Nikola Tesla's Telautomaton a Dissertation Submitted in Partial Satisfaction Of

Total Page:16

File Type:pdf, Size:1020Kb

Nikola Tesla's Telautomaton a Dissertation Submitted in Partial Satisfaction Of UNIVERSITY OF CALIFORNIA Los Angeles I, Robot: Nikola Tesla’s Telautomaton A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History by Kendall Milar Thompson 2015 © Copyright by Kendall Milar Thompson 2015 ABSTRACT OF THE DISSERTATION I, Robot: Nikola Tesla’s Telautomaton by Kendall Milar Thompson Doctor of Philosophy in History University of California, Los Angeles, 2015 Professor Matthew Norton Wise, Chair In 1898 at the Electrical Exposition in Madison Square Gardens, Nikola Tesla presented his most recent invention, the telautomaton. The device, a radio remote controlled boat, was roughly three feet in length with blinking antennae and was propelled by a small motor and rudder. At the Exposition, Tesla directed audience members to ask the device mathematical questions, and it would respond by blinking the lights on its antennae an appropriate number of times. Tesla’s display gave the illusion of an automaton; moving independently and mysteriously responding to mathematical questions with no apparent operator. Tesla and his telautomaton were at the intersection of major developments of nineteenth and early twentieth century physiology and physics. Thomas Henry Huxley, a physiologist, stimulated a debate among scientists about the extent human automatism. These debates centered on developments in physiology that suggested that there was no place for the soul in the brain; no energy was lost, and even with brain damage humans were able to function. The absence of energy loss created a ii problem in conservation of energy in physics. Some physicists were involved in this debate, attempting to determine whether any energy was lost or added as a result of free will. Yet, all physicists were involved in a debate about the form of the ether, a medium that theoretically permeated everything. Electromagnetic waves, including the radio waves that controlled the movement of Tesla’s telautomaton, were predicted to pass through the ether, a medium that permeated everything. The theories of some of these physicists attempted to combine ideas on the ether on communication between body and mind. Tesla attempted to synthesize several theories on the ether and eventually developed his own. His involvement with electrical healing experiments paralleled experiments in electrical mesmerism carried out by some British physicists that took an interest in psychical research. Tesla’s telautomaton highlights the research in communication carried out at the turn of the century; communication between mind and body, through telegraphs and through spiritual mediums. iii The dissertation of Kendall Milar Thompson is approved. Anthony Friscia Joan Waugh Kevin Lambert Theodore M. Porter Matthew Norton Wise, Chair University of California, Los Angeles 2015 iv Table of Contents Abstract ........................................................................................................................................... ii Table of Contents ............................................................................................................................ v List of Figures ............................................................................................................................... vii Acknowledgements ...................................................................................................................... viii Vita .................................................................................................................................................. x Introduction ..................................................................................................................................... 1 Chapter 1: Tesla’s Telautomaton .................................................................................................. 16 Tesla as an Automaton Tesla as Electrical Engineer Tesla and Wireless The Telautomaton The Electrical Exposition Reception of the Telautomaton Military Applications Chapter 2: “I see, therefore I am”: ................................................................................................ 59 Thomas Henry Huxley Nikola Tesla and Huxley Consciousness, Free Will and the Soul The Telautomaton Telautomaton meets Human Automaton William Clifford and The Eye Chapter 3: Ghosts in the Machines: ............................................................................................ 107 Ether, Electricity and Magnetism and Energy Inventors and the Ether Ether Models Physics, Religion and Free Will The Unseen Universe Chapter 4: Society for Humanity ................................................................................................ 153 Electrobiology Tesla and Electrotherapy The Telautomaton and The Chicago Speech The Society for Psychical Research Chapter 5: Of Mars and Men: ..................................................................................................... 197 Tesla and the Human Race Tesla’s Wireless System Warfare Tesla’s Utopia v Conclusion .................................................................................................................................. 231 Image Notes: ............................................................................................................................... 236 Bibliography ............................................................................................................................... 238 vi List of Figures Figure 1 Nikola Tesla's Telautomaton from 1898 ......................................................................... 5 Figure 2 Tesla’s alternating current motor demonstration using the egg of Columbus ................ 29 Figure 3 Westinghouse/Tesla generators at Niagara Falls ............................................................ 32 Figure 4 Tesla's system of wireless lighting patent ...................................................................... 34 Figure 5 Image of Tesla featuring coronal electric discharge ....................................................... 36 Figure 6 New York Journal article ona major wireless transmission in the Tesla laboratory ..... 39 Figure 7 Tesla's patent for a system of wireless energy transmission .......................................... 42 Figure 8 Wardenclyffe Tower ....................................................................................................... 46 Figure 9 Tesla's Telautomaton patent ........................................................................................... 48 Figure 10 Top down diagram of the telautomaton’s internal circuitry. ........................................ 49 Figure 11 Image from patent showing the transmitter and telautomaton in operation. ................ 51 Figure 12 Young’s sketch of the diffraction of water waves ...................................................... 111 Figure 13 List of the most influential names in Electrical Science ............................................ 117 Figure 14 Maxwell’s ether model, corrected .............................................................................. 128 Figure 15 Knots in vortex atoms ................................................................................................. 131 Figure 16 Cross-section of a Faraday Tube ................................................................................ 132 Figure 17 Lodge’s ether model. .................................................................................................. 134 Figure 18 An advertisement for a public demonstration of mesmerism ..................................... 156 Figure 19 Photographic plate of odic emanations ....................................................................... 162 Figure 20 Two of the devices that Tesla proposed for electrotherapeutic usage ........................ 171 Figure 21 One of Tesla’s radiographs published in The Electrical Review ................................ 174 Figure 22 Tesla’s radiograph of a wire published in The Electrial Review ................................ 175 Figure 23 The Source of Spring by Arnold Böcklin .................................................................. 188 Figure 24 Giovanni Schiaparelli’s map of the surface of Mars. ................................................. 210 Figure 25 Artist representation of beam from Earth to Mars. ..................................................... 214 Figure 27 Artist representation of Wood apparatus. ................................................................... 216 Figure 26 Artist representation of Pickering apparatus. ............................................................ 216 vii Acknowledgements I would like to thank, first, the faculty in history of science at UCLA. Mary Terrall, Ted Porter, Soraya de Chaderavian and Norton Wise opened my eyes to the world of history of science and I have cherished the journey. I have grown so much in my time at UCLA as a writer and academic and I am profoundly grateful for their help in shaping that person. They have also provided professional, academic and at times emotional guidance through my graduate career. I would also like to thank the Nikola Tesla Museum in Belgrade and particularly Radmila Adzic, who was critical in gaining access to the Tesla archives. Ted Porter, Kevin Lambert, Tony Friscia and Joan Waugh all agreed to embark on a rather curious journey on my dissertation committee and I am incredibly grateful for their advice and guidance. Norton Wise, in particular, saw from the earliest day
Recommended publications
  • Nikola Tesla
    Nikola Tesla Nikola Tesla Tesla c. 1896 10 July 1856 Born Smiljan, Austrian Empire (modern-day Croatia) 7 January 1943 (aged 86) Died New York City, United States Nikola Tesla Museum, Belgrade, Resting place Serbia Austrian (1856–1891) Citizenship American (1891–1943) Graz University of Technology Education (dropped out) ‹ The template below (Infobox engineering career) is being considered for merging. See templates for discussion to help reach a consensus. › Engineering career Electrical engineering, Discipline Mechanical engineering Alternating current Projects high-voltage, high-frequency power experiments [show] Significant design o [show] Awards o Signature Nikola Tesla (/ˈtɛslə/;[2] Serbo-Croatian: [nǐkola têsla]; Cyrillic: Никола Тесла;[a] 10 July 1856 – 7 January 1943) was a Serbian-American[4][5][6] inventor, electrical engineer, mechanical engineer, and futurist who is best known for his contributions to the design of the modern alternating current (AC) electricity supply system.[7] Born and raised in the Austrian Empire, Tesla studied engineering and physics in the 1870s without receiving a degree, and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. He emigrated in 1884 to the United States, where he became a naturalized citizen. He worked for a short time at the Edison Machine Works in New York City before he struck out on his own. With the help of partners to finance and market his ideas, Tesla set up laboratories and companies in New York to develop a range of electrical and mechanical devices. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company eventually marketed.
    [Show full text]
  • Tribute to a Genius: the Electrifying Legacy of Nikola Tesla Cleveland Plain Dealer May 17, 2006
    Tribute to a Genius: The electrifying legacy of Nikola Tesla Cleveland Plain Dealer May 17, 2006 With preparations under way to commemorate the 150th anniversary of Nikola Tesla's birth, members of the Serbian-American community are heartened that their Balkan countryman is gaining widespread recognition as one of the greatest pioneers in the history of electrical science. On June 4, a tribute to Tesla will be held at St. Sava Serbian Orthodox Cathedral in Parma. Organized by Paul Cosic, a Serbian-American businessman, the event is open to the public and includes a memorial service, followed by a banquet at 1 p.m. The keynote speaker will be Professor Jasmina Vujic, the chair of the department of nuclear engineering at the University of California, Berkeley. Tesla, the son of a Serbian Orthodox priest, was born July 10, 1856, in what is now the Republic of Croatia. A physicist, mechanical engineer and electrical engineer, Tesla migrated to the United States in 1884 at age 28. Over the next six decades, he was responsible for numerous inventions relating to radio devices, electrical transmission and electrical motors. Tesla held dozens of basic U.S. patents for his poly-phase alternating current (AC) system of generators, motors and transformers, which eventually supplanted Thomas Edison's direct current (DC) system. Along with his impact on modern technology, Tesla also was an influence on generations of aspiring engineers, particularly in his homeland. "From an early age, he was kind of my hero," says the Serbian-born Vujic, who is the first woman to lead a nuclear engineering program at a U.S.
    [Show full text]
  • Thomas Edison Vs Nikola Tesla THOMAS EDISON VS NIKOLA TESLA
    M C SCIENTIFIC RIVALRIES PHERSON AND SCANDALS In the early 1880s, only a few wealthy people had electric lighting in their homes. Everyone else had to use more dangerous lighting, such as gas lamps. Eager companies wanted to be the first to supply electricity to more Americans. The early providers would set the standards—and reap great profits. Inventor THOMAS EDISON already had a leading role in the industry: he had in- vented the fi rst reliable electrical lightbulb. By 1882 his Edison Electric Light Company was distributing electricity using a system called direct current, or DC. But an inventor named NIKOLA TESLA challenged Edison. Tesla believed that an alternating cur- CURRENTS THE OF rent—or AC—system would be better. With an AC system, one power station could deliver electricity across many miles, compared to only about one mile for DC. Each inventor had his backers. Business tycoon George Westinghouse put his money behind Tesla and built AC power stations. Meanwhile, Edison and his DC backers said that AC could easily electrocute people. Edison believed this risk would sway public opinion toward DC power. The battle over which system would become standard became known as the War of the Currents. This book tells the story of that war and the ways in which both kinds of electric power changed the world. READ ABOUT ALL OF THE OF THE SCIENTIFIC RIVALRIES AND SCANDALS BATTLE OF THE DINOSAUR BONES: Othniel Charles Marsh vs Edward Drinker Cope DECODING OUR DNA: Craig Venter vs the Human Genome Project CURRENTS THE RACE TO DISCOVER THE
    [Show full text]
  • Radio Control System
    Radio Control System The Radio Control System consists of the control transmitter unit held by the operator and the receiver with its associated components in the robot. The Radio Control Transmitter converts movements of the control sticks and switches into a coded radio signal, which is transmitted by radio to the Radio Control Receiver within the robot. The signal is received and then decoded by the micro-controller, which is on the main circuit board in the robot. The micro-controller controls functions based on what was sent from the radio control transmitter. RADIO CONTROL OPERATING INSTRUCTIONS Refer to the diagram showing the radio control transmitter for the location of controls. Check all of the trim adjustments on the transmitter and make sure they are in their center position. Extend the Radio Control Transmitter Antenna 1/4 to 1/2 way. Turn the Radio Control Transmitter on first and then turn on the main robot power switch. It is necessary for the robot to always have an operating signal when it is on, if there is no signal you will not have full control of the robot. The right hand joystick controls movement of the robot's drive wheels. Pushing the stick forward will cause the robot to move forward. Pulling the stick back will cause the robot to move backward. Moving the stick to the right or left will cause the robot to turn to the right or left respectively. Movement is fully proportional so any variation or combination of movement is possible. The horizontal and vertical trim tabs to the left and below the joystick are for centering and should be adjusted periodically.
    [Show full text]
  • Technical White Paper
    Technical White Paper North American Power Distribution Prepared By Brad Gaffney, P Eng. Newterra Ltd. 1291 California Avenue P.O. Box 1517 Brockville Ontario K6V 5Y6 www.newterra.com This document is intended for the identified parties and contains confidential and proprietary information. Unauthorized distribution, use, or taking action in reliance upon this information is prohibited. If you have received this document in error, please delete all copies and contact Newterra Ltd. Copyright 1992-2020 Newterra Ltd. Abstract The following is an overview of power generation, transmission, and distribution in North America. Electrical power is the lifeblood of our ever so gadget-filled, technological economy. For most, it’s just a flick of a switch or the push of a button; many end users don’t know or care about the complexities involved in the transportation of billions of kilowatts throughout the country. However, one man by the name of Nikola Tesla had a vision for the use of electrical power back in 1882 when he realized that alternating current was the key to efficient, reliable power distribution over long distances. One obstacle that had to be overcome was the invention of an alternating current AC motor. Tesla demonstrated his patented 1/5 horsepower two-phase motor at Colombia University on May 16, 1888. By 1895 in Niagara Falls, NY the world’s first commercial hydroelectric AC power plant was in full operation using Tesla’s motor. To this day almost every electric induction motor in use is based on Tesla’s original design. Introduction The purpose of this paper is to give the reader a basic understanding of the process involved in power generation, transmission/distribution, and common end-user configuration in North America.
    [Show full text]
  • Tesla's Magnifying Transmitter Principles of Working
    School of Electrical Engineering University of Belgrade Tesla's magnifying transmitter principles of working Dr Jovan Cvetić, full prof. School of Electrical Engineering Belgrade, Serbia [email protected] School of Electrical Engineering University of Belgrade Contens The development of the HF, HV generators with oscilatory (LC) circuits: I - Tesla transformer (two weakly coupled LC circuits, the energy of a single charge in the primary capacitor transforms in the energy stored in the capacitance of the secondary, used by Tesla before 1891). It generates the damped oscillations. Since the coils are treated as the lumped elements the condition that the length of the wire of the secondary coil = quarter the wave length has a small impact on the magnitude of the induced voltage on the secondary. Using this method the maximum secondary voltage reaches about 10 MV with the frequency smaller than 50 kHz. II – The transformer with an extra coil (Magnifying transformer, Colorado Springs, 1899/1900). The extra coil is treated as a wave guide. Therefore the condition that the length of the wire of the secondary coil = quarter the wave length (or a little less) is necessary for the correct functioning of the coil. The purpose of using the extra coil is the generation of continuous harmonic oscillations of the great magnitude (theoretically infinite if there are no losses). The energy of many single charges in the primary capacitor are synchronously transferred to the extra coil enlarging the magnitude of the oscillations of the stationary wave in the coil. The maximum voltage is limited only by the breakdown voltage of the insulation on the top of the extra coil and by its dimensions.
    [Show full text]
  • Units and Magnitudes (Lecture Notes)
    physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass.
    [Show full text]
  • Thomas Edison Alexander Graham Bell
    The Inventing Game Cut out the images. Cut out the name of the inventor separately. Read out the text as a clue. Can people match the correct name and image? THOMAS EDISON Clue The first great invention developed by (don’t say the name) Thomas Edison was the tin foil phonograph. A prolific producer, Edison is also known for his work with light bulbs, electricity, film and audio devices, and much more. ALEXANDER GRAHAM BELL Clue In 1876, at the age of 29, (don’t say the name) Alexander Graham Bell invented his telephone. Among one of his first innovations after the telephone was the "photophone," a device that enabled sound to be transmitted on a beam of light. GEORGE WASHINGTON CARVER Clue (Don’t say the name) George Washington Carver was an agricultural chemist who invented 300 uses for peanuts and hundreds of more uses for soybeans, pecans, and sweet potatoes. His contributions chang ed the history of agriculture in the south. ELI WHITNEY Clue (Don’t say the name) Eli Whitney invented the cotton gin in 1794. The cotton gin is a machine that separates seeds, hulls, and other unwanted materials from cotton after it has been picked. JOHANNES GUTTENBERG Clue (don’t say the name) Johannes Gutenberg was a German goldsmith and inventor best known for the Gutenberg press, an innovative printing machine that used movable type. JOHN LOGIE BAIRD Clue (don’t say the name) John Logie Baird is remembered as the inventor of mechanical television (an earlier version of television). Baird also patented inventions related to radar and fibre optics.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Kent Academic Repository Full Text Document (Pdf)
    Kent Academic Repository Full text document (pdf) Citation for published version Higgitt, Rebekah F. (2018) Instruments and Relics: The History and Use of the Royal Society's Object Collections c. 1850-1950. Journal of the History of Collections . ISSN 0954-6650. DOI Link to record in KAR https://kar.kent.ac.uk/69053/ Document Version Author's Accepted Manuscript Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Accepted for publication in Journal of the History of Collections special issue: “Shaping Instruments and Relics: The History and Use of the Royal Society’s Object Collections c. 1850–1950 Rebekah Higgitt Abstract Despite the age and prestige of the Royal Society of London, the history of its collections of scientific instruments and apparatus has largely been one of accidental accumulation and neglect.
    [Show full text]
  • 1 Ethers, Religion and Politics In
    ORE Open Research Exeter TITLE Ethers, religion and politics in late-Victorian physics: beyond the Wynne thesis AUTHORS Noakes, Richard JOURNAL History of Science DEPOSITED IN ORE 16 June 2008 This version available at http://hdl.handle.net/10036/30065 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication ETHERS, RELIGION AND POLITICS IN LATE-VICTORIAN PHYSICS: BEYOND THE WYNNE THESIS RICHARD NOAKES 1. INTRODUCTION In the past thirty years historians have demonstrated that the ether of physics was one of the most flexible of all concepts in the natural sciences. Cantor and Hodge’s seminal collection of essays of 1981 showed how during the eighteenth and nineteenth centuries British and European natural philosophers invented a range of ethers to fulfil diverse functions from the chemical and physiological to the physical and theological.1 In religious discourse, for example, Cantor identified “animate” and spiritual ethers invented by neo-Platonists, mystics and some Anglicans to provide a mechanism for supporting their belief in Divine immanence in the cosmos; material, mechanistic and contact-action ethers which appealed to atheists and Low Churchmen because such media enabled activity in the universe without constant and direct Divine intervention; and semi-spiritual/semi-material ethers that appealed to dualists seeking a mechanism for understanding the interaction of mind and matter. 2 The third type proved especially attractive to Oliver Lodge and several other late-Victorian physicists who claimed that the extraordinary physical properties of the ether made it a possible mediator between matter and spirit, and a weapon in their fight against materialistic conceptions of the cosmos.
    [Show full text]
  • The Electric Telegraph
    To Mark, Karen and Paul CONTENTS page ORIGINS AND DEVELOPMENTS TO 1837 13 Early experiments—Francis Ronalds—Cooke and Wheatstone—successful experiment on the London & Birmingham Railway 2 `THE CORDS THAT HUNG TAWELL' 29 Use on the Great Western and Blackwall railways—the Tawell murder—incorporation of the Electric Tele- graph Company—end of the pioneering stage 3 DEVELOPMENT UNDER THE COMPANIES 46 Early difficulties—rivalry between the Electric and the Magnetic—the telegraph in London—the overhouse system—private telegraphs and the press 4 AN ANALYSIS OF THE TELEGRAPH INDUSTRY TO 1868 73 The inland network—sources of capital—the railway interest—analysis of shareholdings—instruments- working expenses—employment of women—risks of submarine telegraphy—investment rating 5 ACHIEVEMENT IN SUBMARINE TELEGRAPHY I o The first cross-Channel links—the Atlantic cable— links with India—submarine cable maintenance com- panies 6 THE CASE FOR PUBLIC ENTERPRISE 119 Background to the nationalisation debate—public attitudes—the Edinburgh Chamber of Commerce— Frank Ives. Scudamore reports—comparison with continental telegraph systems 7 NATIONALISATION 1868 138 Background to the Telegraph Bill 1868—tactics of the 7 8 CONTENTS Page companies—attitudes of the press—the political situa- tion—the Select Committee of 1868—agreement with the companies 8 THE TELEGRAPH ACTS 154 Terms granted to the telegraph and railway companies under the 1868 Act—implications of the 1869 telegraph monopoly 9 THE POST OFFICE TELEGRAPH 176 The period 87o-1914—reorganisation of the
    [Show full text]