Kent Academic Repository Full Text Document (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Ethers, Religion and Politics In
ORE Open Research Exeter TITLE Ethers, religion and politics in late-Victorian physics: beyond the Wynne thesis AUTHORS Noakes, Richard JOURNAL History of Science DEPOSITED IN ORE 16 June 2008 This version available at http://hdl.handle.net/10036/30065 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication ETHERS, RELIGION AND POLITICS IN LATE-VICTORIAN PHYSICS: BEYOND THE WYNNE THESIS RICHARD NOAKES 1. INTRODUCTION In the past thirty years historians have demonstrated that the ether of physics was one of the most flexible of all concepts in the natural sciences. Cantor and Hodge’s seminal collection of essays of 1981 showed how during the eighteenth and nineteenth centuries British and European natural philosophers invented a range of ethers to fulfil diverse functions from the chemical and physiological to the physical and theological.1 In religious discourse, for example, Cantor identified “animate” and spiritual ethers invented by neo-Platonists, mystics and some Anglicans to provide a mechanism for supporting their belief in Divine immanence in the cosmos; material, mechanistic and contact-action ethers which appealed to atheists and Low Churchmen because such media enabled activity in the universe without constant and direct Divine intervention; and semi-spiritual/semi-material ethers that appealed to dualists seeking a mechanism for understanding the interaction of mind and matter. 2 The third type proved especially attractive to Oliver Lodge and several other late-Victorian physicists who claimed that the extraordinary physical properties of the ether made it a possible mediator between matter and spirit, and a weapon in their fight against materialistic conceptions of the cosmos. -
Referees, Publisher's Readers and the Image Of
REFEREES, PUBLISHER’S READERS AND THE IMAGE OF MATHEMATICS IN NINETEENTH CENTURY ENGLAND by SYLVIA NICKERSON In the realm of publishing history it is well known that many of London’s largest nineteenth century publishers hired publisher’s readers to advise them about which literary manuscripts they should publish. Moreover, it has been recognized that these readers often acted as tastemakers and had a hand in shaping the development of literature. Publisher’s readers had a similar effect in relation to the genres of science and mathematics. At Macmillan and Company, publisher’s readers and close advisors to the publisher influenced decisions about which books were published on scientific and mathematical topics. In 1880, Macmillan and Company hired a publisher’s reader to specifically handle the science genre. The chosen reader, Donald MacAlister, also reviewed manuscripts in mathematics, and between 1880 and 1896 MacAlister wrote more than sixty reviews about prospective mathematical books that were being considered for publication. During this time he also wrote reviews evaluating manuscripts in other areas of science. While some observations about his work as a science reader are included, the purpose here is to focus specifically on MacAlister’s influence on Macmillan’s mathematical publishing program. The current article demonstrates that, when publishing on mathematical subjects, the decision-making of book publishers differed from that of mathematical journals. The values that underpinned the decision-making process were different at mathematics journals, general science journals and the book publishers that published mathematics. Each set of values affected the image of mathematics that was cultivated. The article examines the processes of refereeing, and the role of the editor, at nineteenth century mathematical journals by looking at the Cambridge Mathematical Journal and Acta Mathematica. -
Baden Powell (1796–1860), Henry John Stephen Smith (1826–83) and James Joseph Sylvester (1814–97)
Three Savilian Professors of Geometry dominated Oxford’s mathematical scene during the Victorian era: Baden Powell (1796–1860), Henry John Stephen Smith (1826–83) and James Joseph Sylvester (1814–97). None was primarily a geometer, but each brought a different contribution to the role. Oxford’s Victorian Time-line 1827 Baden Powell elected Savilian Professor 1828 Mathematics Finals papers first Savilian Professors published 1831 Mathematical Scholarships founded 1832 Powell’s lecture on The Present State of Geometry and Future Prospects of Mathematics 1847 BAAS meeting in Oxford 1849 School of Natural Science approved The University Museum, constructed in the late 1850s, realised in brick and iron Oxford’s mid-century aspirations to improve the 1850–52 Royal Commission on Oxford University facilities for teaching mathematics and the sciences. 1853 First college science laboratory 1859–65 Smith’s Reports on the Theory of Numbers 1860 Opening of the University Museum Death of Baden Powell Henry Smith elected Savilian Professor 1861 The ‘Smith normal form’ of a matrix 1867 Smith’s sums of squares 1868 Smith awarded Berlin Academy prize 1871 Non-Anglicans eligible to be members of Oxford University 1874 Smith appointed Keeper of the University Museum 1874–76 Henry Smith becomes President of the London Mathematical Society 1875 Smith’s ‘Cantor set’ 1876 Ferdinand Lindemann visits Oxford Smith’s lecture On the Present State and Prospects of some Branches of Pure Mathematics 1881 French Academy announces Grand Prix competition 1883 Death of Henry Smith J J Sylvester elected Savilian Professor 1885 Sylvester’s inaugural lecture 1888 Oxford Mathematical Society founded 1894 William Esson elected Sylvester’s deputy 1895–97 Smith’s Collected Papers published 1897 Death of J J Sylvester William Esson elected Savilian Professor Oxford’s Victorian Savilian Professors of Geometry Baden Powell Baden Powell was Savilian Professor of Geometry from 1827 to 1860. -
Nikola Tesla's Telautomaton a Dissertation Submitted in Partial Satisfaction Of
UNIVERSITY OF CALIFORNIA Los Angeles I, Robot: Nikola Tesla’s Telautomaton A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History by Kendall Milar Thompson 2015 © Copyright by Kendall Milar Thompson 2015 ABSTRACT OF THE DISSERTATION I, Robot: Nikola Tesla’s Telautomaton by Kendall Milar Thompson Doctor of Philosophy in History University of California, Los Angeles, 2015 Professor Matthew Norton Wise, Chair In 1898 at the Electrical Exposition in Madison Square Gardens, Nikola Tesla presented his most recent invention, the telautomaton. The device, a radio remote controlled boat, was roughly three feet in length with blinking antennae and was propelled by a small motor and rudder. At the Exposition, Tesla directed audience members to ask the device mathematical questions, and it would respond by blinking the lights on its antennae an appropriate number of times. Tesla’s display gave the illusion of an automaton; moving independently and mysteriously responding to mathematical questions with no apparent operator. Tesla and his telautomaton were at the intersection of major developments of nineteenth and early twentieth century physiology and physics. Thomas Henry Huxley, a physiologist, stimulated a debate among scientists about the extent human automatism. These debates centered on developments in physiology that suggested that there was no place for the soul in the brain; no energy was lost, and even with brain damage humans were able to function. The absence of energy loss created a ii problem in conservation of energy in physics. Some physicists were involved in this debate, attempting to determine whether any energy was lost or added as a result of free will. -
The Museum in the Lab: Historical Practice in the Experimental Sciences at Cambridge, 1874–1936
BJHS: Themes 4: 245–271, 2019. © British Society for the History of Science 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/bjt.2019.6 First published online 7 August 2019 The museum in the lab: historical practice in the experimental sciences at Cambridge, 1874–1936 BORIS JARDINE* Abstract. This paper explores the hoarding, collecting and occasional display of old apparatus in new laboratories. The first section uses a 1936 exhibition of Cambridge’s scientific relics as a jumping-off point to survey the range of historical practices in the various Cambridge labora- tories. This panoramic approach is intended to show the variety and complexity of pasts that scientists had used material to conjure in the years prior to the exhibition. Commerce and com- memoration emerge as two key themes. The second part turns to the Cavendish Laboratory (experimental physics) to explore the highly specific senses of time and memorialization at play in the early years of the laboratory (c.1874–1910), and the way these were transformed over the subsequent generations leading up to the 1936 moment. The key figure here is James Clerk Maxwell, whose turn to history involved a mix of antiquarianism and modernism. The paper concludes with an attempt to characterize the meanings and significances of ‘the museum in the lab’. This phenomenon ought to be understood in terms of the wide range of ‘collections’ present in laboratory spaces. -
Arthur Cayley As Sadleirian Professor
Historia Mathematica 26 (1999), 125–160 Article ID hmat.1999.2233, available online at http://www.idealibrary.com on Arthur Cayley as Sadleirian Professor: A Glimpse of Mathematics View metadata, citation and similar papers at core.ac.ukTeaching at 19th-Century Cambridge brought to you by CORE provided by Elsevier - Publisher Connector Tony Crilly Middlesex University Business School, The Burroughs, London NW4 4BT, UK E-mail: [email protected] This article contains the hitherto unpublished text of Arthur Cayley’s inaugural professorial lecture given at Cambridge University on 3 November 1863. Cayley chose a historical treatment to explain the prevalent basic notions of analytical geometry, concentrating his attention in the period (1638–1750). Topics Cayley discussed include the geometric interpretation of complex numbers, the theory of pole and polar, points and lines at infinity, plane curves, the projective definition of distance, and Pascal’s and Maclaurin’s geometrical theorems. The paper provides a commentary on this lecture with reference to Cayley’s work in geometry. The ambience of Cambridge mathematics as it existed after 1863 is briefly discussed. C 1999 Academic Press Cet article contient le texte jusqu’ici in´editde la le¸coninaugurale de Arthur Cayley donn´ee `a l’Universit´ede Cambridge le 3 novembre 1863. Cayley choisit une approche historique pour expliquer les notions fondamentales de la g´eom´etrieanalytique, qui existaient alors, en concentrant son atten- tion sur la p´eriode1638–1750. Les sujets discut´esincluent l’interpretation g´eom´etriquedes nombres complexes, la th´eoriedes pˆoleset des polaires, les points et les lignes `al’infini, les courbes planes, la d´efinition projective de la distance, et les th´eor`emesg´eom´etriquesde Pascal et de Maclaurin. -
Historical Practice in the Experimental Sciences at Cambridge, 1874–1936
BJHS: Themes 4: 245–271, 2019. © British Society for the History of Science 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/bjt.2019.6 First published online 7 August 2019 The museum in the lab: historical practice in the experimental sciences at Cambridge, 1874–1936 BORIS JARDINE* Abstract. This paper explores the hoarding, collecting and occasional display of old apparatus in new laboratories. The first section uses a 1936 exhibition of Cambridge’s scientific relics as a jumping-off point to survey the range of historical practices in the various Cambridge labora- tories. This panoramic approach is intended to show the variety and complexity of pasts that scientists had used material to conjure in the years prior to the exhibition. Commerce and com- memoration emerge as two key themes. The second part turns to the Cavendish Laboratory (experimental physics) to explore the highly specific senses of time and memorialization at play in the early years of the laboratory (c.1874–1910), and the way these were transformed over the subsequent generations leading up to the 1936 moment. The key figure here is James Clerk Maxwell, whose turn to history involved a mix of antiquarianism and modernism. The paper concludes with an attempt to characterize the meanings and significances of ‘the museum in the lab’. This phenomenon ought to be understood in terms of the wide range of ‘collections’ present in laboratory spaces. -
A Frosty Disagreement: John Tyndall, James David Forbes, and the Early Formation of the X-Club
This is a repository copy of A frosty disagreement: John Tyndall, James David Forbes, and the early formation of the X-Club. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/125412/ Version: Accepted Version Article: Kaalund, NKL (2017) A frosty disagreement: John Tyndall, James David Forbes, and the early formation of the X-Club. Annals of Science, 74 (4). pp. 282-298. ISSN 0003-3790 https://doi.org/10.1080/00033790.2017.1379559 © Informa UK Limited, trading as Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in Annals of Science on 09 Oct 2017, available online: https://doi.org/10.1080/00033790.2017.1379559. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A frosty disagreement: John Tyndall, James David Forbes, and the early formation of the X-Club Abstract How do glaciers move? This seemingly straightforward question provided the backdrop for a heated debate between the physicists John Tyndall (1820-1893) and James David Forbes (1809-1868) in the late 1850s and early 1860s. -
Biographical Index of Former RSE Fellows 1783-2002
FORMER RSE FELLOWS 1783- 2002 SIR CHARLES ADAM OF BARNS 06/10/1780- JOHN JACOB. ABEL 19/05/1857- 26/05/1938 16/09/1853 Place of Birth: Cleveland, Ohio, USA. Date of Election: 05/04/1824. Date of Election: 03/07/1933. Profession: Royal Navy. Profession: Pharmacologist, Endocrinologist. Notes: Date of election: 1820 also reported in RSE Fellow Type: HF lists JOHN ABERCROMBIE 12/10/1780- 14/11/1844 Fellow Type: OF Place of Birth: Aberdeen. ROBERT ADAM 03/07/1728- 03/03/1792 Date of Election: 07/02/1831. Place of Birth: Kirkcaldy, Fife.. Profession: Physician, Author. Date of Election: 28/01/1788. Fellow Type: OF Profession: Architect. ALEXANDER ABERCROMBY, LORD ABERCROMBY Fellow Type: OF 15/10/1745- 17/11/1795 WILLIAM ADAM OF BLAIR ADAM 02/08/1751- Place of Birth: Clackmannanshire. 17/02/1839 Date of Election: 17/11/1783. Place of Birth: Kinross-shire. Profession: Advocate. Date of Election: 22/01/1816. Fellow Type: OF Profession: Advocate, Barrister, Politician. JAMES ABERCROMBY, BARON DUNFERMLINE Fellow Type: OF 07/11/1776- 17/04/1858 JOHN GEORGE ADAMI 12/01/1862- 29/08/1926 Date of Election: 07/02/1831. Place of Birth: Ashton-on-Mersey, Lancashire. Profession: Physician,Statesman. Date of Election: 17/01/1898. Fellow Type: OF Profession: Pathologist. JOHN ABERCROMBY, BARON ABERCROMBY Fellow Type: OF 15/01/1841- 07/10/1924 ARCHIBALD CAMPBELL ADAMS Date of Election: 07/02/1898. Date of Election: 19/12/1910. Profession: Philologist, Antiquary, Folklorist. Profession: Consulting Engineer. Fellow Type: OF Notes: Died 1918-19 RALPH ABERCROMBY, BARON DUNFERMLINE Fellow Type: OF 06/04/1803- 02/07/1868 JOHN COUCH ADAMS 05/06/1819- 21/01/1892 Date of Election: 19/01/1863. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Scientific naturalists and the government of the Royal Society 1850-1900 Thesis How to cite: Harrison, Andrew John (1989). Scientific naturalists and the government of the Royal Society 1850-1900. PhD thesis The Open University. For guidance on citations see FAQs. c 1988 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000ded4 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk 31 0003181 6 111111 III I H Ill 111111111111 IIll LLNRE.ft Scientific Naturalists and. the government of the Royal Society 1850-1900 by Andrew John Harrison Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Department of History of Science and Technology, Open University (1988) aoc3 nucer M12t5 Io},e. c4' subm\ss\oci . 2C LO oç ccd: 2L - 1] - TABLE OF CONTENTS Page no. Table of Contents 11 Acknowledgements 13.1 Abstract iv List of Abbreviations of Names of Sources V Section I Procedures of the Royal Society Introduction 1 CHAPTER ONE Publication 3 CHAPTER TWO The Government Grant 26 CHAPTER THREE "Rich Engineers, Chemical Traders and Experts" 49 CHAPTER FOUR Referees and Papers 82 Case Study 1 127 Case Study -
"Huxley, Lubbock, and Half a Dozen Others": Professionals and Gentlemen in the Formation of the X Club, 1851-1864 Author(S): Ruth Barton Source: Isis, Vol
The History of Science Society "Huxley, Lubbock, and Half a Dozen Others": Professionals and Gentlemen in the Formation of the X Club, 1851-1864 Author(s): Ruth Barton Source: Isis, Vol. 89, No. 3 (Sep., 1998), pp. 410-444 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/237141 Accessed: 26/04/2010 17:51 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ucpress. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis. -
National Physical Laboratory: Kew Observatory, Physics and the Victorian World, 1840-1900
From King’s Instrument Repository to National Physical Laboratory: Kew Observatory, physics and the Victorian world, 1840-1900 Lee Todd Macdonald Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Philosophy, Religion and History of Science September 2015 2 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2015 The University of Leeds and Lee Todd Macdonald The right of Lee Todd Macdonald to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. 3 Acknowledgements First of all, I would like to thank Professor Graeme Gooday and the School of Philosophy, Religion and History of Science at the University of Leeds, for the three-year studentship that made this PhD possible. I must also thank Graeme Gooday for being such a fine supervisor – patiently reading my work, encouraging me to think critically, and above all for his dedication and professionalism. In particular, my research for this thesis has made use of a very large quantity of unpublished archival material, spread over locations spanning nearly six degrees of latitude across the UK – from Exeter on the south-west coast of England to St Andrews on the North Sea coast of Scotland. Mark Beswick and his colleagues at the National Meteorological Library, managed by the Met Office in Exeter, were ever helpful in granting me access to the unpublished minutes of the Kew Committee and the 1850-1851 ‘Kew Diary’.