A Data-Driven Method for In-Game Decision Making in MLB
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sabermetrics: the Past, the Present, and the Future
Sabermetrics: The Past, the Present, and the Future Jim Albert February 12, 2010 Abstract This article provides an overview of sabermetrics, the science of learn- ing about baseball through objective evidence. Statistics and baseball have always had a strong kinship, as many famous players are known by their famous statistical accomplishments such as Joe Dimaggio’s 56-game hitting streak and Ted Williams’ .406 batting average in the 1941 baseball season. We give an overview of how one measures performance in batting, pitching, and fielding. In baseball, the traditional measures are batting av- erage, slugging percentage, and on-base percentage, but modern measures such as OPS (on-base percentage plus slugging percentage) are better in predicting the number of runs a team will score in a game. Pitching is a harder aspect of performance to measure, since traditional measures such as winning percentage and earned run average are confounded by the abilities of the pitcher teammates. Modern measures of pitching such as DIPS (defense independent pitching statistics) are helpful in isolating the contributions of a pitcher that do not involve his teammates. It is also challenging to measure the quality of a player’s fielding ability, since the standard measure of fielding, the fielding percentage, is not helpful in understanding the range of a player in moving towards a batted ball. New measures of fielding have been developed that are useful in measuring a player’s fielding range. Major League Baseball is measuring the game in new ways, and sabermetrics is using this new data to find better mea- sures of player performance. -
Trevor Bauer
TREVOR BAUER’S CAREER APPEARANCES Trevor Bauer (47) 2009 – Freshman (9-3, 2.99 ERA, 20 games, 10 starts) JUNIOR – RHP – 6-2, 185 – R/R Date Opponent IP H R ER BB SO W/L SV ERA Valencia, Calif. (Hart HS) 2/21 UC Davis* 1.0 0 0 0 0 2 --- 1 0.00 2/22 UC Davis* 4.1 7 3 3 2 6 L 0 5.06 CAREER ACCOLADES 2/27 vs. Rice* 2.2 3 2 1 4 3 L 0 4.50 • 2011 National Player of the Year, Collegiate Baseball • 2011 Pac-10 Pitcher of the Year 3/1 UC Irvine* 2.1 1 0 0 0 0 --- 0 3.48 • 2011, 2010, 2009 All-Pac-10 selection 3/3 Pepperdine* 1.1 1 1 1 1 2 L 0 3.86 • 2010 Baseball America All-America (second team) 3/7 at Oklahoma* 0.2 1 0 0 0 0 --- 0 3.65 • 2010 Collegiate Baseball All-America (second team) 3/11 San Diego State 6.0 2 1 1 3 4 --- 0 2.95 • 2009 Louisville Slugger Freshman Pitcher of the Year 3/11 at East Carolina* 3.2 2 0 0 0 5 W 0 2.45 • 2009 Collegiate Baseball Freshman All-America 3/21 at USC* 4.0 4 2 1 0 3 --- 1 2.42 • 2009 NCBWA Freshman All-America (first team) 3/25 at Pepperdine 8.0 6 2 2 1 8 W 0 2.38 • 2009 Pac-10 Freshman of the Year 3/29 Arizona* 5.1 4 0 0 1 4 W 0 2.06 • Posted a 34-8 career record (32-5 as a starter) 4/3 at Washington State* 0.1 1 2 1 0 0 --- 0 2.27 • 1st on UCLA’s career strikeouts list (460) 4/5 at Washington State 6.2 9 4 4 0 7 W 0 2.72 • 1st on UCLA’s career wins list (34) 4/10 at Stanford 6.0 8 5 4 0 5 W 0 3.10 • 1st on UCLA’s career innings list (373.1) 4/18 Washington 9.0 1 0 0 2 9 W 0 2.64 • 2nd on Pac-10’s career strikeouts list (460) 4/25 Oregon State 8.0 7 2 2 1 7 W 0 2.60 • 2nd on UCLA’s career complete games list (15) 5/2 at Oregon 9.0 6 2 2 4 4 W 0 2.53 • 8th on UCLA’s career ERA list (2.36) • 1st on Pac-10’s single-season strikeouts list (203 in 2011) 5/9 California 9.0 8 4 4 1 10 W 0 2.68 • 8th on Pac-10’s single-season strikeouts list (165 in 2010) 5/16 Cal State Fullerton 9.0 8 5 5 2 8 --- 0 2.90 • 1st on UCLA’s single-season strikeouts list (203 in 2011) 5/23 at Arizona State 9.0 6 4 4 5 5 W 0 2.99 • 2nd on UCLA’s single-season strikeouts list (165 in 2010) TOTAL 20 app. -
Major League Rules
Major League Rules All Managers, Assistant Managers, Team Members, Families, and their guests are subject to the Wasco Baseball Codes of Conduct. All players must meet the minimum age requirement of 11 years and maximum of 12 years of age as of April 30th of that year for the Spring season. Any players not meeting these minimum age requirements must attend a tryout conducted by the league and if they meet the league’s designated safety and ability standards for play in this league, the league will permit them to move up into this next league level of play and pay all fees associated with this league provided the player is no more than one year removed from that season's minimum age requirement. All Wasco Baseball Rules follow the NFHS Rule Book unless stated differently below. Field Dimensions Distance between bases: 70 feet from back of home plate (point) to outfield side of bases at 1st and 3rd, from foul line side of bases at 1st and 3rd to center of 2nd base. All bases are inside the 70-foot square except 2nd base. Pitching rubber distance: 48-50 feet from the back of home plate (point) to the front of the rubber. Uniforms Uniforms are conventional, with long-legged pants (no shorts) and sneakers or compositional baseball shoes ( no steel spike shoes permitted), that the player provides. The league provides replica shirts, pants, socks, belts, and baseball hats. Each player is responsible for wearing their entire uniform on game-day (with all shirts “tucked in”). It is expected that hats will be worn to both practices and games (the only exception being for the smallest players where their hat does not fit properly), however, shirts are to be worn to games only. -
Machine Learning Applications in Baseball: a Systematic Literature Review
This is an Accepted Manuscript of an article published by Taylor & Francis in Applied Artificial Intelligence on February 26 2018, available online: https://doi.org/10.1080/08839514.2018.1442991 Machine Learning Applications in Baseball: A Systematic Literature Review Kaan Koseler ([email protected]) and Matthew Stephan* ([email protected]) Miami University Department of Computer Science and Software Engineering 205 Benton Hall 510 E. High St. Oxford, OH 45056 Abstract Statistical analysis of baseball has long been popular, albeit only in limited capacity until relatively recently. In particular, analysts can now apply machine learning algorithms to large baseball data sets to derive meaningful insights into player and team performance. In the interest of stimulating new research and serving as a go-to resource for academic and industrial analysts, we perform a systematic literature review of machine learning applications in baseball analytics. The approaches employed in literature fall mainly under three problem class umbrellas: Regression, Binary Classification, and Multiclass Classification. We categorize these approaches, provide our insights on possible future ap- plications, and conclude with a summary our findings. We find two algorithms dominate the literature: 1) Support Vector Machines for classification problems and 2) k-Nearest Neighbors for both classification and Regression problems. We postulate that recent pro- liferation of neural networks in general machine learning research will soon carry over into baseball analytics. keywords: baseball, machine learning, systematic literature review, classification, regres- sion 1 Introduction Baseball analytics has experienced tremendous growth in the past two decades. Often referred to as \sabermetrics", a term popularized by Bill James, it has become a critical part of professional baseball leagues worldwide (Costa, Huber, and Saccoman 2007; James 1987). -
A Giant Whiff: Why the New CBA Fails Baseball's Smartest Small Market Franchises
DePaul Journal of Sports Law Volume 4 Issue 1 Summer 2007: Symposium - Regulation of Coaches' and Athletes' Behavior and Related Article 3 Contemporary Considerations A Giant Whiff: Why the New CBA Fails Baseball's Smartest Small Market Franchises Jon Berkon Follow this and additional works at: https://via.library.depaul.edu/jslcp Recommended Citation Jon Berkon, A Giant Whiff: Why the New CBA Fails Baseball's Smartest Small Market Franchises, 4 DePaul J. Sports L. & Contemp. Probs. 9 (2007) Available at: https://via.library.depaul.edu/jslcp/vol4/iss1/3 This Notes and Comments is brought to you for free and open access by the College of Law at Via Sapientiae. It has been accepted for inclusion in DePaul Journal of Sports Law by an authorized editor of Via Sapientiae. For more information, please contact [email protected]. A GIANT WHIFF: WHY THE NEW CBA FAILS BASEBALL'S SMARTEST SMALL MARKET FRANCHISES INTRODUCTION Just before Game 3 of the World Series, viewers saw something en- tirely unexpected. No, it wasn't the sight of the Cardinals and Tigers playing baseball in late October. Instead, it was Commissioner Bud Selig and Donald Fehr, the head of Major League Baseball Players' Association (MLBPA), gleefully announcing a new Collective Bar- gaining Agreement (CBA), thereby guaranteeing labor peace through 2011.1 The deal was struck a full two months before the 2002 CBA had expired, an occurrence once thought as likely as George Bush and Nancy Pelosi campaigning for each other in an election year.2 Baseball insiders attributed the deal to the sport's economic health. -
Openwar: an Open Source System for Overall Player Performance in MLB
OpenWAR: An Open Source System for Overall Player Performance in MLB Ben Baumer1 Shane Jensen2 Gregory Matthews3 1 Smith College 2 The Wharton School University of Pennsylvania 3 University of Massachusetts Joint Mathematical Meetings Baltimore, MD January 17th, 2014 Baumer (Smith) openWAR JMM 1 / 21 Introduction Motivation WAR - What is it good for? WinsAboveReplacement Question: How large is the contribution that each player makes towards winning? Four Components: 1 Batting 2 Baserunning 3 Fielding 4 Pitching Replacement Player: Hypothetical 4A journeyman I Much worse than an average player Baumer (Smith) openWAR JMM 2 / 21 Introduction Motivation Units and Scaling In terms of absolute runs: Me Replacement Average Miguel Cabrera 10 40 90 140 In terms of Runs Above Replacement( RAR): Me Replacement Average Miguel Cabrera −30 0 50 100 In terms of Wins Above Replacement( WAR): Me Replacement Average Miguel Cabrera −3 0 5 10 Baumer (Smith) openWAR JMM 3 / 21 Introduction Motivation Example: 2012 WAR leaders FanGraphs fWAR BB-Ref rWAR Mike Trout 10.0 Mike Trout 10.9 Robinson Cano 7.8 Robinson Cano 8.5 Buster Posey 7.7 Buster Posey 7.4 Ryan Braun 7.6 Miguel Cabrera 7.3 David Wright 7.4 Andrew McCutchen 7.2 Chase Headley 7.2 Adrian Beltre 7.0 Miguel Cabrera 6.8 Ryan Braun 7.0 Andrew McCutchen 6.8 Yadier Molina 6.9 Table : 2012 WAR Leaders Baseball Prospectus also publishes WARP There is no ONE formula for WAR! Baumer (Smith) openWAR JMM 4 / 21 Introduction Motivation WAR is the Answer Baumer (Smith) openWAR JMM 5 / 21 Introduction Related -
Baseball Prospectus, 1997, 1997, Gary Huckabay, Clay Davenport, Joe Sheehan, Chris Kahrl, 0965567400, 9780965567404, Ravenlock Media, 1997
Baseball Prospectus, 1997, 1997, Gary Huckabay, Clay Davenport, Joe Sheehan, Chris Kahrl, 0965567400, 9780965567404, Ravenlock Media, 1997 DOWNLOAD http://bit.ly/1oCjD77 http://en.wikipedia.org/wiki/Baseball_Prospectus_1997 DOWNLOAD http://fb.me/23h0t0pz6 http://avaxsearch.com/?q=Baseball+Prospectus%2C+1997 http://bit.ly/1oRwfu3 Hockey Prospectus 2010-11 The Essential Guide to the 2010-11 Hockey Season, Hockey Prospectus, Tom Awad, Will Carroll, Lain Fyffe, Philip Myrland, Richard Pollack, Sep 15, 2010, Sports & Recreation, 370 pages. In the winning tradition of the New York Times bestselling Baseball Prospectus comes the world's greatest guide to the NHL. The authors of Hockey Prospectus combine cutting. There's a God on the Mic The True 50 Greatest Mcs, Kool Moe Dee, Oct 4, 2008, Music, 224 pages. Rates fifty of the greatest rap emcees, scoring them in seventeen categories, including lyricism, originality, vocal presence, poetic value, body of work, social impact, and. The Hardball Times Baseball Annual , Dave Studenmund, Greg Tamer, Nov 1, 2004, Sports & Recreation, 298 pages. A complete review of the 2004 baseball season, as seen through the eyes of an online baseball magazine called The Hardball Times (www.hardballtimes.com). The Hardball Times. Baseball Prospectus 2005 Statistics, Analysis, and Insight for the Information Age, David Cameron, Baseball Prospectus Team of Experts, Feb 18, 2005, Sports & Recreation, 576 pages. Provides profiles of major league players with information on statistics for the past five seasons and projections for the 2005 baseball season.. Vibration spectrum analysis a practical approach, Steve Goldman, 1991, Science, 223 pages. Vibration Spectrum Analysis helps teach the maintenance mechanic or engineer how to identify problem areas before extensive damage occurs. -
Game Information @Cakesbaseball
game information www.cakesbaseball.com @cakesbaseball Wednesday, May 9 new orleans baby cakes (17-15) at round rock express (11-22) 7:05 p.m. CT Dell Diamond Game #33 Round Rock, TX RHP Zac Gallen (3-1, 2.50) vs. LHP David Hurlbut (0-2, 4.86) Road Game #18 THE BABY CAKES – e New Orleans Baby Cakes continue an eight ROAD WARRIORS – A er losing each of their rst nine road games of ‘cakes corner game road trip tonight with the second of a fourgame set against the the season, the ‘Cakes have won seven of the last eight, including ve in Round Rock Express. e ‘Cakes have claimed four of ve meetings this a for the rst time since July 1227, 2015. e last sixgame road winning Current Streak ...........................W6 Home ........................................105 season, including three in their nal atbat last week at the Shrine. Last streak was a sevengame run vs. Round Rock and Memphis, June 1226, Streak ..........................................W1 night matched the secondlargest margin of victory for New Orleans in 2007. New Orleans has won the rst ve games of a road trip for the rst Road ......................................... 710 105 alltime matchups at Dell Diamond (ninerun wins four times). time since its seasonending trek through Oklahoma City and Round Streak ..........................................W5 Rock from August 27-31, 2007 which clinched the club’s last division title. Last 10 ........................................ 82 vs. RHP (starter) ....................1313 YESTERDAY’S NEWS – e Baby Cakes used a 14hit attack to defeat vs. LHP (starter) ....................... 42 Round Rock, 102 for their sixth consecutive victory. Eric Campbell had HOT SOUP – Eric Campbell extended his hitting streak to 11 games, the vs. -
Council Rock Northampton Little League
COUNCIL ROCK LITTLE LEAGUE MAJOR LEAGUE PROCEDURES American League PLAYING RULES: 1. Free defensive substitution with the following requirement. No player can sit on the bench for two consecutive innings. This will give all players a minimum of three defensive innings in the field in a six-inning game. Try to give an extra inning or so to players that would not ordinarily start. If only 10 players are present then every player must play 4 innings in the field. This only applies when 10 players are present. 2. In the American League all players are in the batting order. The order may change from game to game. 3. NO on-deck batters per LL rules. Only bats approved by LL are eligible for use. 4. Teams must play at least 4 innings for a regulation game regardless of the score. There is a 15-run mercy rule in effect for all games after 4 complete innings (3 1/2 if home team is winning). There is a 10-run mercy rule in effect for all games after 5 complete innings (4 1/2 if home team is winning). 5. If a player cannot play a defensive field position for any reason they are ineligible to bat. An out will not be recorded. Once they play a defensive field position they are eligible to bat. 6. Any player who shows a Bunt then swings away will immediately be “out”. No exceptions. 7. A batter throwing a bat, while swinging, shall be warned at the first occurrence. Any subsequent bat throwing will result in the batter being called out after the conclusion of the play. -
Baseball Has Changed – the Demise of the Complete Game and Other Tidbits
Baseball Has Changed – The Demise of the Complete Game and Other Tidbits I love baseball. I think it is a great sport. But, like all things, it has changed over the years. One major change, to me, is that it appears to be the age of specialization within baseball. This is particularly true for pitchers. There are starting pitchers, long -relief pitchers short-relief pitchers, right-handed pitchers, left-handed pitchers, and closers. Fifty years ago, one of my baseball heroes, Bob Gibson, pitched in 34 games for the St. Louis Cardinals. He finished with 22 wins and 9 loses. His earned run average per game was 1.12. Nobody has come close to that since then. He had 268 strikeouts. And most amazingly, Bob Gibson had 28 complete games in that 1968 season. 28 out of 34 games – he started, and he finished – no one came into relief him. Last year the National League only had 27 complete games – less than Gibson’s total by himself in 1968. The American League didn’t do much better. It only had 32 complete games. Yes, baseball has changed. This month’s publication looks at some data from the baseball diamond, much of it comparing the NL with the AL. Of course, that means a discussion of the designated hitter rule. We will use the simplest of tools to determine what is happening – a run (time series) chart. Simply plotting the data over time. So much you can learn just from that. But we do finish with a control chart – that gives you even more information. -
Twar: Introducing a Method to Actually Calculate Wins Above Replacement
tWAR: introducing a method to actually calculate wins above replacement Daniel J. Eck March 21, 2019 1 Introduction Wins above replacement (WAR) is meant to be a one-number summary of the total contribution made by a player for his team in any particular season. As stated by Steve Slowinski of Fangraphs, WAR offers an estimate to answer the question, \If this player got injured and their team had to replace them with a freely available player of lower quality from their bench, how much value would the team be losing," where this value is expressed in number of wins [Slowinski, 2010]. That being said, nobody actually calculates WAR in a manner that properly answers the above question as posed. This is not by any explicit fault of the metric and those who calculate it. One problem is that it is impossible to simultaneously quantify the value of a player when the player is available and the value of a replacement to that player when the player is unavailable. The player in question is either available to play or unavailable to play, never both. Instead of confronting the problems raised in this factual-counterfactual world, people have attempted to calculate a hypothetical replacement player to implicitly compare every player with using the machinery of a proprietary black box [Baumer et al., 2015]. Three widely used versions of WAR that are calculated in this manner are Baseball Reference's bWAR [Reference, 2010], Fangraphs's fWAR [Slowinski, 2010], and Baseball Prospectus's bWARP [Prospectus, 2019]. Through the incorporation of ideas from causal inference, we propose methodolody to directly estimate wins above replacement. -
Pine Tar and the Infield Fly Rule: an Umpire’S Perspective on the Hart-Dworkin Jurisprudential Debate
Pine Tar and the Infield Fly Rule: An Umpire’s Perspective on the Hart-Dworkin Jurisprudential Debate William D. Blake, Ph.D.1 Assistant Professor Department of Political Science Indiana University, Indianapolis (IUPUI) [email protected] Abstract: What is law? Though on its face this question seems simple, it remains an incredibly controversial one to legal theorists. One prominent jurisprudential debate of late occurred between H.L.A. Hart, a positivist, and Ronald Dworkin, an interpretivist. While positivism, at its core, holds the law is a set of authoritative commands, Dworkin rejects this reflexive approach and instructs judges to incorporate and advance communal norms and morals in their decisions. In baseball, umpires utilize both legal theories, depending on the type of rule they are asked to interpret or enforce. I conclude that, like umpires, most citizens are not dogmatic about either legal theory. 1 I wish to thank Justice George Nicholson of the California Court of Appeal for encouraging my participation at this Symposium. I am eternally grateful to former Major Leaguer Jim Abbott for taking the time to respond to my questions. Finally, to the 13 year-old pitcher whom I discuss in this paper: your courage and enthusiasm are inspiring, but, for Pete's sake, please practice coming set. Electronic copy available at: http://ssrn.com/abstract=2403586 Bill Klem, one of the 2 first umpires inducted into the Baseball Hall of Fame, once wrongly called a runner out at home plate. A lucky newspaper photographer snapped a shot, which demonstrated Klem’s mistake. The next day, reporters demanded to know how the batter could be out in light of the incontrovertible photographic evidence.