WO 2017/126959 Al 27 July 2017 (27.07.2017) W P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/126959 Al 27 July 2017 (27.07.2017) W P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/126959 Al 27 July 2017 (27.07.2017) W P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A23L 29/00 (201 6.01) A23L 7/104 (201 6.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, A23L 29/212 (2016.01) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (21) International Application Number: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, PCT/NL20 17/050025 RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (22) International Filing Date: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 18 January 2017 (18.01 .2017) ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 2016 115 18 January 2016 (18.01.2016) NL TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: INNOSO B.V. [NL/NL]; Ruychrocklaan 68, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 2597 EP Den Haag (NL). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (72) Inventor: AGAYN, Venetka; c/o Ruychrocklaan 68, 2597 EP Den Haag (NL). Published: (74) Agent: JANSEN, CM.; V.O., Carnegieplein 5, 25 17 KJ — with international search report (Art. 21(3)) Den Haag (NL). — before the expiration of the time limit for amending the (81) Designated States (unless otherwise indicated, for every claims and to be republished in the event of receipt of kind of national protection available): AE, AG, AL, AM, amendments (Rule 48.2(h)) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (54) Title: FOOD COMPOSITION WITH FERMENTED STARCH (57) Abstract: The present invention is directed to a food composition comprising a fermented starch in amount of up to 15 wt% and 0.1 to 10 wt% of a fermenting organism. The food composition provides health benefits and has desirable organoleptic proper ties. The invention is also directed to a method of producing such food composition. The method comprises the steps of mixing a starch or starch containing food ingredient with water or a water containing fluid in a ratio of /99 to 15/85, heating the mix of water or water-containing fluid and starch or starch containing food ingredient, cooling down the heated mix to a temperature suitable for fermenting, inoculating the cooled down mix with a fermenting organism, fermenting the heated starch containing food ingredient. Title: Food composition with fermented starch The invention is directed to food composition, more specifically the present invention is directed to a fermented food composition comprising grains. The invention provides food composition with health benefits and has desirable organoleptic properties. Background Many important and healthy ingredients may be included in the daily diet to sustain or improve a person's health. The importance of dietary fiber as part of a healthy diet is nowadays well established. Particularly the functional soluble fibers are shown to contribute to a decrease in cholesterol. Furthermore, probiotics are thought to improve the gut health and thereby have a positive effect on a person's immune system. Also, prebiotics which are non-digestible food ingredients that stimulate the growth and/or activity of bacteria in the digestive system in ways claimed to be beneficial to health, are part of a healthy diet. Grains, nuts and seeds in addition to starch, protein and fibre contain various compounds phytochemicals, vitamins and minerals that may have unique properties or contribute to healthy nutrition. Fermented food product, especially food product from fermented grain, nuts and seeds,, may comprise such healthy ingredients, such as dietary fiber, prebiotic and/or probiotic. However, fermented products are not to everyone's taste, and often food products from grain may have a coarse or slimely rheology which is also not appreciated. Also product made out of cereal may be instable, water-off, sediment, making the product unpalatable for consumers. Furthermore, dairy yoghurt is white to slightly yellow which is liked by consumer, however fermented food products and/or products from cereal may be grayish or brownish which is not appreciated by consumers. EP 1858340 describes a dairy product comprising 10 6 Lactobacillus rhamnosus GG and at least 0.5 gram of isolated 6-glucan. The downside of this product is that first β-glucan needs to be isolated before it can be used, which may be cumbersome. EP0568530 describes a food product prepared by fermentation, based substantially on oat bran, containing living micro-organisms and being nutricially beneficial to health and taste. It was however found that the taste was not really liked and the rheology is was thin. US5,686,123 discloses a homogenous stable cereal suspension prepared from subjecting oats to amylases. No probiotic is added. WO2007/003688 discloses an oat bran based food suspension that is prepared by heat-treating a mixture of oat bran and water to gelatinize the starch, cooling the heat-treated suspension and grinding the cooled suspension to form a stable food suspension. A fermenting step may be included by e.g. lactic acid bacteria, or bifidobacteria. There is a need for more sustainable food strategies to fit climate change, increasing dry and less fertile land on one hand and rapidly increasing world population. Pseudocereals like buckwheat, quinoa, teff, sorghum, millets and amaranth are less demanding than wheat and survive in dry climate and less fertile soil. Providing new, nourishing and tasty contemporary tasting food products will expand their use and presents a solution for feeding the growing population. There is also a need to provide more tasty vegetarian and vegan foods that are also nutritionally relevant and can partially or fully complement or replace currently used animal products. It is therefore an object of the invention to provide a food product that combines the health effect of probiotics, dietary fibre, and/or prebiotics. It is further the objective to use the phytochemicals, minerals and/or vitamins of grains nuts and/or seeds, that support a healthy diet. It is an objective to provide a product that is suitable for the lactose and gluten-sensitive. It is furthermore an object of the invention to provide a tasty product that has a good rheology. In addition, an object of the invention is to provide a food product with a colour that is appreciated by consumers. Another object of the invention is to provide a product that after packaging and storage, remains stable and is agreeable to savour. Another objective is to prepare a product with a clean label and minimum ingredients and limit or avoid the use of additives, and gums. A further objective are products that involve the use of forgotten and underutilized (pseudo)cereals. A further object is to provide a method to produce the food product as well as the use of the food product. Summary of the invention A first aspect of the invention is a food composition comprising a fermented starch in amount of up to 15 wt% and 0.1 to 10 wt% of a fermenting organism. Another aspect of the invention is a method to produce a food composition comprising the steps (a) mixing a starch or starch containing food ingredient with water or a water containing fluid in a ratio of 1/99 to 15/85; (b) heating the mix of starch containing food ingredient and water or a water containing fluid; (c) cooling down the heated mix to a temperature suitable for fermenting; (d) inoculating the cooled down mix with a fermenting organism; (e) fermenting the heated starch containing food ingredient; An optional step is a grinding step after mixing step (a) and/or during heating step (b). Especially in case when a starch containing food ingredient is used, a grinding step is suitable. Suitably the mixing of step (a) and/or the grinding is until a smooth texture is achieved. Additional mixing may be employed after step (b) or (c) or before step (d) to reach desired smoothness. Additional filtering may be employed after step (b) or (c) or before step (d) to reach desired smoothness It was found that when starch containing food ingredients are fermented a food product comprising probiotics, dietary fiber and/or probiotics is obtained that has a good rheology, good taste, nice color and/or good stability. It was also found that the products of the invention and/or embodiments thereof, are stable on storage under refrigeration like normal yogurt for at least three weeks. It was found that the products of the invention and/or embodiments thereof are as also more acidic than normal dairy yoghurt as often the pH is in the low pH 4 or even below pH 4. In an embodiment according to the invention and/or any other embodiments thereof the starch is a grain starch, seed starch, pulse starch nut starch, or tuber starch.
Recommended publications
  • INSPECTION of GROWING CROPS of POTATOES 2020 Statement Showing, by Variety, Area (In Hectares) and Number of Crops Passed Inspection
    INSPECTION OF GROWING CROPS OF POTATOES 2020 Statement Showing, By Variety, Area (In hectares) and Number of Crops passed inspection Variety PB S SE E Total 2020 Total 2019 Area Crops Area Crops Area Crops Area Crops Area Crops Area Crops ABBOT 1.086 3 2.900 2 - - - - 3.986 5 4.958 4 ABILENE RUSSET 0.030 1 - - - - - - 0.030 1 0.100 1 ACCORD 10.823 11 5.900 4 - - - - 16.723 15 6.229 12 ACOUSTIC 1.342 4 - - 0.700 1 - - 2.042 5 0.809 4 ADIB 0.338 3 4.200 3 - - - - 4.538 6 0.073 2 AGRIA 1.040 3 - - - - - - 1.040 3 1.170 4 ALANIS 0.090 1 - - - - - - 0.090 1 0.100 1 ALBERTA 0.017 1 - - - - - - 0.017 1 1.100 2 ALCANDER - - - - - - - - - - 0.850 2 ALEX - - 0.100 1 - - - - 0.100 1 0.100 1 ALEXANDRA 0.060 1 8.700 4 9.100 4 - - 17.860 9 27.710 9 ALIBABA 1.405 3 - - - - - - 1.405 3 0.570 3 ALMONDA 0.832 4 - - - - - - 0.832 4 1.170 4 ALOUETTE 1.460 3 0.500 1 - - - - 1.960 4 0.290 2 ALVERSTONE RUSSET - - - - - - - - - - 1.070 3 AMANDA 1.689 6 27.900 11 - - - - 29.589 17 10.490 7 AMBO 1.110 3 2.300 3 5.400 1 - - 8.810 7 15.430 10 AMORA 2.490 4 8.100 3 - - - - 10.590 7 12.924 9 AMOUR - - 0.300 3 - - - - 0.300 3 0.300 1 ANNA 1.010 3 - - - - - - 1.010 3 1.110 3 ANTARCTICA 1.173 3 - - - - - - 1.173 3 0.690 3 APACHE 0.110 2 - - 4.000 1 - - 4.110 3 4.625 3 APHRODITE 0.091 3 - - - - - - 0.091 3 0.012 2 ARCADE 0.635 3 16.200 9 - - 3.000 1 19.835 13 16.615 8 ARGOS 0.340 4 4.800 4 6.600 3 - - 11.740 11 24.480 17 ARRAN PILOT 0.250 2 - - 1.500 1 5.700 4 7.450 7 15.150 12 ARRAN VICTORY 0.020 1 0.500 1 - - - - 0.520 2 1.410 4 ARSENAL 4.447 6 61.000 35 35.400 15 3.900 1 104.747 57 124.970 56 ASPARGES - - 0.200 2 - - 0.300 1 0.500 3 0.710 4 All data as at 30 September 2020.
    [Show full text]
  • US20200383331A1.Pdf
    US 20200383331A1 IN (19United States ( 12 ) Patent Application Publication ( Pub. No.:USQO2Q/QZ8333l Al HEINRICHER ( 43 ) Pub . Date : Dec. 10 , 2020 ( 54 ) COMPOSITIONS AND METHODS FOR AOIN 43/40 ( WQOQI LARGE - SCALE IN VITRO PLANT AOIN 43/08 ( 2006.01 ) BIOCULTURE A01N 37/52 ( 2006.01 ) AOIN 4730 ( 2006.01 ) ( II ) Applicant: BQOSHIQOQT LLC , Hailey, IDUS A016 22/15 ( WQGOI ( 52 ) U.S. CI . ( 72 ) Inventor: Jackie HEINRICHER , Anacortes , WA CPC AOIN 43/90 ( 2013.01 ) ; AO1G 31/00 (US ) ( 2013.01 ) ; A01N 59/08 ( 2013.01 ) ; A01N 59/20 ( 2013.01 ) ; A01N 59/16 ( 2013.01 ) ; ( 21 ) Appl . No .: 16 /728,478 A01N 59/14 ( 2013.01 ) ; A01N 31/06 ( 2013.01 ) ; A01N 43/78 ( 2013.01 ) ; A01N ( 22 ) Filed : Dec. 27 , 2019 37/10 ( 2013.01 ) ; A01N 43/82 ( 2013.01 ) ; AOIN 59/12 ( 2013.01 ) ; AOIN 37/44 Related U.S. Application Data ( 2013.01 ) ; A01N 43/40 ( 2013.01 ) ; A01N ( 63 ) Continuation of application No. PCT /US2018 / 43/08 ( 2013.01 ) ; A01N 37/52 ( 2013.01 ) ; 040637 , filed on Jul. 2 , 2018 , Continuation of appli AOIN 47/30 ( 2013.01 ) ; A01G 22/15 cation No. PCT/ US2018 / 040646 , filed on Jul. 2 , ( 2018.02 ) ; A01N 59/00 ( 2013.01 ) 2018 . ( 60 ) Provisional application No. 62 / 527,946 , filed on Jun . ( 57 ) ABSTRACT 3Q , provisional application No. 62 /6II , & a , The present invention provides media , kits , systems , and filed on Dec. 29 , 2017 , provisional application No. methods for achieving large scale pistachio production 62 / 527,862 , filed on Jun . 30 , 2017 . within a short time via bioculture , large scale yam produc tion within a short time via bioculture, high multiplication Publication Classification rate of plants including cannabis via in vitro micropropaga ( 51 ) Int .
    [Show full text]
  • 2018 Potato Postharvest Processing Evaluation Report
    Postharvest Processing Evaluation of Alaska Grown Potatoes A Specialty Crop Block Grant Project Introduction Potatoes have long been a staple produce of Alaskan agriculture. Between the years 2009-2016 Alaska growers have produced between 130,000 to 155,000 cwt annually amounting to over 2 million dollars in sales each year (2017 Alaska Annual Bulletin). There has been increasing interest in the use of Alaska Grown potatoes for processing in the local chipping and restaurant market, but this effort hasn’t been supported with data on the processing quality of our locally produced potatoes. To better meet the needs of the food service industries and to promote a growing market for producers, the Alaska Plant Materials Center (PMC) undertook a postharvest evaluation on our collection of potato varieties grown on site in Palmer, Alaska. The results of this research present timely and relevant data to Alaskan growers, processors and consumers. On a national level, the processing industry accounts for nearly 60% of potatoes produced annually. This trend has caused potato breeders to select for processing qualities, and quite a few processing cultivars have been recently registered and released for use. Although some of these newer varieties are grown here in Alaska, they have not been evaluated and compared to the data collected by growers in other regions or compared to established varieties that are known to do well here. Even if the physical qualities of the varieties were comparable to those grown elsewhere, Alaska is unlikely to compete in the national processing market because of our distance from any commercial processing facility and the small “family farm” scale of operation.
    [Show full text]
  • International Union for the Protection of New Varieties of Plants Geneva
    E TG/23/6 ORIGINAL: English DATE: 2004-03-31 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA * POTATO (Solanum tuberosum L.) GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY Alternative Names: * Latin English French German Spanish Solanum tuberosum L., Potato Pomme de terre Kartoffel Papa, Patata S. tuberosum L. sensu lato ASSOCIATED DOCUMENTS These guidelines should be read in conjunction with document TG/1/3, “G eneral Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants” (hereinafter referred to as the “General Introduction”) and its associated “TGP” documents. * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest infor mation.] TG/23/6 Potato, 2004 -03 -31 - 2 - TABLE OF CONTENTS 1. SUBJECT OF THESE TES T GUIDELINES ................................ ................................ ................................ .. 3 2. MATERIAL REQUIRED ................................ ................................ ................................ ............................... 3 3. METHOD OF EXAMINATIO N................................ ................................ ................................ ..................... 3 3.1 Duration of Tests ................................ ................................ ...............................
    [Show full text]
  • Potato - Wikipedia, the Free Encyclopedia
    Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area
    [Show full text]
  • Potato Guide 2005
    2005 POTATO CROP Variety, Weed and Pest Control Guide Publication 1300A Prince Edward Island Potato Varieties Registered in Canada 2005 Abielle - 3 * Caesar * HiLite Russet * Pink Pearl AC Belmont CalWhite Innovator - 11 * Prospect - 6 * AC Blue Pride Caribe Irish Cobbler Ranger Russet Accent Carleton Island Sunshine * Red Gold AC Chaleur Carlingford * Jemseg Red La Soda AC Domino Cascade Kanona Red Pontiac AC Dubuc Century Russet Katahdin Redsen AC Glacier Chip * Cherokee Kennebec Rideau * AC LR Russet Burbank * Cherry Red - 12 * Keswick Rocket * AC Maple Gold * Chieftain Krantz Roselys - 2 AC Novachip Coastal Russet Lady Rosetta Russet Burbank AC Peregine Red * Concurrent Maine Chip Russet Norkotah AC Ptarmigan * Conestoga Maris Bard * Saginaw Gold AC Red Island Cupids McIntyre Sangre AC Saguenor Dakota Pearl * Mirton Pearl Santé * AC Stampede Russet * Desirée Mondial * Saxon * AC Sunbury Divina - 7 * Morona Sebago Adora * Dundrod * Morene * Selma Agata * Envol Morning Gold * Shepody Agria * Epicure Navan - 2 * Sierra * Alpha Eramosa Nipigon Snowden Alta Russet * Estima * Niska Sunrise Altitude - 10 * Fabula - 7 * NL 10-RBK * Superior Andover Fambo NL 10-SUP * Tobique Anson Fjord - 9 * NL 20-SHE * Tolaas Aquilon FL 1207 NL 30-RBK * True Blue * Argos - 5 FL 1291 Nooksack Ulla Asterix * FL 1533 Norchip Umatilla Russet* Atlantic FL 1625 * Norgold Russet Valor - 5 Banana FL 1833 * NorKing Russet Van Gogh Belleisle FL 1867 * Norland Viking Bijou Rouge - 8 FL 1879 * NorValley * VO 123-25 - 4 * Bintje FL 1930 - 5 NorWis Warba Blue Mac Frontier Russet Obelix * White Rose Bombance - 9 Fundy Onaway Winston - 5 Brigus Gigant Pacific Russet * Yukon Gold Brise du Nord - 1 Goldrush Penta * Butte Green Mountain Peribonka - 10 * 1 Interim Registration - expires March 6, 2004 7 Interim Registration - expires May 17, 2005 2 Interim Registration - expires April 26, 2004 8 Interim Registration - expires May 19, 2005 3 Interim Registration - expires August 23, 2004 9 Interim Registration - expires May 29, 2005 4 Interim Registration - expires Sept.
    [Show full text]
  • Minnesota Area Ii Potato Research and Promotion Council
    MINNESOTA AREA II POTATO RESEARCH AND PROMOTION COUNCIL AND NORTHERN PLAINS POTATO GROWERS ASSOCIATION 2021 RESEARCH REPORTS Table of Contents 3. Evaluation of MN13142: An Advanced Breeding Clone with Long Dormancy & Other Desirable Traits S. Gupta, J. Crants, M. McNearney & C. Rosen 11. Evaluating Bruising in Storage Among New Fresh-Market and Processing Varieties D. Haagenson 20. Management of Colorado Potato Beetle 2020 I. MacRae 34. Managing PVY Vectors 2020 I. MacRae 41. Developing Remote Sensing-based Yield Mapping Technologies for Potato in Minnesota Y. Miao 51. Adjusting Planting Date for the Management of Verticillium Wilt J. Pasche 59. Support of Irrigated Potato Research for North Dakota and Minnesota 2020 J. Pasche 61. Late Blight Spore Trapping Network for Minnesota A. Robinson & J. Pasche 68. Measuring Nitrogen Uptake in Russet Burbank A. Robinson 72. ND Fresh Market Potato-Cultivar/Selection Trial Results for 2020 A. Robinson, S. Thompson, E. Brandvik & P. Ihry 76. Effect of Branded Versus Broadcast Application of ESN, Turkey Manure & Different Approaches to Measuring Plant N Status on Tuber Yield & Quality in Russet Burbank Potatoes C. Rosen, J. Crants, B. Bohman & M. McNearney 86. Yield & Quality Responses of Ivory Russet & Russet Burbank Potatoes to P Rate, Banded P Application, Soil Fumigation & Mycorrhizal Inoculation in High-P Soils C. Rosen, J. Crants & M. McNearney 98. Evaluation of Mosaic Products as P, S, MG, and Zn Sources for Russet Burbank Potatoes C. Rosen, J. Crants, & M. McNearney 103. Evaluation of NACHURS Products in Russet Burbank Potatoes C. Rosen, J. Crants & M. McNearney 110. Data Report for Potato Breeding Program Data Report 2020 L.
    [Show full text]
  • Seed Potato Directory 2017
    The farm operation grows 93 acres of field generations one and two seed, operates 4 greenhouses producing conventional and NFT minitubers. Our stewardship of this seed continues through WISCONSIN the certification Our of stewardship these seed oflots this on seed Wisconsin continues seed through grower t farms, there is no other program like it. CERTIFIED The program maintains variety trueness to type; selecting and testing clones, rogueing of weak, genetic variants, and diseased plants to continue to develop and maintain germplasm of your SEED POTATOES favorite varieties at our laboratory. 103 Years of Seed Growing Tradition A Century Long Tradition Pioneers In Seed Potato Certification Administered since inception by the College of Agricultural and Life Sciences, University of Wisconsin – Madison, the program Much of the early research work on potato diseases and how retains a full-time staff of experienced professionals to ensure they spread was done Scientists in Germany found and that, Holland through around careful the monitoring turn thoroughness and impartiality in inspection and certification of the century. Scientists found that, through careful monitoring procedures. o of the crop and removal of unhealthy plants, Similar they could research maintain soon was a vigorous, healthy stock indefinitely. Similar research soon was Through providing information, exercising technical skill, doing b being conducted in the United States. research directed at solving problems, and conducting outreach activities, the University meets the growers at the field level. USDA plant pathologist W.A. Orton had studied potato This special relationship to the academic community brings new certification in Germany and upon his return, began to work with T information on pathogens, best practices, and introduces high potato growers and Universities to introduce those concepts quality basic seed into the marketplace.
    [Show full text]
  • 2019 Potato Crop Year Research Reports
    MINNESOTA AREA II POTATO RESEARCH AND PROMOTION COUNCIL AND NORTHERN PLAINS POTATO GROWERS ASSOCIATION 2020 RESEARCH REPORTS Table of Contents 3. Vine Desiccation as an Effective Disease Management Strategy to Control Verticillium Wilt of Potato N. Gudmestad 9. Evaluation of a Promising Minnesota Clone for N Response, Agronomic Traits & Storage Quality S. Gupta, J. Crants, M. McNearney & C. Rosen 16. Measuring Bruise Susceptibility Among New Fresh Market & Processing Varieties in Storage D. Haagenson 19. Baseline Evaluation of Pollinator Landscape Plantings Bordering Commercial Potato I.MacRae 25. Management of Colorado Potato Beetle in Minnesota & North Dakota I. MacRae 30. Managing PVY Vectors, 2019 I. MacRae 37. Carryover of Imazamox in Soil of Potato Fields A. Robinson 43. Evaluation of Fresh Potato Cultivars in the Field and Storage A. Robinson & D. Haagenson 46. Late Blight Spore Trapping Network for Minnesota A. Robinson & N. Gudmestad 52. ND Fresh Market Potato-Cultivar/Selection Trial Results for 2019 A. Robinson, E. Brandvik & P. Ihry 56. A Novel Approach to Manage Nitrogen Fertilizer for Potato Production Using Remote Sensing C. Rosen, J. Crants, M. McNearney & B. Bohman 65. Effects of Application Timing & Banded Versus Broadcast Application of ESN on Russet Burbank Potatoes C. Rosen, J. Crants & M. McNearney 79. Evaluation of Aspire, MicroEssentials S10 & MicroEssentials SZ as Sources of Potassium, Phosphate, Sulfur, Boron & Zinc for Russet Burbank Potatoes C. Rosen, J. Crants, & M. McNearney 87. Evaluation of Co-Granulated Formulation of K & B for Russet Burbank Potato Production C. Rosen, J. Crants & M. McNearney 94. Optimizing Planting Configuration, Planting Density, & N Rate for Russet Burbank Potato Production C.
    [Show full text]
  • Minnesota Area Ii Potato Research and Promotion Council and Northern
    MINNESOTA AREA II POTATO RESEARCH AND PROMOTION COUNCIL AND NORTHERN PLAINS POTATO GROWERS ASSOCIATION 2019 RESEARCH REPORTS Table of Contents 3. Impact of Sublethal Dicamba & Glyphosate Rates on Three Chipping Potato Cultivars M. Brooke, H. Hatterman-Valenti, A. Robinson, G. Secor & A. Auwarter 7. Vine Desiccation as an Effective Disease Management Strategy to Control Verticillium Wilt of Potato N. Gudmestad 13. Nitrogen Fertilization Rate and Cold-induced Sweetening in Potato Tubers During Storage S. Gupta & C. Rosen 21. Pressure Flattening and Bruise Susceptibility Among New Fresh Market and Chip Varieties D. Haagenson 26. Adjuvent Comparison with Potato Desiccants, Grand Forks, 1 H. Hatterman-Valenti & C. Auwarter 27. Adjuvent Comparison with Potato Desiccants, Grand Forks, 2 H. Hatterman-Valenti and C. Auwarter 28. Evaluating SOP vs. MOP Programs in Russet Burbank Potato H. Hatterman-Valenti & C. Auwarter 29. Evaluating Single and Repeat Hail Event in “Clearwater” Potato H. Hatterman-Valenti & C. Auwarter 32. Baseline Evaluation of Pollinator Landscape Plantings Bordering Commercial Potato I. MacRae 36. Management of Colorado Potato Beetle in Minnesota & North Dakota I. MacRae 41. Managing PVY Vectors, 2018 I. MacRae 49. Carryover of Herbicides in Potato Production Systems A. Robinson, E. Brandvik, & P. Ihry 54. Effects of Planting Configuration & Plant Population Density on the N Response of Russet Burbank Tuber Yield & Size C. Rosen, J. Crants, M. McNearney, K. Olander& H. Barrett 66. Evaluation of Aspire, Micro-Essentials S10, & MicroEssentials SZ as Sources of Potassium, Phosphate, Sulfur, Boron & Zine for Russet Burbank Potatoes C. Rosen, J. Crants & M. McNearney 73. Evaluation of New Controlled Release Urea Fertilizer Products as N Sources for Russet Burbank Potatoes C.
    [Show full text]
  • Common Scab Susceptibility of 24 Most Popular Potato Cultivars in USA, Utilizing a Greenhouse Assay with Three Different Pathoge
    Common scab susceptibility of 24 most popular potato cultivars in USA, utilizing a greenhouse assay with three different pathogenic Streptomyces strains (species) Increasing disease score 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 Norland No data R Norkotah (ND) R Norkotah (ID) Shepody R Norkotah (ND) Ranger Russet No data R Norkotah (ID) R Norkotah 296 R Norkotah ID Norkotah 3 Red La Soda Shepody Yukon Gold Norkotah 8 Shepody Premier Russet Alturas Norkotah 8 Pike Premier Russet Dk Red Norland Norland Yukon Gold Norkotah 3 Russet Burbank Red La Soda Atlantic R Norkotah 296 Russet Burbank Ranger Russet Gold Rush Dk Red Norland Red La Soda Alturas R Norkotah 296 Megachip Snowden Superior Atlantic Superior Yukon Gold Snowden Russet Burbank Megachip Silverton russet Megachip Rio Grande Yukon Gold ME Dakota Pearl Atlantic Canela russet Dakota Pearl Premier Russet Yukon Gold (ID) Norkotah 3 Norland Dakota Pearl Snowden Silverton russet Superior Canela russet Dk Red Norland Pike R Norkotah ND Yukon Gold (WI) S. scabies Blazer Russet S. stelliscabiei Gold Rush S. species IdX Pike Rio Grande Alturas ME01-11h NY02-1c ID01-12c Gold Rush Yukon Gold 5.1e8 CFU/pot Norkotah 8 1.2e9 CFU/pot Blazer Russet 1e9 CFU/pot Ranger Russet Silverton russet Rio Grande Canela russet Blazer Russet Cultivars are listed along the left side of graphs, ranked by disease severity, with most susceptible at the top and most resistant at the bottom. Disease score is a combination of type of lesion (surface, pits or raised lesions) and amount of surface area affected.
    [Show full text]
  • Potato Glossary
    A Potato Glossary A Potato Glossary by Richard E. Tucker Last revised 15 Sep 2016 Copyright © 2016 by Richard E. Tucker Introduction This glossary has been prepared as a companion to A Potato Chronology. In that work, a self-imposed requirement to limit each entry to a single line forced the use of technical phrases, scientific words, jargon and terminology that may be unfamiliar to many, even to those in the potato business. It is hoped that this glossary will aid those using that chronology, and it is hoped that it may become a useful reference for anyone interested in learning more about potatoes, farming and gardening. There was a time, a century or more ago, when nearly everyone was familiar with farming life, the raising of potatoes in particular and the lingo of farming in general. They were farmers themselves, they had relatives who farmed, they knew someone who was a farmer, or they worked on a nearby farm during their youth. Then, nearly everyone grew potatoes in their gardens and sold the extra. But that was a long ago time. Now the general population is now separated from the farm by several generations. Only about 2 % of the US population lives on a farm and only a tiny few more even know anyone who lives on a farm. Words and phrases used by farmers in general and potato growers in particular are now unfamiliar to most Americans. Additionally, farming has become an increasingly complex and technical endeavor. Research on the cutting edge of science is leading to new production techniques, new handling practices, new varieties, new understanding of plant physiology, soil and pest ecology, and other advances too numerous to mention.
    [Show full text]