Wkimm Report 2010
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Purification of Glucose 6-Phosphate Dehydrogenase From
MARINE SCIENCE AND TECHNOLOGY BULLETIN VOLUME: 9 ISSUE: 2 DECEMBER 2020 Editor-in-Chief Adem Yavuz Sönmez Kastamonu University, Turkey Co-Editor Semih Kale Çanakkale Onsekiz Mart University, Turkey Section Editors Soner Bilen Kastamonu University, Turkey Ertuğrul Terzi Kastamonu University, Turkey Ali Eslem Kadak Kastamonu University, Turkey Gökhan Arslan Atatürk University, Turkey Statistics Editor Aycan Mutlu Yağanoğlu Atatürk University, Turkey Foreign Language Editor Muhammet Sinan Alpsoy Kastamonu University, Turkey Editorial Board Agus Oman Sudrajat Institut Pertanian Bogor, Indonesia Anca Nicoleta Şuţan University of Piteşti, Romania Antanas Kontautas Klaipeda University, Lithuania Arya Vazirzadeh Shiraz University, Iran Barış Bayraklı Sinop University, Turkey Derya Güroy Yalova University, Turkey Fazıl Şen Yüzüncü Yıl University, Turkey Gouranga Biswas Kakdwip Research Centre of Central Institute, India Hasan Hüseyin Atar Ankara University, Turkey İlhan Altınok Karadeniz Technical University, Turkey Liliana Török Danube Delta National Institute for Research & Development, Romania Mahmut Elp Kastamonu University, Turkey Marina Alexandrovna Sazykina Southern Federal University, Russia Mehmet Gökoğlu Akdeniz University, Turkey Muhammad Naeem Khan University of the Punjab, Pakistan Sajmir Beqiraj University of Tirana, Albania Sefa Acarlı Çanakkale Onsekiz Mart University, Turkey Sitti Zayda B. Halun Mindanao State University, Philippines Sonya Uzunova Institute of Fishing Resources, Bulgaria Süleyman Özdemir Sinop University, Turkey -
Models for an Ecosystem Approach to Fisheries
ISSN 0429-9345 FAO FISHERIES 477 TECHNICAL PAPER 477 Models for an ecosystem approach to fisheries Models for an ecosystem approach to fisheries This report reviews the methods available for assessing the impacts of interactions between species and fisheries and their implications for marine fisheries management. A brief description of the various modelling approaches currently in existence is provided, highlighting in particular features of these models that have general relevance to the field of ecosystem approach to fisheries (EAF). The report concentrates on the currently available models representative of general types such as bionergetic models, predator-prey models and minimally realistic models. Short descriptions are given of model parameters, assumptions and data requirements. Some of the advantages, disadvantages and limitations of each of the approaches in addressing questions pertaining to EAF are discussed. The report concludes with some recommendations for moving forward in the development of multispecies and ecosystem models and for the prudent use of the currently available models as tools for provision of scientific information on fisheries in an ecosystem context. FAO Cover: Illustration by Elda Longo FAO FISHERIES Models for an ecosystem TECHNICAL PAPER approach to fisheries 477 by Éva E. Plagányi University of Cape Town South Africa FOOD AND AGRICULTURE AND ORGANIZATION OF THE UNITED NATIONS Rome, 2007 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Consuming Sustainable Seafood: Guidelines, Recommendations and Realities Anna K
University of Wollongong Research Online Faculty of Law, Humanities and the Arts - Papers Faculty of Law, Humanities and the Arts 2018 Consuming sustainable seafood: Guidelines, recommendations and realities Anna K. Farmery University of Tasmania, [email protected] Gabrielle M. O'Kane University of Canberra Alexandra McManus Curtin University Bridget S. Green University of Tasmania Publication Details Farmery, A. K., O'Kane, G., McManus, A. & Green, B. S. (2018). Consuming sustainable seafood: Guidelines, recommendations and realities. Public Health Nutrition, 21 (8), 1503-1514. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Consuming sustainable seafood: Guidelines, recommendations and realities Abstract Objective: Encouraging people to eat more seafood can offer a direct, cost-effective way of improving overall health outcomes. However, dietary recommendations to increase seafood consumption have been criticised following concern over the capacity of the seafood industry to meet increased demand, while maintaining sustainable fish stocks. The current research sought to investigate Australian accredited practising dietitians' (APD) and public health nutritionists' (PHN) views on seafood sustainability and their dietary recommendations, to identify ways to better align nutrition and sustainability goals. Design: A self-administered online questionnaire exploring seafood consumption advice, perceptions of seafood sustainability and information sources of APD and PHN. Qualitative and quantitative data were collected via open and closed questions. Quantitative data were analysed with χ2tests and reported using descriptive statistics. Content analysis was used for qualitative data. Setting: Australia. Subjects: APD and PHN were targeted to participate; the sample includes respondents from urban and regional areas throughout Australia. -
An Integrated Study of Economic Effects of and Vulnerabilities to Global Warming on the Barents Sea Cod Fisheries
Climatic Change (2008) 87:251–262 DOI 10.1007/s10584-007-9338-0 An integrated study of economic effects of and vulnerabilities to global warming on the Barents Sea cod fisheries Arne Eide Received: 6 July 2006 /Accepted: 3 October 2007 / Published online: 27 November 2007 # Springer Science + Business Media B.V. 2007 Abstract The Barents Sea area is characterised by a highly fluctuating physical environment causing substantial variations in the ecosystems and fisheries depending upon this. Simulations assuming different management regimes have been carried out to study how physical and biological effects of global warming influence the Barents Sea cod fisheries. A regional, high-resolution representation of the B2 world region (OECD90) scenario from the Intergovernmental Panel on Climate Change was used to calculate water temperatures and plankton biomasses by hydrodynamic modelling. These results were included in simulations performed by a multi-fleet, multi-species model, by which a fully integrated model linking to the global circulation model to the Barents Sea fisheries through a regional downscaling to the Barents Sea area is constructed. One factor of particular importance for the natural annual biological variations is the occasional inflow of young herring into the Barents Sea area. The herring inflow is difficult to predict and links to dynamical systems outside the Barents Sea area, complex recruitment mechanisms and oceanographic conditions. These processes are in the study represented by a stochastic representation of herring inflow based on historical observations. According to the performed simulations the biomass fluctuations may slightly increase over the next 25 years, possibly caused by changes in temperature patterns. -
Consumer Preferences for Seafood and Applications to Plant-Based and Cultivated Seafood
Literature Review Consumer Preferences for Seafood and Applications to Plant-Based and Cultivated Seafood June 2020 Jen Lamy Sustainable Seafood Initiative Manager The Good Food Institute Keri Szejda, PhD Founder and Principal Research Scientist North Mountain Consulting Group Executive Summary Plant-based and cultivated seafood can play an essential role in expanding the global supply of fish and shellfish to healthfully and sustainably meet growing global seafood demand. A key step toward accelerating the development and commercialization of these industries is understanding consumers’ relationships with seafood. This paper assesses the available literature on consumer attitudes toward seafood. The results of this review should both inform decisions on how to best serve seafood consumers with plant-based and cultivated options and inform the prioritization of further research to advance these industries. Several key results emerge from the review: Heterogeneity: Consumer attitudes toward seafood often vary by species, product type, and consumer segmentation. Effectively developing and marketing seafood products require understanding these variations. Motivations: The main motivations for seafood consumption are habit, health, and taste. Barriers: The major barriers to seafood consumption are price, the perception that seafood is difficult to prepare, and social settings with others who do not like seafood. Attributes: The key product attributes assessed by seafood consumers include freshness and country of origin, but the relative -
Seafood Industry Report
EverBlu Capital | Research 9 February 2018 Russell Wright | T:+61 2 8249 0008 | E:[email protected] Seafood Industry Report Australian seafood is set to grow due to This report analyses the seafood industry in Australia and Asian premium quality and growing domestic markets. and global demand Companies’ Data Background on Seafood Industry 12-month Company Ticker Market Cap (M) change (%) 1. Australia’s seafood industry is still regarded to be in its infancy stage Angel Seafood Holdings Ltd. AS1 28.6 N/A with production predominately made up of privately-owned, family- Clean Seas Seafood Ltd. CSS 100.0 71.4 run farms. The 2.4% global growth in demand for seafood is likely to Huon Aquaculture Group Ltd. HUO 413.1 6.3 continue driven by population growth of 8.5 billion by 2030, and by Murray Cod Australia Ltd. MCA 24.3 14.8 the rising spending power of the global middle class, which is New Zealand King Salmon Co. Ltd. NZK 281.1 56.2 forecast to increase from 1.8 billion in 2009 to 4.9 billion by 2030. Ocean Grown Abalone Ltd. OGA 39.4 -5.0 Wild catch is at risk of declining due to overfishing and aquaculture Seafarms Group Ltd. SFG 91.4 -31.6 will have to make up the gap in demand and supply. Tassal Group Ltd. TGR 613.4 -19.52. Source: FactSet 3. Australia has a global reputation for sustained high quality product, which allows for producers to sell at a premium in international Ticker Company Target Sectors markets. -
Detailed Program First Iteration
PROGRAM First Iteration This program is the first iteration of the World Fisheries Congress 2021 program and it is subject to change. Please note that only the presenting author is listed in the first iteration of the program. The final program and full details, including co-authors, will be provided in due course. Contents Opening Address ........................................................................................................................ 3 Ambassador Peter Thomson .............................................................................................. 3 Plenary speakers ........................................................................................................................ 3 Professor Toyoji Kaneko on behalf of Professor Katsumi Tsukamoto ............................... 3 Professor Manuel Barange ................................................................................................. 3 Ms Meryl Williams .............................................................................................................. 3 Dr Beth Fulton..................................................................................................................... 3 Professor Nicholas Mandrak on behalf of Professor Olaf Weyl ......................................... 3 Professor Ratana Chuenpagdee ......................................................................................... 4 Ms Kerstin Forsberg ........................................................................................................... -
Global Snapshot 2
Provisioning wild catch seafood in Australia’s ocean economy: opportunities and challenges Sarah Jennings 60th AARES Conference February 2016 Canberra TASMANIAN SCHOOL OF BUSINESS & ECONOMICS Acknowledgements Putting fisheries in the food bowl (ANNiMS Springboard II Program) Growth opportunities & critical elements in the value chain for wild fisheries & aquaculture in a changing climate (Marine NARP Project FRDC 2011/233) South East Australia Fisheries and Climate Change Project (SEAP) & Centre for Marine Socioecology, University of Tasmania TASMANIAN SCHOOL OF BUSINESS AND ECONOMICS 2 Roadmap 1. Global snapshot 2. Australian snapshot 3. Opportunities for growth in wild capture fish production 4. Challenges (the ‘usual suspects’ and some ‘elephants in the room’) TASMANIAN SCHOOL OF BUSINESS AND ECONOMICS 3 Global snapshot Fish provides more than 4.5 billion people with at least 15 % of their average per capita intake of animal protein. Fish provides more per capita protein than beef, pig or poultry and has accounted for more than 60% of growth since late 1960’s Fish’s unique nutritional properties make it also essential to the health of billions of consumers in both developed and developing countries. Fish is one of the most efficient converters of feed into high quality food and its carbon footprint is lower compared to other animal production systems. Through fish-related activities, fish contribute substantially to the income and livelihoods of more than 10 % of the world population. TASMANIAN SCHOOL OF BUSINESS AND ECONOMICS 4 Global snapshot In China, for example, the demand for fish is likely to increase from 24.4 kg per person per year in 2000 to 41 kg per person per year by 2030 (World Bank 2014). -
Trophic Cascade Modelling in Bathyal Ecosystems
Doctoral Thesis Trophic cascade modelling in bathyal ecosystems Author: Supervisor: Valeria Mamouridis Dr. Francesc Maynou A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Bio-Economic Modelling Research Group Dept. de Recursos Marins Renovables (ICM-CSIC) and the Dept. de Ingenier´ıa Hidr´aulica, Mar´ıtima y Ambiental (EHMA-UPC) February 2015 Declaration of Authorship I, Valeria Mamouridis , declare that this thesis titled, ’Trophic cascade modelling in bathyal ecosystems’ and the work presented in it are my own. I confirm that: ∎ This work was done wholly or mainly while in candidature for a research degree at this University. ∎ Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. ∎ Where I have consulted the published work of others, this is always clearly attributed. ∎ Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. ∎ I have acknowledged all main sources of help. ∎ Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: iii INSTITUT DE CI ENCIES` DEL MAR (CSIC) UNIVERSITAT POLIT ECNICA` DE CATALUNYA Abstract Dept. de Ingenier´ıa Hidr´aulica, Mar´ıtima y Ambiental (EHMA-UPC) Dept. de Recursos Marins Renovables (ICM-CSIC) Doctor of Philosophy Trophic Cascade Modelling in Bathyal Ecosystems by Valeria Mamouridis In this Ph.D. -
Sustainable Fisheries by Samantha Stone – Environmental Specialist
Sustainable Fisheries By Samantha Stone – Environmental Specialist The need to feed a growing global population, and to address a growing demand for fish, puts pressure on natural fisheries and on aquaculture (HLPE, 2014). With over a billion people dependent on the oceans for animal protein, the seas are often thought of as a never-ending seafood basket – pun intended (Society, 2017). With the global population expected to reach 9.7 billion in 2050, it’s vitally to sustainably harvest wild-caught seafood and maintain healthy and productive fish stocks. Beyond ensuring food security and nutrition to a large human population, healthy fish stocks are fundamental to healthy marine ecosystems. This paper aims to introduce “sustainable fisheries”, the Food and Agriculture Organisation of the United Nations (FOA) Code of Conduct for Responsible Fisheries and to give an insight into how we as Australians can their part to help. Sustainable Fisheries – What is the code? In simple terms, a sustainable fishery is one whose practices can be maintained indefinitely without reducing the targeted species ability to maintain its population at healthy levels, and without adversely impacting on other species within the ecosystem – including humans – by removing their food source, accidentally killing them, or damaging their physical environment (Greenpeace, 2008). In 1995, the FOA of the United Nations adopted the Code of Conduct for Responsible Fisheries, the code consists of a collection of principles, goals and elements for action. The code is voluntary rather than mandatory, with the governments, in cooperation with their industries and fishing communities responsible for implementing the code. The Code advocates that countries should have clear and well-organized fishing policies in order to manage their fisheries. -
Seafood Safety Fact Sheets
SafeFish SEAFOOD SAFETY FACT SHEETS Assisting the industry to resolve technical trade impediments in relation to food safety and hygiene. Page 1 Contents About SafeFish 3 Amnesic Shellfish Poisons 4 Ciguatera Fish Poisoning 6 Clostridium botulinum 8 Listeria monocytogenes 9 Escherichia coli 10 Hepatitis A Virus (HAV) 12 Histamine Poisoning 14 Norovirus (NoV) 16 Okadaic Acids/Diarrhetic Shellfish Poisons 18 ABOUT SAFEFISH WHAT WE DO SafeFish provides technical advice to support SafeFish supports the resolution of issues and Paralytic Shellfish Poisons (Saxitoxins) 20 Australia’s seafood trade and market access challenges relating to the export, import and domestic Salmonella 22 negotiations and helps to resolve barriers to trade. It trade of Australian seafood products. It does this by Staphylococcus aureus 24 does this by bringing together experts in food safety undertaking the following key functions: and hygiene to work with the industry and regulators Toxic Metals 26 • Developing technical advice for trade negotiations to agree and prioritise technical issues impacting on to assist in the resolution of market access and Vibrio 28 free and fair market access for Australian seafood. food safety issues. Wax Esters 30 SafeFish has a record of success in reopening • Developing technical briefs on high priority markets and in responding quickly when issues arise. codex issues. Contact SafeFish 32 By involving all relevant parties in discussions and, • Facilitating technical attendance at high priority where necessary, commissioning additional research Codex meetings and specific working groups. to fill any knowledge gaps, an agreed Australian • Identify & facilitate research into emerging market position is reached that is technically sound and access issues. -
Estimación De Índices De Reclutamiento Basados En Variables Y Modelos Biofísicos De Pelágicos Pequeños De La Zona Centro-Sur De Chile: Fase I
Instituto de Investigación Pesquera Departamento de Pesquerías INFORME DE FINAL PROYECTO SUBSECRETARÍA DE PESCA Estimación de índices de reclutamiento basados en variables y modelos biofísicos de pelágicos pequeños de la zona Centro-sur de Chile: Fase I INFORME FINAL ID:2012-56-DAP-17 15 de Febrero 2013 INFORME FINAL ID:2012-56-DAP-17 Estimación de índices de reclutamiento basados en variables y modelos biofísicos de pelágicos pequeños de la zona Centro-sur de Chile: Fase I REQUIRENTE Subsecretaría de Pesca UNIDAD EJECUTORA Instituto de Investigación Pesquera Departamento de Pesquerías Av. Cristóbal Colón 2780, Talcahuano – Chile Teléfono: 56-41-2920410 Fax: 56-41-2920411 Correo electrónico: [email protected] Sitio web: www.inpesca.cl JEFE DE PROYECTO Dr. Carolina Parada Véliz Instituto de Investigación Pesquera Departamento de Pesquerías Avda. Cristóbal Colón 2780, Talcahuano CP 4270789 Tel: 56-41-2920410 Fax: 56-41-2920411 Email: cparada@inpesca Talcahuano, 15e Febrero de 2012 ESTIMACIÓN DE ÍNDICES DE RECLUTAMIENTO BASADOS EN VARIABLES Y MODELOS BIOFÍSICOS DE PELÁGICOS PEQUEÑOS DE LA ZONA CENTRO- SUR DE CHILE: FASE I INDICE DE CONTENIDOS PERSONAL PARTICIPANTE 1 RESUMEN EJECUTIVO 3 ANTECEDENTES 4 Variabilidad ambiental y sardina común en la región centro-sur de Chile. 5 Modelación biofísica e índices de reclutamiento 5 OBJETIVO GENERAL Y ESPECÍFICOS CAPITULO 1. IMPLEMENTACION DE UN SISTEMA DE MODELACION BIOFISICA PARA LA SARDINA COMUN 8 1.1. INTRODUCCION 8 1.2. METODOLOGIA (OBJETIVO 4.1) 8 1.2.1. Desarrollar e implementar un sistema de modelación biofísica para la población de sardina común, que acople modelos biológicos y un modelo hidrodinámico validado para la región centro- sur de Chile 8 1.2.2.