressed mRNAs (e.g., EREG, INHBA, SPP1, AMH, TDRD5, and ZP2) between the wild and domestic sheep, which are functionally involved in oocyte and follicle development and fertilization, and are significantly (adjusted P-value < 0.05) enriched in the Gene Ontology (GO) terms of various reproductive process, including the regulation of fertilization, oogenesis, ovarian follicle development, and sperm–egg recognition.
    [Show full text]
  • The Neotropical Genus Austrolebias: an Emerging Model of Annual Killifishes Nibia Berois1, Maria J
    lopmen ve ta e l B D io & l l o l g e y C Cell & Developmental Biology Berois, et al., Cell Dev Biol 2014, 3:2 ISSN: 2168-9296 DOI: 10.4172/2168-9296.1000136 Review Article Open Access The Neotropical Genus Austrolebias: An Emerging Model of Annual Killifishes Nibia Berois1, Maria J. Arezo1 and Rafael O. de Sá2* 1Departamento de Biologia Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay 2Department of Biology, University of Richmond, Richmond, Virginia, USA *Corresponding author: Rafael O. de Sá, Department of Biology, University of Richmond, Richmond, Virginia, USA, Tel: 804-2898542; Fax: 804-289-8233; E-mail: [email protected] Rec date: Apr 17, 2014; Acc date: May 24, 2014; Pub date: May 27, 2014 Copyright: © 2014 Rafael O. de Sá, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Annual fishes are found in both Africa and South America occupying ephemeral ponds that dried seasonally. Neotropical annual fishes are members of the family Rivulidae that consist of both annual and non-annual fishes. Annual species are characterized by a prolonged embryonic development and a relatively short adult life. Males and females show striking sexual dimorphisms, complex courtship, and mating behaviors. The prolonged embryonic stage has several traits including embryos that are resistant to desiccation and undergo up to three reversible developmental arrests until hatching. These unique developmental adaptations are closely related to the annual fish life cycle and are the key to the survival of the species.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Xenopus Laevis Sperm Receptor Gp69/64 Glycoprotein Is a Homolog
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 829–834, February 1999 Biochemistry Xenopus laevis sperm receptor gp69y64 glycoprotein is a homolog of the mammalian sperm receptor ZP2 JINGDONG TIAN*, HUI GONG, AND WILLIAM J. LENNARZ† Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215 Contributed by William J. Lennarz, November 4, 1998 ABSTRACT Little is known about sperm-binding pro- Much less information is available on the identity of sperm teins in the egg envelope of nonmammalian vertebrate species. receptors in other, nonmammalian vertebrate species. Re- We report here the molecular cloning and characterization of cently, a Xenopus laevis sperm receptor (gp69y64) in the egg a recently identified sperm receptor (gp69y64) in the Xenopus vitelline envelope (VE) was identified (7, 8). It was shown that laevis egg vitelline envelope. Our data indicate that the gp69 the purified gp69y64 proteins, as well as their antibodies, and gp64 glycoproteins are two glycoforms of the receptor and blocked sperm binding to unfertilized eggs or to beads coupled have the same number of N-linked oligosaccharide chains but with gp69y64 proteins. It has been know for some time (9) that differ in the extent of O-glycosylation. The amino acid se- during fertilization, gp69y64 undergoes limited proteolysis. quence of the receptor is closely related to that of the mouse However, the molecular details of this cleavage have been zona pellucida protein ZP2. Most of the sequence conserva- unclear because the primary structure of gp69y64 was un- tion, including a ZP domain, a potential furin cleavage site, known.
    [Show full text]