The Napoleon Configuration

Total Page:16

File Type:pdf, Size:1020Kb

The Napoleon Configuration Forum Geometricorum Volume 2 (2002) 39–46. ¡ FORUM GEOM ISSN 1534-1178 The Napoleon Configuration Gilles Boutte Abstract. It is an elementary fact in triangle geometry that the two Napoleon triangles are equilateral and have the same centroid as the reference triangle. We recall some basic properties of the Fermat and Napoleon configurations, and use them to study equilateral triangles bounded by cevians. There are two families of such triangles, the triangles in the two families being oppositely oriented. The locus of the circumcenters of the triangles in each family is one of the two Napoleon circles, and the circumcircles of each family envelope a conchoid of a circle. 1. The Fermat-Napoleon configuration + Consider a reference triangle ABC, with side lengths a, b, c. Let Fa be the + point such that CBFa is equilateral with the same orientation as ABC; similarly + + for Fb and Fc . See Figure 1. + Fc ΓC ΓB A + Fb ΓC F+ ΓB + A B C Nc + Nb F+ B C ΓA N + + a Fa Figure 1. The Fermat configuration Figure 2. The Napoleon configuration + + + The triangle Fa Fb Fc is called the first Fermat triangle. It is an elementary + + + fact that triangles Fa Fb Fc and ABC are perspective at the first Fermat point − − − − F+. We define similarly the second Fermat triangle Fa Fb Fc in which CBFa , − − ACFb and BAFc are equilateral triangles with opposite orientation of ABC. 1 This is perspective with ABC at the second Fermat point F−. Denote by ΓA the + + + + circumcircle of CBFa , and Na its center; similarly for ΓB, ΓC , Nb , Nc . The Publication Date: April 30, 2002. Communicating Editor: Paul Yiu. 1 In [1], these are called the isogonic centers, and are referenced as X13 and X14. 40 G. Boutte + + + triangle Na Nb Nc is called the first Napoleon triangle, and is perspective with ABC at the first Napoleon point N+. Similarly, we define the second Napoleon − − − 2 triangle Na Nb Nc perspective with ABC at the second Napoleon point N−. − + See Figure 2. Note that Na is the antipode of Fa on ΓA. We summarize some of the important properties of the Fermat and Napoleon points. Theorem 1. Let ABC be a triangle with side lengths a, b, c and area . 4 (1) The first Fermat point F+ is the common point to ΓA, ΓB and ΓC. + + + (2) The segments AFa , BFb , CFc have the same length ` given by 1 `2 = (a2 + b2 + c2 + 4p3 ): 2 4 + + + (3) The first Napoleon triangle Na Nb Nc is equilateral with the same orien- ` tation as ABC. Its circumradius is 3 . (4) The Fermat and Napoleon triangles have the same centroid G as ABC. (5) The first Fermat point lies on the circumcircle of the second Napoleon tri- angle. We shall call this circle the second Napoleon circle. + + (6) The lines Nb Nc and AF+ are respectively the line of centers and the common chord of ΓB and ΓC . They are perpendicular. Remarks. (i) Similar statements hold for the second Fermat and Napoleon points F− and N−, with appropriate changes of signs. (ii) (4) is an easy corollary of the following important result: Given a triangle A0B0C0 with ABC0, BCA0, CAB0 positively similar. Thus ABC and A0B0C0 have the same centroid. See, for example, [3, p.462]. F + − c Fa A + − Nc A + Na + Fb Nb F+ N − − a G Nb − − Nb Fb − Nc B − C B C Nc N + a − Fc + Fa Figure 3. The Fermat and Napoleon Figure 4. The Fermat point on the second triangles Napoleon circle 2 In [1], the Napoleon points as X17 and X18. The Napoleon configuration 41 2. Equilateral triangles bounded by cevians Let A1B1C1 be an equilateral triangle, with the same orientation as ABC and whose sides are cevian lines in ABC, i.e. A lies on B1C1, B lies on C1A1, C lies π on A1B1. See Figure 5. Thus, CB is seen from A1 at an angle , i.e., \CA1B = π 3 3 , and A1 lies on ΓA. Similarly B1 lies on ΓB and C1 lies on ΓC . Conversely, let A1 be any point on ΓA. The line A1B intersects ΓC at B and C1, the line A1C intersects ΓB at C and B1. C1 A − Na F+ B1 − O1 Nb B − Nc C A1 Figure 5. Equilateral triangle bounded by cevians π Three of the angles of the quadrilateral A1B1AC1 are ; so A lies on B1C1 and 3 A1B1C1 is equilateral with the same orientation as ABC. We obtain an equilateral triangle bounded by cevians. There is an infinity of such triangles. π Let O1 be the center of A1B1C1. BO1 is seen from A1 at an angle (mod π); − − 6 similarly for BNa . The line A1O1 passes through Na . Similarly the lines B1O1 − − − − and C1O1 pass through Nb and Nc respectively. It follows that Nb Nc and B1C1 2π π are seen from O1 at the same angle = (mod π), and the point O1 lies on − − − 3 − 3 the circumcircle of Na Nb Nc . Thus we have: Theorem 2. The locus of the center of equilateral triangles bounded by cevians, and with the same orientation as ABC, is the second Napoleon circle. Similarly, the locus of the center of equilateral triangles bounded by cevians, and with the opposite orientation of ABC, is the first Napoleon circle. 42 G. Boutte 3. Pedal curves and conchoids We recall the definitions of pedal curves and conchoids from [2]. Definitions. Given a curve and a point O, C (1) the pedal curve of with respect to O is the locus of the orthogonal pro- jections of O on theCtangent lines of ; (2) for a positive number k, the conchoidCof with respect to O and with offset k is the locus of the points P for which thereC exists M on with O, M, P collinear and MP = k. C For the constructions of normal lines, we have Theorem 3. Let O be the pedal curve of with respect to O. For any point M on , if P is the projectionP of O on the tangentCto at M, and Q is such that OP MQ C C is a rectangle, then the line P Q is normal to O at P . P P M PO O C Q Figure 6. The normal to a pedal curve Theorem 4. Let O;k be the conchoid of with respect to O and offset k. For any C C point P on O;k, if M is the intersection of the line OP with , then the mormal C C lines to O;k at P and to at M intersect on the perpendicular to OP at O. C C 4. Envelope of the circumcircles Consider one of the equilateral triangles with the same orientation of ABC. Let 1 be the circumcircle of A1B1C1, R1 its radius. Its center O1 lies on the Napoleon C circle and the vertex A1 lies on the circle ΓA. The latter two circles pass through − \ − \ − F+ and Na . The angles Na A1F+ and Na O1F+ have constant magnitudes. The shape of triangle A1O1F+ remains unchanged when O1 traverses the second O1A1 R1 Napoleon circle . The ratio = remains constant, say, λ. N O1F+ O1F+ The Napoleon configuration 43 Q O P 0 M P C CO Figure 7. The normal to a conchoid C1 C1 A − M Na N 0 F+ B1 O O1 O1 B C Q F F 0 ΓA C0 A1 P Figure 8. Equilateral triangle Figure 9. The pedal of C0 with respect bounded by cevians and its circumcir- to F cle For convenience we denote by the Napoleon circle which is the locus of O1, N 0 F the Fermat point lying on this circle, F the antipode of F on , and 0 the 0 N C particular position of 1 when O1 and F coincide. See Figure 7. Let P be any C 0 0 0 point on , the line P F intersects 0 at Q and Q (F between P and Q), we N C construct the point M such that F P QM is a rectangle. The locus F of M is the P pedal curve of 0 with respect to F and, by Theorem 3, the line MP is the normal C 44 G. Boutte to F at M. The line MP intersects at P and O1 and the circle through M with P N center O1 is tangent to F at M. P 0 0 The triangles F MO1 and F QF are similar since \F MO1 = \F QF and 0 \ \ 0 3 O1M F Q F O1M = F F Q. It follows that = 0 = λ, and O1M = R1. The O1F F F circle through M with center O1 is one in the family of circle for which we search the envelope. Furthermore, the line F M intersects at F and O0, and O0MQF 0 is a rectan- 0 0 N gle. Thus, O M = F Q, the radius of 0. It follows that M lies on the external C branch of the conchoid of with respect to F and the length R = radius of 0. N 0 0 C By the same reasoning for the point Q , we obtain M on F , but on the internal P branch of the conchoid. Each circle 1 touches both branches of the conchoid. C Theorem 5. Let be the family of circumcircles of equilateral triangles bounded by cevians whoseFlocus of centers is the Napoleon circle passing through the Fermat point F . The envelope of this family is the pedalN with respect to F of F the circle 0 of whose center is the antipode of F on , i.e.
Recommended publications
  • Deko Dekov, Anticevian Corner Triangles PDF, 101
    Journal of Computer-Generated Euclidean Geometry Anticevian Corner Triangles Deko Dekov Abstract. By using the computer program "Machine for Questions and Answers", we study perspectors of basic triangles and triangles of triangle centers of anticevian corner triangles. Given a triangle ABC and a triangle center of kind 1, labeled by P. Let A1B1C1 be the anticevian triangle of P. Construct triangle centers A2, B2, C2 of kind 2 (possibly different from the kind 1) of triangles A1BC, B1CA, C1AB, respectively. We call triangle A2B2C2 the Triangle of the Triangle Centers of kind 2 of the Anticevian Corner triangles of the Triangle Center of kind 1. See the Figure: P - Triangle Center of kind 1; A1B1C1 - Anticevian Triangle of P; A2, B2, C2 - Triangle Centers of kind 2 of triangles A1BC, B1CA, C1AB, respectively; A2B2C2 - Triangle of the Triangle Centers of kind 2 of the Anticevian Corner Triangles of Journal of Computer-Generated Euclidean Geometry 2007 No 5 Page 1 of 14 the Triangle Center of kind 1. In this Figure: P - Incenter; A1B1C1 - Anticevian Triangle of the Incenter = Excentral Triangle; A2, B2, C2 - Centroids of triangles A1BC, B1CA, C1AB, respectively; A2B2C2 - Triangle of the Centroids of the Anticevian Corner Triangles of the Incenter. Known result (the reader is invited to submit a note/paper with additional references): Triangle ABC and the Triangle of the Incenters of the Anticevian Corner Triangles of the Incenter are perspective with perspector the Second de Villiers Point. See the Figure: A1B1C1 - Anticevian Triangle of the Incenter = Excentral Triangle; A2B2C2 - Triangle of the Incenters of the Anticevian Corner Triangles of the Incenter; V - Second de Villiers Point = perspector of triangles A1B1C1 and A2B2C2.
    [Show full text]
  • Self-Dual Configurations and Regular Graphs
    SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS H. S. M. COXETER 1. Introduction. A configuration (mci ni) is a set of m points and n lines in a plane, with d of the points on each line and c of the lines through each point; thus cm = dn. Those permutations which pre­ serve incidences form a group, "the group of the configuration." If m — n, and consequently c = d, the group may include not only sym­ metries which permute the points among themselves but also reci­ procities which interchange points and lines in accordance with the principle of duality. The configuration is then "self-dual," and its symbol («<*, n<j) is conveniently abbreviated to na. We shall use the same symbol for the analogous concept of a configuration in three dimensions, consisting of n points lying by d's in n planes, d through each point. With any configuration we can associate a diagram called the Menger graph [13, p. 28],x in which the points are represented by dots or "nodes," two of which are joined by an arc or "branch" when­ ever the corresponding two points are on a line of the configuration. Unfortunately, however, it often happens that two different con­ figurations have the same Menger graph. The present address is concerned with another kind of diagram, which represents the con­ figuration uniquely. In this Levi graph [32, p. 5], we represent the points and lines (or planes) of the configuration by dots of two colors, say "red nodes" and "blue nodes," with the rule that two nodes differently colored are joined whenever the corresponding elements of the configuration are incident.
    [Show full text]
  • 15 BASIC PROPERTIES of CONVEX POLYTOPES Martin Henk, J¨Urgenrichter-Gebert, and G¨Unterm
    15 BASIC PROPERTIES OF CONVEX POLYTOPES Martin Henk, J¨urgenRichter-Gebert, and G¨unterM. Ziegler INTRODUCTION Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their im- portance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry to linear and combinatorial optimiza- tion. In this chapter we try to give a short introduction, provide a sketch of \what polytopes look like" and \how they behave," with many explicit examples, and briefly state some main results (where further details are given in subsequent chap- ters of this Handbook). We concentrate on two main topics: • Combinatorial properties: faces (vertices, edges, . , facets) of polytopes and their relations, with special treatments of the classes of low-dimensional poly- topes and of polytopes \with few vertices;" • Geometric properties: volume and surface area, mixed volumes, and quer- massintegrals, including explicit formulas for the cases of the regular simplices, cubes, and cross-polytopes. We refer to Gr¨unbaum [Gr¨u67]for a comprehensive view of polytope theory, and to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed treatments of the combinatorial and of the convex geometric aspects of polytope theory. 15.1 COMBINATORIAL STRUCTURE GLOSSARY d V-polytope: The convex hull of a finite set X = fx1; : : : ; xng of points in R , n n X i X P = conv(X) := λix λ1; : : : ; λn ≥ 0; λi = 1 : i=1 i=1 H-polytope: The solution set of a finite system of linear inequalities, d T P = P (A; b) := x 2 R j ai x ≤ bi for 1 ≤ i ≤ m ; with the extra condition that the set of solutions is bounded, that is, such that m×d there is a constant N such that jjxjj ≤ N holds for all x 2 P .
    [Show full text]
  • Angle Bisectors in a Quadrilateral Are Concurrent
    Angle Bisectors in a Quadrilateral in the classroom A Ramachandran he bisectors of the interior angles of a quadrilateral are either all concurrent or meet pairwise at 4, 5 or 6 points, in any case forming a cyclic quadrilateral. The situation of exactly three bisectors being concurrent is not possible. See Figure 1 for a possible situation. The reader is invited to prove these as well as observations regarding some of the special cases mentioned below. Start with the last observation. Assume that three angle bisectors in a quadrilateral are concurrent. Join the point of T D E H A F G B C Figure 1. A typical configuration, showing how a cyclic quadrilateral is formed Keywords: Quadrilateral, diagonal, angular bisector, tangential quadrilateral, kite, rhombus, square, isosceles trapezium, non-isosceles trapezium, cyclic, incircle 33 At Right Angles | Vol. 4, No. 1, March 2015 Vol. 4, No. 1, March 2015 | At Right Angles 33 D A D A D D E G A A F H G I H F F G E H B C E Figure 3. If is a parallelogram, then is a B C B C rectangle B C Figure 2. A tangential quadrilateral Figure 6. The case when is a non-isosceles trapezium: the result is that is a cyclic Figure 7. The case when has but A D quadrilateral in which : the result is that is an isosceles ∘ trapezium ( and ∠ ) E ∠ ∠ ∠ ∠ concurrence to the fourth vertex. Prove that this line indeed bisects the angle at the fourth vertex. F H Tangential quadrilateral A quadrilateral in which all the four angle bisectors G meet at a pointincircle is a — one which has an circle touching all the four sides.
    [Show full text]
  • Scribability Problems for Polytopes
    SCRIBABILITY PROBLEMS FOR POLYTOPES HAO CHEN AND ARNAU PADROL Abstract. In this paper we study various scribability problems for polytopes. We begin with the classical k-scribability problem proposed by Steiner and generalized by Schulte, which asks about the existence of d-polytopes that cannot be realized with all k-faces tangent to a sphere. We answer this problem for stacked and cyclic polytopes for all values of d and k. We then continue with the weak scribability problem proposed by Gr¨unbaum and Shephard, for which we complete the work of Schulte by presenting non weakly circumscribable 3-polytopes. Finally, we propose new (i; j)-scribability problems, in a strong and a weak version, which generalize the classical ones. They ask about the existence of d-polytopes that can not be realized with all their i-faces \avoiding" the sphere and all their j-faces \cutting" the sphere. We provide such examples for all the cases where j − i ≤ d − 3. Contents 1. Introduction 2 1.1. k-scribability 2 1.2. (i; j)-scribability 3 Acknowledgements 4 2. Lorentzian view of polytopes 4 2.1. Convex polyhedral cones in Lorentzian space 4 2.2. Spherical, Euclidean and hyperbolic polytopes 5 3. Definitions and properties 6 3.1. Strong k-scribability 6 3.2. Weak k-scribability 7 3.3. Strong and weak (i; j)-scribability 9 3.4. Properties of (i; j)-scribability 9 4. Weak scribability 10 4.1. Weak k-scribability 10 4.2. Weak (i; j)-scribability 13 5. Stacked polytopes 13 5.1. Circumscribability 14 5.2.
    [Show full text]
  • Unilateral and Equitransitive Tilings by Equilateral Triangles
    Discrete Mathematics 340 (2017) 1669–1680 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Unilateral and equitransitive tilings by equilateral trianglesI Rebekah Aduddell a, Morgan Ascanio b, Adam Deaton c, Casey Mann b,* a Texas Lutheran University, United States b University of Washington Bothell, United States c University of Texas, United States article info a b s t r a c t Article history: A tiling of the plane by polygons is unilateral if each edge of the tiling is a side of at most Received 6 July 2016 one polygon of the tiling. A tiling is equitransitive if for any two congruent tiles in the tiling, Received in revised form 18 October 2016 there exists a symmetry of the tiling mapping one to the other. It is known that a unilateral Accepted 31 October 2016 and equitransitive (UE) tiling can be made with any finite number of congruence classes of Available online 16 December 2016 squares. This article addresses the related question, raised in the book Tilings and Patterns by Keywords: Grünbaum and Shephard, of finding all UE tilings by equilateral triangles. In particular, we Tiling show that there are only two classes of UE tilings admitted by a finite number of congruence Triangles classes of equilateral triangles: one with two sizes of triangles and one with three sizes of Unilateral triangles. Equitransitive ' 2016 Published by Elsevier B.V. 1. Introduction A plane tiling T is a countable set of closed topological disks, fT1; T2; T3;:::g, that covers the plane without overlaps (i.e.
    [Show full text]
  • A Conic Through Six Triangle Centers
    Forum Geometricorum b Volume 2 (2002) 89–92. bbb FORUM GEOM ISSN 1534-1178 A Conic Through Six Triangle Centers Lawrence S. Evans Abstract. We show that there is a conic through the two Fermat points, the two Napoleon points, and the two isodynamic points of a triangle. 1. Introduction It is always interesting when several significant triangle points lie on some sort of familiar curve. One recently found example is June Lester’s circle, which passes through the circumcenter, nine-point center, and inner and outer Fermat (isogonic) points. See [8], also [6]. The purpose of this note is to demonstrate that there is a conic, apparently not previously known, which passes through six classical triangle centers. Clark Kimberling’s book [6] lists 400 centers and innumerable collineations among them as well as many conic sections and cubic curves passing through them. The list of centers has been vastly expanded and is now accessible on the internet [7]. Kimberling’s definition of triangle center involves trilinear coordinates, and a full explanation would take us far afield. It is discussed both in his book and jour- nal publications, which are readily available [4, 5, 6, 7]. Definitions of the Fermat (isogonic) points, isodynamic points, and Napoleon points, while generally known, are also found in the same references. For an easy construction of centers used in this note, we refer the reader to Evans [3]. Here we shall only require knowledge of certain collinearities involving these points. When points X, Y , Z, . are collinear we write L(X,Y,Z,...) to indicate this and to denote their common line.
    [Show full text]
  • Computing Triangulations Using Oriented Matroids
    Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany JULIAN PFEIFLE AND JORG¨ RAMBAU Computing Triangulations Using Oriented Matroids ZIB-Report 02-02 (January 2002) COMPUTING TRIANGULATIONS USING ORIENTED MATROIDS JULIAN PFEIFLE AND JORG¨ RAMBAU ABSTRACT. Oriented matroids are combinatorial structures that encode the combinatorics of point configurations. The set of all triangulations of a point configuration depends only on its oriented matroid. We survey the most important ingredients necessary to exploit ori- ented matroids as a data structure for computing all triangulations of a point configuration, and report on experience with an implementation of these concepts in the software package TOPCOM. Next, we briefly overview the construction and an application of the secondary polytope of a point configuration, and calculate some examples illustrating how our tools were integrated into the POLYMAKE framework. 1. INTRODUCTION This paper surveys efficient combinatorial methods to compute triangulations of point configurations. We present results obtained for the first time by a software implementation (TOPCOM [Ram99]) of these ideas. It turns out that a subset of all triangulations of a point configuration has a structure useful in different areas of mathematics, and we highlight one particular instance of such a connection. Finally, we calculate some examples by integrating TOPCOM into the POLYMAKE [GJ01] framework. Let us begin by motivating the use of triangulations and providing a precise definition. 1.1. Why triangulations? Triangulations are widely used as a standard tool to decom- pose complicated objects into simple objects. A solution to a problem on a complicated object can sometimes be found by gluing solutions on the simple objects.
    [Show full text]
  • Volume 3 2003
    FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 3 2003 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada George Kapetis Thessaloniki, Greece Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Lawrence Evans La Grange, Illinois, USA Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Bernard Gibert, Orthocorrespondence and orthopivotal cubics,1 Alexei Myakishev,
    [Show full text]
  • Quadrilateral Mesh Generation III : Optimizing Singularity Configuration Based on Abel-Jacobi Theory
    Quadrilateral Mesh Generation III : Optimizing Singularity Configuration Based on Abel-Jacobi Theory Xiaopeng Zhenga,c, Yiming Zhua, Na Leia,d,∗, Zhongxuan Luoa,c, Xianfeng Gub aDalian University of Technology, Dalian, China bStony Brook University, New York, US cKey Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China dDUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian, China Abstract This work proposes a rigorous and practical algorithm for generating mero- morphic quartic differentials for the purpose of quad-mesh generation. The work is based on the Abel-Jacobi theory of algebraic curve. The algorithm pipeline can be summarized as follows: calculate the homol- ogy group; compute the holomorphic differential group; construct the period matrix of the surface and Jacobi variety; calculate the Abel-Jacobi map for a given divisor; optimize the divisor to satisfy the Abel-Jacobi condition by an integer programming; compute the flat Riemannian metric with cone singulari- ties at the divisor by Ricci flow; isometric immerse the surface punctured at the divisor onto the complex plane and pull back the canonical holomorphic differ- ential to the surface to obtain the meromorphic quartic differential; construct the motor-graph to generate the resulting T-Mesh. The proposed method is rigorous and practical. The T-mesh results can be applied for constructing T-Spline directly. The efficiency and efficacy of the arXiv:2007.07334v1 [cs.CG] 10 Jul 2020 proposed algorithm are demonstrated by experimental results. Keywords: Quadrilateral Mesh, Abel-Jacobi, Flat Riemannian Metric, Geodesic, Discrete Ricci flow, Conformal Structure Deformation ∗Corresponding author Email address: [email protected] (Na Lei) Preprint submitted to Computer Methods in Applied Mechanics and EngineeringJuly 16, 2020 1.
    [Show full text]
  • Fermat Points and Euler Lines Preliminaries 1 the Fermat
    Fermat Points and Euler Lines N. Beluhov, A. Zaslavsky, P. Kozhevnikov, D. Krekov, O. Zaslavsky1 Preliminaries Given a nonequilateral 4ABC, we write M, H, O, I, Ia, Ib, and Ic for its medicenter, orthocenter, circumcenter, incenter, and excenters opposite A, B, and C. The points O, M, and H lie on a line known as the Euler line. The point M divides the segment OH in ratio 1 : 2. The midpoints of the sides of 4ABC, the feet of its altitudes, and the midpoints of the segments AH, BH, and CH lie on a circle known as the Euler circle (or the nine-point circle). Its center is the midpoint E of the segment OH. Let X be an arbitrary point in the plane of 4ABC. Then the reflections of the lines AX, BX, and CX in the bisectors of 6 A, 6 B, and 6 C meet at a point X∗ (or are parallel, in which case X∗ is a point at infinity) known as the isogonal conjugate of X. The point L = M ∗ is known as Lemoine's point. For every triangle there exists an affine transformation mapping it onto an equi- lateral triangle. The inverse transformation maps the circumcircle and the incircle of that equilateral triangle onto two ellipses known as the circumscribed and inscribed Steiner ellipses. 1 The Fermat, Napoleon, and Apollonius points Let 4ABTc, 4BCTa, and 4CATb be equilateral triangles constructed externally on the sides of 4ABC and let Na, Nb, and Nc be their centers. Analogously, let 0 0 0 4ABTc, 4BCTa, and 4CATb be equilateral triangles constructed internally on the 0 0 0 sides of 4ABC and let Na, Nb, and Nc be their centers.
    [Show full text]
  • From Euler to Ffiam: Discovery and Dissection of a Geometric Gem
    From Euler to ffiam: Discovery and Dissection of a Geometric Gem Douglas R. Hofstadter Center for Research on Concepts & Cognition Indiana University • 510 North Fess Street Bloomington, Indiana 47408 December, 1992 ChapterO Bewitched ... by Circles, Triangles, and a Most Obscure Analogy Although many, perhaps even most, mathematics students and other lovers of mathematics sooner or later come across the famous Euler line, somehow I never did do so during my student days, either as a math major at Stanford in the early sixties or as a math graduate student at Berkeley for two years in the late sixties (after which I dropped out and switched to physics). Geometry was not by any means a high priority in the math curriculum at either institution. It passed me by almost entirely. Many, many years later, however, and quite on my own, I finally did become infatuated - nay, bewitched- by geometry. Just plane old Euclidean geometry, I mean. It all came from an attempt to prove a simple fact about circles that I vaguely remembered from a course on complex variables that I took some 30 years ago. From there on, the fascination just snowballed. I was caught completely off guard. Never would I have predicted that Doug Hofstadter, lover of number theory and logic, would one day go off on a wild Euclidean-geometry jag! But things are unpredictable, and that's what makes life interesting. I especially came to love triangles, circles, and their unexpectedly profound interrelations. I had never appreciated how intimately connected these two concepts are. Associated with any triangle are a plentitude of natural circles, and conversely, so many beautiful properties of circles cannot be defined except in terms of triangles.
    [Show full text]