String Theory Flux Vacua on Twisted Tori and Generalized Complex Geometry

Total Page:16

File Type:pdf, Size:1020Kb

String Theory Flux Vacua on Twisted Tori and Generalized Complex Geometry String theory flux vacua on twisted tori and Generalized Complex Geometry David Andriot To cite this version: David Andriot. String theory flux vacua on twisted tori and Generalized Complex Geometry. Physics. Universit´ePierre et Marie Curie - Paris VI, 2010. English. <tel-00497172> HAL Id: tel-00497172 https://tel.archives-ouvertes.fr/tel-00497172 Submitted on 2 Jul 2010 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. LABORATOIRE DE PHYSIQUE THEORIQUE ET HAUTES ENERGIES THESE DE DOCTORAT DE L’UNIVERSITE PIERRE ET MARIE CURIE PARIS 6 Spécialité: Physique Présentée par David ANDRIOT Pour obtenir le grade de DOCTEUR de l’UNIVERSITE PIERRE ET MARIE CURIE PARIS 6 Sujet: STRING THEORY FLUX VACUA ON TWISTED TORI AND GENERALIZED COMPLEX GEOMETRY SOLUTIONS AVEC FLUX DE LA THEORIE DES CORDES SUR TORES TWISTES, ET GEOMETRIE COMPLEXE GENERALISEE Soutenue le 1er juillet 2010 devant le jury composé de M. Iosif BENA, examinateur, Mme Michela PETRINI, directrice de thèse, M. Henning SAMTLEBEN, rapporteur, M. Dimitrios TSIMPIS, rapporteur, M. Daniel WALDRAM, examinateur, M. Jean-Bernard ZUBER, examinateur. Remerciements Je remercie en premier lieu ma directrice de thèse Michela Petrini. Je la remercie tout d’abord d’avoir accepté de me prendre comme étudiant de thèse. Elle m’a ainsi permis d’entrer dans le monde de la recherche, ce dont je rêvais depuis longtemps. Elle m’a également introduit à une thématique de recherche qui s’est avérée me plaire énormément. Je la remercie ensuite d’avoir supporté certains de mes travers, notamment mon style rédactionnel et mes goûts cinématographiques. Ceux-ci n’ont pas toujours été adaptés à sa notion de l’esthétique, qui restera pour moi un idéal. Plus sérieusement, je la remercie d’avoir su accepter mon fort besoin d’indépendance. Elle m’a laissé me développer (pour reprendre ses mots, “j’ai appris à faire mes lacets” tout seul), tout en me recadrant à chaque fois que cela était nécessaire. Elle m’a de plus toujours dirigé vers les bonnes personnes, et toujours soutenu quand cela était nécessaire. Son sens professionnel m’a été très profitable. Je la remercie aussi pour son apport scientifique majeur. Son sens de la physique, son haut niveau scientifique et sa connaissance générale de la théorie des cordes sont incontestables. J’espère pouvoir continuer à en profiter par la suite. Enfin, je la remercie pour son naturel très humain, sa gentillesse, et ses qualités sociales, qui ont permis une base très agréable dans nos relations. Comment ne pas remercier ensuite celui qui a joué également un rôle prédominant, mon collab- orateur Ruben Minasian. Je le remercie avant tout pour ses nombreux conseils non-scientifiques, son soutien dans de nombreuses situations, et son sens social. Ils ont été déterminants durant ma thèse et pour la suite. Son apport scientifique a aussi été fondamental, en particulier en géométrie différentielle. Il a également su collaborer de manière constructive, tout en respectant nos différentes manières de procéder. Je le remercie enfin pour ses idées tantôt folles ou brillantes, pour son écoute, pour ses multiples anecdotes, et pour son humour grinçant. Je remercie enfin mon compagnon d’infortune, avec qui j’ai souffert dans les déserts mathématiques des algèbres résolubles, dans certains calculs effrayants et interminables, et dans le quotidien du tra- vail de recherche: mon collaborateur Enrico Goi. Ses ressources mathématiques, sa disponibilité, et sa bonne volonté ont certainement été d’un grand soutien. Je remercie ensuite toutes les personnes qui ont eu le courage, la curiosité ou le devoir d’assister à ma soutenance de thèse. J’espère qu’au moins le pot de thèse les récompensera. Je remercie en particulier les membres de mon jury, Iosif Bena, Henning Samtleben, Dimitrios Tsimpis, Daniel Waldram, et Jean-Bernard Zuber, pour avoir accepté de participer, pour le temps accordé, et les remarques pertinentes qu’ils m’ont fournies. Je remercie expressément mes deux rapporteurs, Henning Samtleben et Dimitrios Tsimpis, pour avoir accepté ce travail, et l’avoir fait si efficacement et de manière constructive. Je remercie les membres du LPTHE pour l’accueil chaleureux et l’ouverture scientifique qui règne dans le laboratoire. Ce cadre de travail a été non seulement agréable mais stimulant. Je remercie en particulier le personnel administratif, à savoir Olivier Babelon, Damien Brémont, Françoise Got, Isabelle Nicolaï, Lionel Pihery, Annie Richard, Valérie Sabouraud, et tous les autres, pour avoir géré toutes ces choses que nous ignorons, mais également tous mes voyages, mes conférences, mes divers problèmes, de manière toujours efficace. Je remercie également le groupe de théorie des cordes du LPTHE. Son dynamisme, son ouverture, sa bonne humeur m’ont énormément apporté. Je remercie plus largement le groupe de théorie des cordes de la région parisienne. Là encore, l’activité, le dynamisme, la facilité avec laquelle il était possible de se rencontrer, discuter, m’a offert un cadre extrêmement enrichissant pour ma thèse. Durant ma thèse, j’ai également beaucoup voyagé, et cela m’a été très profitable. Je remercie toutes les personnes et les organismes qui ont rendu cela possible, notamment le LPTHE, le LPTENS, la FRIF, le CNRS, l’UPMC, l’ANR, ainsi que tous les laboratoires que j’ai visité. Je remercie les or- ganisateurs des écoles Paris - Bruxelles - Amsterdam 2006, RTN Winter School 2008 au CERN, et des écoles de mai 2008 et de mars 2009 à l’ICTP à Trieste. Ces écoles ont été l’occasion pour moi d’apprendre énormément et de faire de nombreuses rencontres. Je remercie tous ceux qui y ont participé, étudiants ou chercheurs, pour avoir rendu ces moments enrichissants et agréables. J’ai également assisté voire participé à quelques conférences dont le 4th EU RTN Workshop à Varna. Je remercie les organisateurs pour les mêmes raisons. Enfin, j’ai effectué de nombreuses visites de labo- ratoires et donné des séminaires, aux Etats-Unis et en Europe. Je remercie toutes les personnes qui m’y ont invité, toutes celles qui m’ont reçu et rendu mes séjours plaisants. Les échanges scientifiques que j’ai pu avoir dans ces occasions, mais également mon aperçu de la communauté internationale, m’ont été très précieux. Je remercie enfin tous les scientifiques avec qui j’ai pu échanger au cours de ma thèse, en partic- ulier: Ch. Bock, Agostino Butti, Davide Cassani, Atish Dabholkar, Mark Goodsell, Mariana Graña, Amir Kashani-Poor, Paul Koerber, Guiseppe Policastro, Waldemar Schulgin, Ashoke Sen, Alessan- dro Tomasiello, Ian Troost, Dimitrios Tsimpis, Alberto Zaffaroni, etc. Un remerciement particulier à Gregory Korchemsky, qui a toujours été de bon conseil avant, puis pendant ma thèse. Je le remercie également pour son apport scientifique important, en particulier en théorie des champs, et pour son soutien solide pour mon après-thèse. Plus personnellement, je remercie tous mes collègues étudiants du LPTHE. Plus que d’avoir rendu ma thèse agréable, j’ai passé avec eux des moments inoubliables. Merci à Camille Aron, Guillaume Bossard, Solène Chevalier Thery, Quentin Duret, Benoît Estienne, Tiago Fonseca, Joao Gomes, Nico- las Houdeau, Demian Levis, Ann-Kathrin Maier, Alexis Martin, Yann Michel, César Moura, Redamy Perez Ramos, Clément Rousset, Mathieu Rubin, Alberto Sicilia, et leurs moitiés. Sans oublier Bruno Machet. Merci à vous pour les time challenges dont je fus un fervent adepte, merci pour les cake challenges, les records de Pacman, les têtes à claques, la chanson du dimanche, les repas thésards, les déjeuners à la cantine, etc. Un merci particulier au groupe du Brésil avec qui j’ai réalisé un voyage extraordinaire, et bien plus par ailleurs. Enfin, une pensée toute particulière pour Mathieu Rubin, avec qui j’ai partagé mon bureau pendant quatre ans. Il a subi mon humeur, mes insultes, mon humour discutable, mes demandes de service répétées, les discussions avec mes collaborateurs, mes coups de téléphones, etc. Il est néanmoins parvenu à faire une excellente thèse, ce dont je ne pouvais douter. Merci pour son aide informatique, et mathématique, nos discussions m’auront souvent aidé à avancer, ne serait-ce que dans ma recherche. Sa présence et son caractère inimitable me manqueront. Un grand merci à ma famille et à mes amis qui m’ont soutenu à leur manière durant ces qua- tre années. Ils m’ont souvent permis de garder les pieds sur terre, et ont su respecter la voie que j’avais choisie. En particulier, merci à mes parents et ma famille pour m’avoir permis et encouragé à me lancer dans cette voie pour le moins hasardeuse. Merci également à tous pour les efforts de vulgarisation que vous m’avez demandés, qui m’ont permis de rester en phase avec le monde réel. Merci également à Marc Lilley avec qui j’ai beaucoup échangé scientifiquement et personnellement, en particulier à l’occasion de la création de la conférence SCSC09, mais pas seulement. Enfin, un merci particulier à mon ami et collègue Benjamin Basso avec qui j’ai partagé de nombreux doutes, des questions de physique, des moments de lassitude comme de joies scientifiques, et bien plus que cela. Une telle relation est rare et privilégiée. J’espère préserver celle-ci aussi longtemps que possible. Tous ces remerciements ne sont rien à côté de ceux dûs à Cécile. En quelques mots, forcément insuff- isants: merci pour ta présence, ton écoute, ta patience, ton soutien, permanents pendant ces quatre années.
Recommended publications
  • Orthogonal Symmetric Affine Kac-Moody Algebras
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7133–7159 http://dx.doi.org/10.1090/tran/6257 Article electronically published on April 20, 2015 ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS WALTER FREYN Abstract. Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification. 1. Introduction Riemannian symmetric spaces are fundamental objects in finite dimensional dif- ferential geometry displaying numerous connections with Lie theory, physics, and analysis. The search for infinite dimensional symmetric spaces associated to affine Kac-Moody algebras has been an open question for 20 years, since it was first asked by C.-L. Terng in [Ter95]. We present a complete solution to this problem in a series of several papers, dealing successively with the functional analytic, the algebraic and the geometric aspects. In this paper, building on work of E. Heintze and C. Groß in [HG12], we introduce and classify orthogonal symmetric affine Kac- Moody algebras (OSAKAs). OSAKAs are the central objects in the classification of affine Kac-Moody symmetric spaces as they provide the crucial link between the geometric and the algebraic side of the theory.
    [Show full text]
  • Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
    Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively.
    [Show full text]
  • Lattices and Vertex Operator Algebras
    My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Lattices and Vertex Operator Algebras Gerald H¨ohn Kansas State University Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018 Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List How all began From gerald Mon Apr 24 18:49:10 1995 To: [email protected] Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason, Thank you for your detailed letter from Thursday. It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA`s with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...] I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October. [...] I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank 23 1/2. (edited for spelling and grammar) Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Theorem (H.
    [Show full text]
  • Introduction to Quantum Q-Langlands Correspondence
    Introduction to Quantum q-Langlands Correspondence Ming Zhang∗ May 16{19, 2017 Abstract Quantum q-Langlands Correspondence was introduced by Aganagic, Frenkel and Okounkov in their recent work [AFO17]. Roughly speaking, it is a correspondence between q-deformed conformal blocks of the quantum affine algebra and the deformed W-algebra. In this mini-course, I will define these objects and discuss some results in quantum K-theory of the Nakajima quiver varieties which is the key ingredient in the proof of the correspondence (in the simply-laced case). It will be helpful to know the basic concepts in the theory of Lie algebras (roots, weights, etc.). Contents 1 Introduction 2 1.1 The geometric Langlands correspondence.............................2 1.2 A representation-theoretic statement and its generalization in [AFO17].............2 2 Lie algebras 2 2.1 Root systems.............................................3 2.2 The Langlands dual.........................................4 3 Affine Kac{Moody algebras4 3.1 Via generators and relations.....................................5 3.2 Via extensions............................................6 4 Representations of affine Kac{Moody algebras7 4.1 The extended algebra........................................7 4.2 Representations of finite-dimensional Lie algebras.........................8 4.2.1 Weights............................................8 4.2.2 Verma modules........................................8 4.3 Representations of affine Kac{Moody algebras...........................9 4.3.1 The category of representations.............................9 4.3.2 Verma modulesO........................................ 10 4.3.3 The evaluation representation................................ 11 4.3.4 Level.............................................. 11 ∗Notes were taken by Takumi Murayama, who is responsible for any and all errors. Please e-mail [email protected] with any more corrections. Compiled on May 21, 2017. 1 1 Introduction We will follow Aganagic, Frenkel, and Okounkov's paper [AFO17], which came out in January of this year.
    [Show full text]
  • Stringy Instantons, Deformed Geometry and Axions
    Stringy instantons, deformed geometry and axions. Eduardo Garc´ıa-Valdecasas Tenreiro Instituto de F´ısica Teorica´ UAM/CSIC, Madrid Based on 1605.08092 by E.G. & A. Uranga and ongoing work Iberian Strings 2017, Lisbon, 16th January 2017 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Motivation & Outline Motivation Axions have very flat potentials ) Good for Inflation. Axions developing a potential, i.e. through instantons, can always be described as a 3-Form eating up the 2-Form dual to the axion. There is no candidate 3-Form for stringy instantons. We will look for it in the geometry deformed by the instanton. The instanton triggers a geometric transition. Outline 1 Axions and 3-Forms. 2 Backreacting Instantons. 3 Flavor branes at the conifold. Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 2 / 22 2 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions and 3-Forms Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 3 / 22 3 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions Axions are periodic scalar fields. This shift symmetry can be broken to a discrete shift symmetry by non-perturbative effects ! Very flat potential, good for inflation. However, discrete shift symmetry is not enough to keep the corrections to the potential small. There is a dual description where the naturalness of the flatness is more manifest. For example, a quadratic potential with monodromy can be described by a Kaloper-Sorbo lagrangian (Kaloper & Sorbo, 2009), 2 2 j dφj + nφF4 + jF4j (1) The potential is recovered using E.O.M, 2 V0 ∼ (nφ − q) ; q 2 Z (2) Eduardo Garc´ıa-ValdecasasSo there Tenreiro is a discreteStringy instantons, shift deformed symmetry, geometry and axions.
    [Show full text]
  • Contemporary Mathematics 442
    CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV.
    [Show full text]
  • Groups and Group Functors Attached to Kac-Moody Data
    GROUPS AND GROUP FUNCTORS ATTACHED TO KAC-MOODY DATA Jacques Tits CollAge de France 11PI Marcelin Berthelot 75231 Paris Cedex 05 1. The finite-dimenSional complex semi-simple Lie algebras. To start with, let us recall the classification, due to W. Killing and E. Cartan, of all complex semi-simple Lie algebras. (The presen- tation we adopt, for later purpose, is of course not that of those authors.) The isomorphism classes of such algebras are in one-to-one correspondence with the systems (1.1) H , (ei)1~iSZ , (hi) 1~i$ Z , where H is a finite-dimensional complex vector space (a Cartan subalgebra of a representative G of the isomorphism class in question), (~i) i~i$~ is a basis of the dual H* of H (a basis of the root system of @ relative to H ) and (hi) i$i~ ~ is a basis of H indexed by the same set {I ..... i} (h i is the coroot associated with di )' such that the matrix ~ = (Aij) = (~j(hi)) is a Cartan matrix, which means that the following conditions are satisfied: the A.. are integers ; (C1) 1] (C2) A.. = 2 or ~ 0 according as i = or ~ j ; 13 (C3) A. ~ = 0 if and only if A.. = 0 ; 13 31 (C4) is the product of a positive definite symmetric matrix and a diagonal matrix (by abuse of language, we shall simply say that ~ is positive definite). More correctly: two such data correspond to the same isomorphism class of algebras if and only if they differ only by a permutation of the indices I,...,~ .
    [Show full text]
  • Lectures on Conformal Field Theory and Kac-Moody Algebras
    hep-th/9702194 February 1997 LECTURES ON CONFORMAL FIELD THEORY AND KAC-MOODY ALGEBRAS J¨urgen Fuchs X DESY Notkestraße 85 D – 22603 Hamburg Abstract. This is an introduction to the basic ideas and to a few further selected topics in conformal quantum field theory and in the theory of Kac-Moody algebras. These lectures were held at the Graduate Course on Conformal Field Theory and Integrable Models (Budapest, August 1996). They will appear in a volume of the Springer Lecture Notes in Physics edited by Z. Horvath and L. Palla. —————— X Heisenberg fellow 1 Contents Lecture 1 : Conformal Field Theory 3 1 Conformal Quantum Field Theory 3 2 Observables: The Chiral Symmetry Algebra 4 3 Physical States: Highest Weight Modules 7 4 Sectors: The Spectrum 9 5 Conformal Fields 11 6 The Operator Product Algebra 14 7 Correlation Functions and Chiral Blocks 16 Lecture 2 : Fusion Rules, Duality and Modular Transformations 19 8 Fusion Rules 19 9 Duality 21 10 Counting States: Characters 23 11 Modularity 24 12 Free Bosons 26 13 Simple Currents 28 14 Operator Product Algebra from Fusion Rules 30 Lecture 3 : Kac--Moody Algebras 32 15 Cartan Matrices 32 16 Symmetrizable Kac-Moody Algebras 35 17 Affine Lie Algebras as Centrally Extended Loop Algebras 36 18 The Triangular Decomposition of Affine Lie Algebras 38 19 Representation Theory 39 20 Characters 40 Lecture 4 : WZW Theories and Coset Theories 42 21 WZW Theories 42 22 WZW Primaries 43 23 Modularity, Fusion Rules and WZW Simple Currents 44 24 The Knizhnik-Zamolodchikov Equation 46 25 Coset Conformal Field Theories 47 26 Field Identification 48 27 Fixed Points 49 28 Omissions 51 29 Outlook 52 30 Glossary 53 References 55 2 Lecture 1 : Conformal Field Theory 1 Conformal Quantum Field Theory Over the years, quantum field theory has enjoyed a great number of successes.
    [Show full text]
  • Construction and Classification of Holomorphic Vertex Operator Algebras
    Construction and classification of holomorphic vertex operator algebras Jethro van Ekeren1, Sven Möller2, Nils R. Scheithauer2 1Universidade Federal Fluminense, Niterói, RJ, Brazil 2Technische Universität Darmstadt, Darmstadt, Germany We develop an orbifold theory for finite, cyclic groups acting on holomorphic vertex operator algebras. Then we show that Schellekens’ classification of V1-structures of meromorphic confor- mal field theories of central charge 24 is a theorem on vertex operator algebras. Finally we use these results to construct some new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds. 1 Introduction Vertex algebras give a mathematically rigorous description of 2-dimensional quantum field the- ories. They were introduced into mathematics by R. E. Borcherds [B1]. The most prominent example is the moonshine module V \ constructed by Frenkel, Lepowsky and Meurman [FLM]. This vertex algebra is Z-graded and carries an action of the largest sporadic simple group, the monster. Borcherds showed that the corresponding twisted traces are hauptmoduls for genus 0 groups [B2]. The moonshine module was the first example of an orbifold in the theory of vertex algebras. The (−1)-involution of the Leech lattice Λ lifts to an involution g of the associated lattice vertex g algebra VΛ. The fixed points VΛ of VΛ under g form a simple subalgebra of VΛ. Let VΛ(g) be the unique irreducible g-twisted module of VΛ and VΛ(g)Z the subspace of vectors with integral g g L0-weight. Then the vertex algebra structure on VΛ can be extended to VΛ ⊕ VΛ(g)Z. This sum \ g is the moonshine module V .
    [Show full text]
  • Exact Thresholds and Instanton Effects in D = 3 String Theories
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Preprint typeset in JHEP style. - HYPER VERSION hep-th/0006088 NBI-HE-00-29 NORDITA-2000/54 HE HUTP-00/A022 LPTHE-00-22 Exact thresholds and instanton effects in D =3string theories Niels A. Obers∗ Nordita and Niels Bohr Institute Blegdamsvej 17, DK-2100 Copenhagen, DENMARK E-mail: [email protected] Boris Pioline† Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA E-mail: [email protected] Abstract: Three-dimensional string theories with 16 supersymmetries are believed to possess a non-perturbative U-duality symmetry SO(8; 24; Z). By covariantizing the heterotic one-loop amplitude under U-duality, we propose an exact expression for the (∂φ)4 amplitude, that reproduces known perturbative limits. The weak-coupling ex- pansion in either of the heterotic, type II or type I descriptions exhibits the well-known instanton effects, plus new contributions peculiar to three-dimensional theories, includ- ing the Kaluza-Klein 5-brane, for which we extract the summation measure. This letter is a post-scriptum to hep-th/0001083. Keywords: Nonperturbative Effects, String Duality, p-branes. ∗Work supported in part by TMR network ERBFMRX-CT96-0045. yOn leave of absence from LPTHE, Universit´e Pierre et Marie Curie, PARIS VI and Universit´e Denis Diderot, PARIS VII, Bo^ıte 126, Tour 16, 1er ´etage, 4 place Jussieu, F-75252 Paris CEDEX 05, FRANCE Contents 1. Introduction In a recent article [1], we have submitted the conjectured heterotic-type II duality to its most detailed test to date, by showing the identity of the heterotic one-loop–exact four–gauge-boson F 4 threshold in six dimensions with the tree-level amplitude in type IIA compactified on K3.
    [Show full text]
  • Supersymmetry: Lecture 2: the Supersymmetrized Standard Model
    Supersymmetry: Lecture 2: The Supersymmetrized Standard Model Yael Shadmi Technion June 2014 Yael Shadmi (Technion) ESHEP June 2014 1 / 91 Part I: The Supersymmetrized SM: motivation and structure before 2012, all fundamental particles we knew had spin 1 or spin 1/2 but we now have the Higgs: it's spin 0 of course spin-0 is the simplest possibility spin-1 is intuitive too (we all understand vectors) the world and (QM courses) would have been very different if the particle we know best, the electron, were spin-0 supersymmetry: boson $ fermion so from a purely theoretical standpoint, supersymmetry would provide an explanation for why we have particles of different spins Yael Shadmi (Technion) ESHEP June 2014 2 / 91 The Higgs and fine tuning: because the Higgs is spin-0, its mass is quadratically divergent 2 2 δm / ΛUV (1) unlike fermions (protected by chiral symmetry) gauge bosons (protected by gauge symmetry) Yael Shadmi (Technion) ESHEP June 2014 3 / 91 Higgs Yukawa coupling: quark (top) contribution also, gauge boson, Higgs loops Yael Shadmi (Technion) ESHEP June 2014 4 / 91 practically: we don't care (can calculate anything in QFT, just put in a counter term) theoretically: believe ΛUV is a concrete physical scale, eg: mass of new fields, scale of new strong interactions then 2 2 2 m (µ) = m (ΛUV ) + # ΛUV (2) 2 m (ΛUV ) determined by the full UV theory # determined by SM we know LHS: m2 ∼ 1002 GeV2 18 if ΛUV = 10 GeV 2 36 2 we need m (ΛUV ) ∼ 10 GeV and the 2 terms on RHS tuned to 32 orders of magnitude.
    [Show full text]
  • All Flat Manifolds Are Cusps of Hyperbolic Orbifolds 1 Introduction
    ISSN 1472-2739 (on-line) 1472-2747 (printed) 285 Algebraic & Geometric Topology Volume 2 (2002) 285–296 ATG Published: 18 April 2002 All flat manifolds are cusps of hyperbolic orbifolds D.D. Long A.W. Reid Abstract We show that all closed flat n-manifolds are diffeomorphic to a cusp cross- section in a finite volume hyperbolic n + 1-orbifold. AMS Classification 57M50; 57R99 Keywords Flat manifolds, hyperbolic orbifold, cusp cross-sections 1 Introduction By a flat n-manifold (resp. flat n-orbifold) we mean a manifold (resp. orbifold) En/Γ where En is Euclidean n-space and Γ a discrete, cocompact torsion-free subgroup of Isom(En) (resp. Γ has elements of finite order). In [7], Ham- rick and Royster resolved a longstanding conjecture by showing that every flat n-manifold bounds an (n + 1)-dimensional manifold, in the sense that each diffeomorphism class has a representative that bounds. Flat manifolds and orbifolds are connected with hyperbolic orbifolds via the structure of the cusp ends of finite volume hyperbolic orbifolds—if M n+1 is a non-compact finite volume hyperbolic orbifold, then by a standard analysis of the thin parts, a cusp cross-section is a flat n-orbifold (see below and [14]). In the early eighties, motivated by this and work of Gromov [6], Farrell and Zdravkovska [5] posed the following geometric version: Question Does the diffeomorphism class of every flat n-manifold have a rep- resentative W which arises as the cusp cross-section of a finite volume 1-cusped hyperbolic (n + 1)-manifold? We note that it makes sense to ask only for bounding up to diffeomorphism type, since it is a well-known consequence of Mostow Rigidity that there are algebraic restrictions on the isometry type of the flat n-manifolds that can arise as cusp cross sections of finite volume hyperbolic (n + 1)-manifolds.
    [Show full text]