Xmcspan Installation and Use P/N: 6806800H03D December 2019 © 2019 SMART Embedded Computing™, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Xmcspan Installation and Use P/N: 6806800H03D December 2019 © 2019 SMART Embedded Computing™, Inc XMCspan Installation and Use P/N: 6806800H03D December 2019 © 2019 SMART Embedded Computing™, Inc. All Rights Reserved. Trademarks The stylized "S" and "SMART" is a registered trademark of SMART Modular Technologies, Inc. and “SMART Embedded Computing” and the SMART Embedded Computing logo are trademarks of SMART Modular Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. These materials are provided by SMART Embedded Computing as a service to its customers and may be used for informational purposes only. Disclaimer* SMART Embedded Computing (SMART EC) assumes no responsibility for errors or omissions in these materials. These materials are provided "AS IS" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. SMART EC further does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these materials. SMART EC shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials. SMART EC may make changes to these materials, or to the products described therein, at any time without notice. SMART EC makes no commitment to update the information contained within these materials. Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to a SMART EC website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of SMART EC. It is possible that this publication may contain reference to or information about SMART EC products, programming, or services that are not available in your country. Such references or information must not be construed to mean that SMART EC intends to announce such SMART EC products, programming, or services in your country. Limited and Restricted Rights Legend If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by SMART Embedded Computing. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause at DFARS 252.227-7014 (Jun. 1995). SMART Embedded Computing, Inc. 2900 S. Diablo Way, Suite 190 Tempe, Arizona 85282 USA *For full legal terms and conditions, visit www.smartembedded.com/ec/legal Table of Contents About this Manual ................................................................9 Safety Notes....................................................................13 Sicherheitshinweise .............................................................15 1 Introduction.................................................................19 1.1 Overview ...............................................................19 1.2 Features ...............................................................19 1.3 Standard Compliances ....................................................20 1.4 Ordering and Support Information ...........................................21 2 Hardware Preparation and Installation ...........................................23 2.1 Overview ...............................................................23 2.1.1 Environmental Considerations .........................................23 2.2 Power Requirements .....................................................24 2.2.1 Backplane Power Requirements .......................................25 2.3 Checking the Box Contents ................................................25 2.4 Installing a Mezzanine Card ................................................26 2.5 Installing the Primary XMCspan .............................................28 2.6 Installing the Secondary XMCspan ...........................................30 2.7 Removing the XMCspan ...................................................32 3 Resetting the XMCspan .......................................................33 3.1 Reset Sources ..........................................................33 4 Controls, LEDs, and Connectors ...............................................35 4.1 Overview ...............................................................35 4.2 Board Layout ...........................................................35 4.3 Face Plate ..............................................................36 4.4 Connectors .............................................................38 4.4.1 VME Connectors ...................................................38 4.4.2 LED Information ....................................................40 XMCspan Installation and Use (6806800H03D) 3 Table of Contents 5 Functional Description........................................................41 5.1 Overview ...............................................................41 5.2 Block Diagram ..........................................................41 5.3 PEX8533 PCI Express Switch ..............................................42 5.4 PEX8533 Station and Port Configuration ......................................42 5.5 XMCspan Stacking .......................................................42 5.6 Mezzanine Card Sites .....................................................42 5.7 Mezzanine Card Identification ..............................................43 5.8 XMC.3 Support ..........................................................43 5.9 PMC AND PRPMC Support ................................................43 5.10 PCI Buses ..............................................................43 5.11 TSI384 PCI EXPRESS-TO-PCI/PCI-X Bridge ..................................44 5.12 Serial EEPROM For VPD ..................................................44 5.13 Clocking Scheme ........................................................45 5.14 Debugging Support .......................................................45 A Related Documentation .......................................................47 A.1 SMART Embedded Computing Documentation .................................47 A.2 Manufacturers’ Documents .................................................47 A.3 Related Specifications ....................................................48 4 XMCspan Installation and Use (6806800H03D) List of Figures Figure 4-1 Board Layout ..................................................... 35 Figure 4-2 XMCspan with SCANBE Handles ..................................... 36 Figure 4-3 XMCspan with IEEE Handles ........................................ 37 Figure 5-1 XMCspan Block Diagram ............................................ 41 XMCspan Installation and Use (6806800H03D) 5 List of Figures 6 XMCspan Installation and Use (6806800H03D) List of Tables Table 1-1 Standard Compliances ................................................20 Table 2-1 Environmental .......................................................24 Table 2-2 Power Requirements ..................................................24 Table 2-3 Backplane Power Requirements .........................................25 Table 4-1 Connector Pin-outs ...................................................38 Table 4-2 Pin definition for VME connector P2 ......................................38 Table 4-3 PEX 8533 PCIE Switch ................................................40 Table 4-4 Tsi384 PCIE-PCIX PMC2 ..............................................40 Table 5-1 I2C Bus Address Map .................................................44 Table 5-2 Clocking Scheme ....................................................45 Table 5-3 Debugging Support ...................................................45 Table A-1 SMART EC Documentation ............................................47 Table A-2 Manufacturers’ Documentation ..........................................47 Table A-3 Related Specifications ................................................48 XMCspan Installation and Use (6806800H03D) 7 List of Tables 8 XMCspan Installation and Use (6806800H03D) About this Manual Overview of Contents This manual describes how to install the mezzanine cards supported by the XMCspan, and how to install the XMCspan on the VME base board. Abbreviations This document uses the following abbreviations: Abbreviation Definition CPLD Complex Programmable Logic Device EEPROM Electrically Erasable Programmable Read-Only Memory IEEE Institute of Electrical and Electronics Engineers JTAG Joint Test Access Group PCI Peripheral Component Interconnect PCIE PCI Express PCI-X Peripheral Component Interconnect-X PMC PCI Mezzanine Card PrPMC Processor PMC RFU Reserved for future use SerDes Serializer/Deserializer VITA VMEbus International Trade Association VME Versa Module Eurocard VPD Vital Product Data XMC Switched Mezzanine Card XMCspan Installation and Use (6806800H03D) 9 About this Manual About this Manual Conventions The following table describes the conventions used throughout this manual. Notation Description Typical notation for hexadecimal numbers (digits are 0 through F), for 0x00000000 example used for addresses and offsets 0b0000 Same for binary numbers (digits are 0 and 1) bold Used to emphasize a word Screen Used for on-screen output and code related elements or
Recommended publications
  • MVME3100 Single Board Computer Installation and Use P/N: 6806800M28H September 2019
    MVME3100 Single Board Computer Installation and Use P/N: 6806800M28H September 2019 © 2019 SMART Embedded Computing™, Inc. All Rights Reserved. Trademarks The stylized "S" and "SMART" is a registered trademark of SMART Modular Technologies, Inc. and “SMART Embedded Computing” and the SMART Embedded Computing logo are trademarks of SMART Modular Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. These materials are provided by SMART Embedded Computing as a service to its customers and may be used for informational purposes only. Disclaimer* SMART Embedded Computing (SMART EC) assumes no responsibility for errors or omissions in these materials. These materials are provided "AS IS" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. SMART EC further does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these materials. SMART EC shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials. SMART EC may make changes to these materials, or to the products described therein, at any time without notice. SMART EC makes no commitment to update the information contained within these materials. Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to a SMART EC website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of SMART EC.
    [Show full text]
  • MCP750HA Compactpci Single Board Computer Installation And
    MCP750HA Hot Swap CompactPCI Single Board Computer Installation and Use MCP750HA/IH3 December 2000 © Copyright 2000 Motorola, Inc. All rights reserved. Printed in the United States of America. Motorola® and the Motorola symbol are registered trademarks of Motorola, Inc. PowerPC™ is a trademark of IBM Corporation, and is used by Motorola, Inc. under license from IBM Corporation. CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group. All other products mentioned in this document are trademarks or registered trademarks of their respective holders. Safety Summary The following general safety precautions must be observed during all phases of operation, service, and repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result in personal injury or damage to the equipment. The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of the equipment in your operating environment. Ground the Instrument. To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes. Do Not Operate in an Explosive Atmosphere.
    [Show full text]
  • CPCI 2404 PICMG PDF#82988.Indd
    PMC XMCs: The popular PMC adds a fabric interface By Andy Reddig and Greg Novak raditional PMC modules have been the de facto standard for adding I/O expansion capability to Tembedded systems. The recently adopted standard for Processor PMCs enables the expansion of PMC module functionality to include processing as well as streaming I/O. As embedded systems transition from legacy parallel buses to high-speed switched serial fabrics, mezzanines are keeping pace through the XMC standard for switched fabric mezzanine cards. These new fabric-enabled mezzanine cards will allow the popular PMC form factor to continue its evolution, supporting the next generation of embedded systems with scalable, modular I/O and processing modules. Introduction VITA 39 added PCI-X capability to PMC modules. As perfor- The original PCI Mezzanine Card (PMC) standard emerged mance requirements continue to rise, traditional bus-based prod- about 10 years ago as an outgrowth of PCI Local Bus popularity. ucts will be supplanted by switched fabric architectures using With the wide availability of PCI silicon, PCI became the most open standards such as RapidIO, PCI Express, or Infiniband. The cost-effective way of implementing modular I/O, but the tradi- XMC standard supports migration of legacy PMC modules to tional PCI card did not suit the embedded marketʼs packaging or switched fabrics while maintaining backward compatibility with environmental requirements. The PMC standard repackaged the existing PMC modules and carriers. PCI electrical interface into a compact mechanical form factor, providing a low profile, rugged version of PCI that could facili- The XMC standards committee started with the PMC standard tate I/O expansion in VME and CompactPCI systems.
    [Show full text]
  • Usage Models for Advanced Mezzanine Card (Advancedmc)
    SPECIFICATION CORNER By John Beaton Usage models for Advanced and Mark Summers Mezzanine Card (AdvancedMC) CompactPCI The PCI Industrial Computer Manufacturers Group (PICMG) AMC.x, more commonly known as Advanced Mezzanine Card (AdvancedMC), is the next-generation mezzanine standard designed to enhance modularity and ser- ial connectivity for AdvancedTCA and other carrier-grade communications platforms. The use of mezzanine cards enables manufacturers to implement a variety of embedded processors, Digital Signal Processors (DSPs), network processors, and other components. Each AdvancedTCA board can support up to four AdvancedMC mezzanine cards, which provides new ways for manufac- turers to meet their reliability, availabil- ity, serviceability, and cost requirements. The good news is that the list of potential usage models for AdvancedMC mezza- nines is practically unlimited. It includes I/O cards, processor cards, storage mod- Figure 1 ules, packet processing modules, fabric conversion cards, security modules, and more. In this article, the second in a Shares of Dollar continuing series on AdvancedMC, Mark Volume Shipments and John look at how PICMG AMC.x by Vertical Market, subsidiary specifications now under 2002-2004 development will support traditional usage models, some not-so-obvious uses, and areas where AdvancedMC may not be the best choice. Traditional usage models The usage models for AdvancedMC gen- erally extend current mezzanine usage. Figures 1 and 2 depict how mezzanine cards are used in various vertical markets, as reported by Venture Development Corp. The top three applications, in terms of dollar volume, include communications equipment, military-aerospace, and indus- trial applications, which altogether repre- sent over 90 percent of total mezzanine revenue.
    [Show full text]
  • 세미나 Vmebus, VXS, XMC, VPX
    세미나 VMEBus, VXS, XMC, VPX 디에이큐시스템 2011. 07. 29 Tel)031-737-2018,9 www.daqsystem.com [email protected] 1 http://www.daqsystem.com 목 차 VITA Specification --- 3 Page VME Bus --- 4 ~ 20 Page VITA 41 “VXS” --- 21 ~ 25 Page VITA 42 “XMC” --- 26 ~ 29 Page VITA 46 “VPX” --- 30 ~ 37 Page 2 http://www.daqsystem.com VITA Specification VITA[vee-tuh] • VITA 1.0 VME64 Base • VITA 1.1 VME64x Extensions • VITA 17.2 10Gbit Serial FPDP • VITA 41.0 VXS : VME Switched Serial Base • VITA 41.1 VXS : Infiniband Protocol Layer • VITA 41.2 VXS : Serial RapidIO Protocol Layer • VITA 41.4 VXS : PCI Express Protocol Layer • VITA 42.0 XMC : Switched Mezzanine Card Base • VITA 42.3 XMC : PCI Express Protocol Layer • VITA 46 VPX : Base • VITA 48 VPX REDI :Enhanced Ruggedized Design Implementation Mechanical Base • VITA 65 OpenVPX : Architectural Framework for VPX 3 http://www.daqsystem.com VME Bus 컴퓨터 버스 표준이다. 1979년대 후반에 모토로라가 칩을 개발하면서 공개한 Versa 버스를 유럽의 전자업체에 의해 재탄생. Versa Module Eurocard Bus의 시작 후 많은 업체들이 사용. IEEE 위원회에서 공식적으로 표준화. 산업체, 상업적, 군사적으로 널리 사용 연도 최대속도 (Mbyte/초) VME Bus32 1981 40 VMEbus IEEE -1014 1987 40 VME64 1994 80 VME64x 1997 160 VME320 1997 320 4 http://www.daqsystem.com VME Bus 5 http://www.daqsystem.com VME Bus Structures 1 6 http://www.daqsystem.com VME Bus Structures 2 7 http://www.daqsystem.com VME Signals Signal Name Description Signal Name Description A01-A31 Address Bus DTACK* Data Acknowledge ACFAIL* AC Power failure IACK* Interrupt Ack.
    [Show full text]
  • VITA Momentum
    Open Standards, Open Markets VITA is an incorporated, non-profit organization of vendors and users having a common market interest in real-time, modular embedded com- puting systems. Accredited as an American National Standards Institute (ANSI) developer, VITA provides its members with the ability to develop and to promote open technology standards. VITA Technologies are a favorite choice in many critical embedded computing archi- tectures. VITA Technologies adhere to the open system architecture definition of real- time, modular critical embedded comput- ing systems. The developers within the VITA community are committed to technology fabric and system management specifica- ANSI/VITA 1.7 adds support for an increased excellence. tions, such as VPX, are additional layers that current DIN connector that doubles the With a rich heritage and bright future, VITA build upon the core specifications. maximum wattage capacity of a VME module. Technologies have found an indispensable VME 2eSST (ANSI/VITA 1.5) extends perfor- Each of these standards adds progressively place in Intelligent and Critical Embedded mance by adding dual edge, source synchro- more capability and performance. New Systems. These are the systems that must nous data transfer (2eSST) capability that products, from VITA members, are emerging be “able” in many dimensions: dependable, allows sustained data transfers in excess of that leverage the evolutionary changes in supportable, configurable, reliable, service- 300MB/sec. During its data phases, 2eSST is technology. able, . a source synchronous protocol. No acknowl- These systems must operate flawlessly to edgment is expected from the receiver of protect life, property, equipment, and the the data. Hence, the theoretical performance environment – and to do that they rely on VITA Technologies of a 2eSST VMEbus system is limited only by the durable products of today and tomorrow the skew between receiver and transmitter VME32 is where every- using VITA Technologies.
    [Show full text]
  • VITA 56 – a Fabric-Based PMC Replacement Mezzanine Specification
    Product guide Mezzanines VITA 56 – A fabric-based PMC replacement mezzanine specification By David Slaton In 2005, a VSO VITA 56 working group was established to specify a new mezzanine card that could replace the aging PCI Mezzanine Card (PMC) in 6U embedded systems. This mezzanine card, also known as Express Mezzanine Card (EMC), will offer embedded systems an expansion option that supports the latest and future multi-Gigabit serial fabrics and provides greater levels of manageability and serviceability. These include the ability to remove the module from its host through the front panel. In the first half of 2007, the base EMC specification (EMC.0) will be released under VSOy guidelines for trial use. nl Parallel bus on the decline offered many of the features sought for aO “fat pipes” region, and a “common I/O Prior to the advent of serial fabrics such a 6U mezzanine, the VITA 56 workingt options” region. as PCI Express and Serial RapidIO in group started with AdvancedMC. The embedded systems, the parallel PCI bus working group then made substantialin but Because the EMC is seen as a replace- was predominately used to interface necessary changes to creater a module ment for PMC, where a parallel PCI bus single board computer chipsets to vari- more suitable to traditionalP and future was the main I/O channel, the working ous I/O controllers. Although the PCI embedded systems. Table 1 contains group identified PCIe as the first fabric to bus scaled over time to accommodate various subspecificationsle that make up be supported. As part of the base speci- greater I/O bandwidth demands, the limi- the VITA 56 specification.
    [Show full text]
  • PMC and XMC Modules
    PMC and XMC Modules Data Sheets of TEWS’ PMC Modules and Carrier TEWS TECHNOLOGIES GmbH Am Bahnhof 7 25469 Halstenbek, Germany Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19 e-mail: [email protected] www.tews.com About TEWS TECHNOLOGIES Software support Software support is a critical and defining TEWS TECHNOLOGIES is a leading component of the TEWS’ I/O product solutions provider of embedded I/O and offering. Our modular hardware designs CPU products based on open are coupled with extensive software architecture standards such as drivers and support for most major real- IndustryPack, PMC, XMC, CompactPCI, time and server operating systems such PCI, PCI Express, PCI Express Mini as VxWorks, Windows, Integrity, Linux, Card, VMEbus, PC104+, AMC, and QNX. Supported CPU architectures MicroTCA, and FMC. are Intel, PowerPC and 68k (for IndustryPack only). TEWS has more than 40 years of experience designing and building turn- For IndustryPack carriers and modules, key embedded interface solutions using TEWS has developed a layered driver the philosophy to listen and respond to concept that includes both a carrier driver our customers’ needs. layer and an IP module driver layer. Using this ‘customer first’ approach, All TEWS’ IndustryPack carriers are TEWS has developed a large number of supported directly by the carrier driver, standard and custom products for and a generic driver is included for applications in industrial control, integration of third party products. telecommunication infrastructure, medical equipment, traffic control and COTS. A key element of our software is our support staff. All TEWS’ support engineers are professionally trained to TEWS’ line of embedded I/O solutions is ensure in-depth support for software available worldwide through a global drivers and integration.
    [Show full text]
  • VPX6-215 6U VPX/VPX-REDI Expressreach PMC/XMC and IPM Carrier Card
    PRODUCT DATASHEET VPX6-215 6U VPX/VPX-REDI ExpressReach PMC/XMC and IPM Carrier Card Features • Backplane Fabric Interface - Four 4-lane PCI Express links to the VITA 46 P1 connector (A, B, C, D) - Choice of which backplane PCI Express port - PCI-X interface is served by is the upstream port is user selectable a 4-lane PCI Express port on - User can select backplane ports A and B to the central PCI Express switch through a PCI function as a single 8-lane PCI Express Express-to-PCI bridge upstream port • IPM Site - User can select backplane ports C and D - Supports PCI-based functionality of the SCSI, to function as a single 8-lane PCI Express 1553, and SATA IPM (i.e., no discretes or upstream port IPM serial ports) • XMC/PMC site #1: - Backplane I/O mapping for the features - Supports PCI-X at 66 MHz and PCI at supported is the same as the VPX6-185 33MHz, 64-bit - When an IPM is installed, the maximum PCI - 8-lane PCI Express interface to P15 Express link width for XMC #1 is 4 lanes - 5V tolerant with respect to PMC connectors • Utility Features - Supports 64 signals (32 diff pairs) of PMC - The VPX6-215 drives the MRSTI# signal to I/O including differential routing to backplane each XMC for a duration greater than 10msec per pattern “P64s” of VITA 46.9 from the time onboard power is stabilized in - Supports 24 signals (12 pairs) of XMC I/O to accordance with the VITA 42.0 specification backplane per pattern “X12d” of VITA 46.9 - User selectable option to drive the VITA 46 - PCI-X interface is served by a 4-lane PCI SYSRESET* signal for
    [Show full text]