Lecture 20: Wess-Zumino-Witten CFT and Fusion Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 20: Wess-Zumino-Witten CFT and Fusion Algebras Review: Affine Kac-Moody Lie Algebras WZW Theories Lecture 20: Wess-Zumino-Witten CFT and Fusion Algebras Daniel Bump January 1, 2020 Review: Affine Kac-Moody Lie Algebras WZW Theories Overview We have so far emphasized the BPZ minimal models, in which c takes particular values < 1. These are special in that the Hilbert space H decomposes into a finite number of Vir ⊕ Vir modules. For c > 1, in order to obtain such a finite decomposition it is necessary to enlarge Vir. If this can be done, we speak of a rational CFT: see Lecture 19 for a more careful definition of this concept, due to Moore and Seiberg. One natural such extension enlarges Vir to include an affine Lie algebra. This leads to the Wess-Zumino-Witten (WZW) models. A further generalization of this theory, the coset models of Goddard-Kent-Olive ([GKO]) contains both the minimal models and the WZW models. Review: Affine Kac-Moody Lie Algebras WZW Theories Lecture 6 review: A note on notation References: [DMS] Chapter 14 Kac, Infinite-Dimensional Lie algebras, Chapters 6,7,12,13 Kac and Peterson, Adv. in Math. 53 (1984). We begin by reviewing the construction of affine Lie algebras from Lecture 6, changing the notation slightly. Let g be a finite-dimensional semisimple complex Lie algebra with Cartan subalgebra h. We will define the untwisted affine Lie algebra bg by first making a central extension, then adjoining a derivation d. Finally we will make a semidirect product of bg with Vir in which d is identified with -L0. Review: Affine Kac-Moody Lie Algebras WZW Theories Review: central extensions Let g be a Lie algebra and a an abelian Lie algebra. A bilinear map σ : g × g ! a is called a 2-cocycle if it is skew-symmetric and satisfies σ([X, Y], Z) + σ([X, Y], Z) + σ([X, Y], Z) = 0, X, Y, Z 2 a. In this case we may define a Lie algebra structure on g ⊕ a by [(X, a), (Y, b)] = ([X, Y], σ(X, Y)). Denoting this Lie algebra g0 we have a central extension 0 −! a −! g0 −! g −! 0. Review: Affine Kac-Moody Lie Algebras WZW Theories Review: Adding a derivation Suppose we have a derivation d of a Lie algebra g. This means d([x, y]) = [dx, y] + [x, dy]. 0 We may then construct a Lie algebra g = g ⊕ Cd in which [d, x] = d(x) for x 2 g. This is a special case of a more general construction, the semidirect product. Review: Affine Kac-Moody Lie Algebras WZW Theories Review: Affine Lie algebras as Central Extensions Although the affine Lie algebra bg may be constructed from its Cartan matrix, another construction described in Chapter 7 of Kac begins with the finite-dimensional simple Lie algebra g of rank `. Tensoring with the Laurent polynomial ring gives the - loop Lie algebra g ⊗ C[t, t 1]. Then one may make a central extension: 0 -1 0 ! C · K ! bg ! C[t, t ] ⊗ g ! 0. After that, one usually adjoins another basis element, which 0 acts on bg as a derivation d. This gives the full affine Lie algebra bg. Review: Affine Kac-Moody Lie Algebras WZW Theories The dual Coxeter number The dual Coxeter number, denoted h_ will appear frequently in formulas. We omit the definition, for which see Kac, Infinite-dimensional Lie algebras Section 6.1. But here are the values as a function of the Cartan type of g. Cartan Type h_ A` l + 1 B` 2l - 1 C` l + 1 D` 2l - 2 E6 12 E7 18 E8 30 F4 9 G2 4 Review: Affine Kac-Moody Lie Algebras WZW Theories The root system and Weyl group The root system is the set of nonzero elements of bh∗ that occur in the adjoint representation of bh on g. Particular roots are as follows. _ ∗ There exist αi 2 bh and αi 2 bh called simple coroots and simple roots respectively. For i = 0, ··· , r (with r the rank of g there is simple reflection acting on bh∗ defined by _ si(λ) = λ - λ(αi )αi and the group generated by the si is the affine Weyl group W. Review: Affine Kac-Moody Lie Algebras WZW Theories Real and imaginary roots As usual, roots may be partitioned into positive and negative. A root is called real if it is in the W-orbit of a simple root. A root is imaginary if it is not real. There is a minimal positive imaginary root δ. The roots of g are all roots of bg. Let ∆ be the finite root system of g. The real roots of g are fα + nδjα 2 ∆, n 2 Zg. The imaginary roots are nδ with 0 6= n 2 Z. Review: Affine Kac-Moody Lie Algebras WZW Theories Other data The Cartan subalgebra bh of bg is h with the central element K and the derivation d adjoined. Other data that are described in Kac, Infinite-Dimensional Lie _ Algebras, Chapters 6 and 12. There are coroots αi 2 bh for i = 0, 1, ··· , r, where r is the rank of g. There are positive _ integers ai dual to the ai that we will call comarks such that r r _ _ _ . K = ai αi , h = ai i=0 i=0 X X _ The numbers ai (sometimes called comarks) are all 1 if _ g = slr+1, and for all g at least a0 = 1. Review: Affine Kac-Moody Lie Algebras WZW Theories Enlargement by Vir Instead of (or more precisely, in addition to) enlarging g0 by the derivation d we may form the semidirect product of g0 by the entire Virasoro algebra 1 [L , L ] = (i - j)L + (i3 - i)δ · C i j i+j 12 i,-j i+1 where Li acs as the derivation -t d=dt. This semidirect 0 product contains the full affine Lie algebra g = g ⊕ Cd with d = -L0. It is also possible to embed Vir in the universal enveloping algebra of bg. This is the Sugawara construction which we will make precise later. Review: Affine Kac-Moody Lie Algebras WZW Theories Integrable highest weight representations ∗ Let Λi 2 bh be the fundamental weights characterized by _ Λi(αj ) = δij and Λi(d) = 0. The lattice P spanned by the Λi is called the weight lattice. If λ = i ciΛi with ci nonnegative integers, then λ is called dominant. P Given λ 2 bh it is possible to construct a Verma module M(λ) that is highest weight representation of bg. It has a unique irreducible quotient L(λ). Let P+ be the cone of dominant weights. If λ 2 P+, then L(λ) is integrable, namely exponentiates to a representation of the loop group. The character is therefore invariant under the affine Weyl group. Review: Affine Kac-Moody Lie Algebras WZW Theories String functions Kac and Peterson proved that the characters of integrable highest weight representations are modular forms. Let λ be a dominant weight and let µ be a weight. Let mλ(µ) be the multiplicity of µ in L(λ). The function m(µ - nδ) is monotone, and zero outside the cone (λ + ρjλ + ρ)-(µ + ρ, µ + ρ) > 0. Therefore we may find a smallest n such that m(µ - nδ) is nonzero. We call µ - nδ a maximal weight. Define the string function λ -kδ bµ = m(µ - kδ)e . k X replacing µ by µ - nδ just multiplies the series by ekδ so there is no loss of generality in assuming that µ is maximal. Review: Affine Kac-Moody Lie Algebras WZW Theories String functions (continued) The character λ χλ = bµ. µ maximalX Moreover using the fact that δ = w(δ) for all w 2 W we may λ λ λ have w(bµ) = bwµ and therefore we may rewrite bµ by finding a Weyl group element such that wµ is dominant. There are only a finite number of dominant maximal weights. Then wµ λ χλ = e bµ. µ maximal,X dominant w2XW=Wµ (To avoid overcounting Wµ is the stabilizer of the dominant maximal weight µ.) Review: Affine Kac-Moody Lie Algebras WZW Theories Modular characteristics and the character Define the modular characteristic (modular anamoly) jλ + ρj2 jρj2 s = - , λ 2(k + h_) 2k We are using the notation ( j ) for an invariant inner product on Λ. Here h_ is the dual Coxeter number and k = (δjλ). Also jµj2 s (µ) = s - . λ λ 2k Now define λ -sλ(µ)δ λ -sλ(µ)δ -nδ cµ = e bµ = e m(λ - nδ)e . n X>0 These modified string functions are theta functions which are modular forms, as was proved by Kac and Peterson. Because of this, the character χλ, which is the sum of all string functions, is a modular form. Review: Affine Kac-Moody Lie Algebras WZW Theories The level k alcove The level of a weight λ is _ _ k = hλ, Ki = ai λ(αi ). X There are a finite number of dominant weights of level k, and these may be visualized as follows. We may identify the fundamental weights Λ1, ··· , Λr with the weights of the finite–dimensional Lie algebra g. Then the weights of level k are identified with weights of g by projecting on the span of Λ1, ··· , Λr. The positive Weyl chamber for g is _ the set of weights λ such that λ(αi ) > 0 for 1 6 i 6 r. The level k alcove then adds one inequality, hλ, Ki 6 k, where θ is the highest root of g.
Recommended publications
  • Orthogonal Symmetric Affine Kac-Moody Algebras
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7133–7159 http://dx.doi.org/10.1090/tran/6257 Article electronically published on April 20, 2015 ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS WALTER FREYN Abstract. Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification. 1. Introduction Riemannian symmetric spaces are fundamental objects in finite dimensional dif- ferential geometry displaying numerous connections with Lie theory, physics, and analysis. The search for infinite dimensional symmetric spaces associated to affine Kac-Moody algebras has been an open question for 20 years, since it was first asked by C.-L. Terng in [Ter95]. We present a complete solution to this problem in a series of several papers, dealing successively with the functional analytic, the algebraic and the geometric aspects. In this paper, building on work of E. Heintze and C. Groß in [HG12], we introduce and classify orthogonal symmetric affine Kac- Moody algebras (OSAKAs). OSAKAs are the central objects in the classification of affine Kac-Moody symmetric spaces as they provide the crucial link between the geometric and the algebraic side of the theory.
    [Show full text]
  • Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
    Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively.
    [Show full text]
  • Lattices and Vertex Operator Algebras
    My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Lattices and Vertex Operator Algebras Gerald H¨ohn Kansas State University Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018 Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List How all began From gerald Mon Apr 24 18:49:10 1995 To: [email protected] Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason, Thank you for your detailed letter from Thursday. It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA`s with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...] I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October. [...] I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank 23 1/2. (edited for spelling and grammar) Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Theorem (H.
    [Show full text]
  • Introduction to Quantum Q-Langlands Correspondence
    Introduction to Quantum q-Langlands Correspondence Ming Zhang∗ May 16{19, 2017 Abstract Quantum q-Langlands Correspondence was introduced by Aganagic, Frenkel and Okounkov in their recent work [AFO17]. Roughly speaking, it is a correspondence between q-deformed conformal blocks of the quantum affine algebra and the deformed W-algebra. In this mini-course, I will define these objects and discuss some results in quantum K-theory of the Nakajima quiver varieties which is the key ingredient in the proof of the correspondence (in the simply-laced case). It will be helpful to know the basic concepts in the theory of Lie algebras (roots, weights, etc.). Contents 1 Introduction 2 1.1 The geometric Langlands correspondence.............................2 1.2 A representation-theoretic statement and its generalization in [AFO17].............2 2 Lie algebras 2 2.1 Root systems.............................................3 2.2 The Langlands dual.........................................4 3 Affine Kac{Moody algebras4 3.1 Via generators and relations.....................................5 3.2 Via extensions............................................6 4 Representations of affine Kac{Moody algebras7 4.1 The extended algebra........................................7 4.2 Representations of finite-dimensional Lie algebras.........................8 4.2.1 Weights............................................8 4.2.2 Verma modules........................................8 4.3 Representations of affine Kac{Moody algebras...........................9 4.3.1 The category of representations.............................9 4.3.2 Verma modulesO........................................ 10 4.3.3 The evaluation representation................................ 11 4.3.4 Level.............................................. 11 ∗Notes were taken by Takumi Murayama, who is responsible for any and all errors. Please e-mail [email protected] with any more corrections. Compiled on May 21, 2017. 1 1 Introduction We will follow Aganagic, Frenkel, and Okounkov's paper [AFO17], which came out in January of this year.
    [Show full text]
  • Stringy Instantons, Deformed Geometry and Axions
    Stringy instantons, deformed geometry and axions. Eduardo Garc´ıa-Valdecasas Tenreiro Instituto de F´ısica Teorica´ UAM/CSIC, Madrid Based on 1605.08092 by E.G. & A. Uranga and ongoing work Iberian Strings 2017, Lisbon, 16th January 2017 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Motivation & Outline Motivation Axions have very flat potentials ) Good for Inflation. Axions developing a potential, i.e. through instantons, can always be described as a 3-Form eating up the 2-Form dual to the axion. There is no candidate 3-Form for stringy instantons. We will look for it in the geometry deformed by the instanton. The instanton triggers a geometric transition. Outline 1 Axions and 3-Forms. 2 Backreacting Instantons. 3 Flavor branes at the conifold. Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 2 / 22 2 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions and 3-Forms Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 3 / 22 3 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions Axions are periodic scalar fields. This shift symmetry can be broken to a discrete shift symmetry by non-perturbative effects ! Very flat potential, good for inflation. However, discrete shift symmetry is not enough to keep the corrections to the potential small. There is a dual description where the naturalness of the flatness is more manifest. For example, a quadratic potential with monodromy can be described by a Kaloper-Sorbo lagrangian (Kaloper & Sorbo, 2009), 2 2 j dφj + nφF4 + jF4j (1) The potential is recovered using E.O.M, 2 V0 ∼ (nφ − q) ; q 2 Z (2) Eduardo Garc´ıa-ValdecasasSo there Tenreiro is a discreteStringy instantons, shift deformed symmetry, geometry and axions.
    [Show full text]
  • An Introduction to Affine Kac-Moody Algebras
    An introduction to affine Kac-Moody algebras David Hernandez To cite this version: David Hernandez. An introduction to affine Kac-Moody algebras. DEA. Lecture notes from CTQM Master Class, Aarhus University, Denmark, October 2006, 2006. cel-00112530 HAL Id: cel-00112530 https://cel.archives-ouvertes.fr/cel-00112530 Submitted on 9 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AN INTRODUCTION TO AFFINE KAC-MOODY ALGEBRAS DAVID HERNANDEZ Abstract. In these lectures we give an introduction to affine Kac- Moody algebras, their representations, and applications of this the- ory. Contents 1. Introduction 1 2. Quick review on semi-simple Lie algebras 2 3. Affine Kac-Moody algebras 5 4. Representations of Lie algebras 8 5. Fusion product, conformal blocks and Knizhnik- Zamolodchikov equations 14 References 19 1. Introduction Affine Kac-Moody algebras ˆg are infinite dimensional analogs of semi-simple Lie algebras g and have a central role both in Mathematics (Modular forms, Geometric Langlands program...) and Mathematical Physics (Conformal Field Theory...). These lectures are an introduction to the theory of affine Kac-Moody algebras and their representations with basic results and constructions to enter the theory.
    [Show full text]
  • Root Components for Tensor Product of Affine Kac-Moody Lie Algebra Modules
    ROOT COMPONENTS FOR TENSOR PRODUCT OF AFFINE KAC-MOODY LIE ALGEBRA MODULES SAMUEL JERALDS AND SHRAWAN KUMAR 1. Abstract Let g be an affine Kac-Moody Lie algebra and let λ, µ be two dominant integral weights for g. We prove that under some mild restriction, for any positive root β, V(λ)⊗V(µ) contains V(λ+µ−β) as a component, where V(λ) denotes the integrable highest weight (irreducible) g-module with highest weight λ. This extends the corresponding result by Kumar from the case of finite dimensional semisimple Lie algebras to the affine Kac-Moody Lie algebras. One crucial ingredient in the proof is the action of Virasoro algebra via the Goddard-Kent-Olive construction on the tensor product V(λ) ⊗ V(µ). Then, we prove the corresponding geometric results including the higher cohomology vanishing on the G-Schubert varieties in the product partial flag variety G=P × G=P with coefficients in certain sheaves coming from the ideal sheaves of G-sub Schubert varieties. This allows us to prove the surjectivity of the Gaussian map. 2. Introduction Let g be a symmetrizable Kac–Moody Lie algebra, and fix two dominant inte- gral weights λ, µ 2 P+. To these, we can associate the integrable, highest weight (irreducible) representations V(λ) and V(µ). Then, the content of the tensor decom- position problem is to express the product V(λ)⊗V(µ) as a direct sum of irreducible components; that is, to find the decomposition M ⊕mν V(λ) ⊗ V(µ) = V(ν) λ,µ ; ν2P+ ν where mλ,µ 2 Z≥0 is the multiplicity of V(ν) in V(λ) ⊗ V(µ).
    [Show full text]
  • Contemporary Mathematics 442
    CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV.
    [Show full text]
  • Groups and Group Functors Attached to Kac-Moody Data
    GROUPS AND GROUP FUNCTORS ATTACHED TO KAC-MOODY DATA Jacques Tits CollAge de France 11PI Marcelin Berthelot 75231 Paris Cedex 05 1. The finite-dimenSional complex semi-simple Lie algebras. To start with, let us recall the classification, due to W. Killing and E. Cartan, of all complex semi-simple Lie algebras. (The presen- tation we adopt, for later purpose, is of course not that of those authors.) The isomorphism classes of such algebras are in one-to-one correspondence with the systems (1.1) H , (ei)1~iSZ , (hi) 1~i$ Z , where H is a finite-dimensional complex vector space (a Cartan subalgebra of a representative G of the isomorphism class in question), (~i) i~i$~ is a basis of the dual H* of H (a basis of the root system of @ relative to H ) and (hi) i$i~ ~ is a basis of H indexed by the same set {I ..... i} (h i is the coroot associated with di )' such that the matrix ~ = (Aij) = (~j(hi)) is a Cartan matrix, which means that the following conditions are satisfied: the A.. are integers ; (C1) 1] (C2) A.. = 2 or ~ 0 according as i = or ~ j ; 13 (C3) A. ~ = 0 if and only if A.. = 0 ; 13 31 (C4) is the product of a positive definite symmetric matrix and a diagonal matrix (by abuse of language, we shall simply say that ~ is positive definite). More correctly: two such data correspond to the same isomorphism class of algebras if and only if they differ only by a permutation of the indices I,...,~ .
    [Show full text]
  • Lectures on Conformal Field Theory and Kac-Moody Algebras
    hep-th/9702194 February 1997 LECTURES ON CONFORMAL FIELD THEORY AND KAC-MOODY ALGEBRAS J¨urgen Fuchs X DESY Notkestraße 85 D – 22603 Hamburg Abstract. This is an introduction to the basic ideas and to a few further selected topics in conformal quantum field theory and in the theory of Kac-Moody algebras. These lectures were held at the Graduate Course on Conformal Field Theory and Integrable Models (Budapest, August 1996). They will appear in a volume of the Springer Lecture Notes in Physics edited by Z. Horvath and L. Palla. —————— X Heisenberg fellow 1 Contents Lecture 1 : Conformal Field Theory 3 1 Conformal Quantum Field Theory 3 2 Observables: The Chiral Symmetry Algebra 4 3 Physical States: Highest Weight Modules 7 4 Sectors: The Spectrum 9 5 Conformal Fields 11 6 The Operator Product Algebra 14 7 Correlation Functions and Chiral Blocks 16 Lecture 2 : Fusion Rules, Duality and Modular Transformations 19 8 Fusion Rules 19 9 Duality 21 10 Counting States: Characters 23 11 Modularity 24 12 Free Bosons 26 13 Simple Currents 28 14 Operator Product Algebra from Fusion Rules 30 Lecture 3 : Kac--Moody Algebras 32 15 Cartan Matrices 32 16 Symmetrizable Kac-Moody Algebras 35 17 Affine Lie Algebras as Centrally Extended Loop Algebras 36 18 The Triangular Decomposition of Affine Lie Algebras 38 19 Representation Theory 39 20 Characters 40 Lecture 4 : WZW Theories and Coset Theories 42 21 WZW Theories 42 22 WZW Primaries 43 23 Modularity, Fusion Rules and WZW Simple Currents 44 24 The Knizhnik-Zamolodchikov Equation 46 25 Coset Conformal Field Theories 47 26 Field Identification 48 27 Fixed Points 49 28 Omissions 51 29 Outlook 52 30 Glossary 53 References 55 2 Lecture 1 : Conformal Field Theory 1 Conformal Quantum Field Theory Over the years, quantum field theory has enjoyed a great number of successes.
    [Show full text]
  • Affine Lie Algebras 8
    Affine Lie Algebras Kevin Wray January 16, 2008 Abstract In these lectures the untwisted affine Lie algebras will be constructed. The reader is assumed to be familiar with the theory of semisimple Lie algebras, e.g. that he or she knows a big part of James E. Humphreys' Introduction to Lie algebras and repre- sentation theory [1]. The notations used in these notes will be taken from [1]. These lecture notes are based on the course Affine Lie Algebras given by Prof. Dr. Johan van de Leur at the Mathematical Research Insitute in Utrecht (The Netherlands) during the fall of 2007. 1 Semisimple Lie Algebras 1.1 Root Spaces Recall some basic notions from [1]. Let L be a semisimple Lie algebra, H a Cartan subalgebra (CSA), and κ(x; y) = T r(ad (x) ad (y)) the Killing form on L. Then the Killing form is symmetric, non-degenerate (since L is semisimple and using theorem 5.1 page 22 z [1]), and associative; i.e. κ : L × L ! F is bilinear on L and satisfies κ ([x; y]; z) = κ (x; [y; z]) : The restriction of the Killing form to the CSA, denoted by κjH (·; ·), is non-degenerate (Corollary 8.2 page 37 [1]). This allows for the identification of H with H∗ (see [1] x8.2: ∗ to φ 2 H there corresponds a unique element tφ 2 H satisfying φ(h) = κ(tφ; h) for all h 2 H). This makes it possible to define a symmetric, non-degenerate bilinear form, ∗ ∗ ∗ (·; ·): H × H ! F, given on H as ∗ (α; β) = κ(tα; tβ)(8 α; β 2 H ) : ∗ Let Φ ⊂ H be the root system corresponding to L and ∆ = fα1; : : : ; α`g a fixed basis of Φ (∆ is also called a simple root system).
    [Show full text]
  • Introduction to Vertex Operator Algebras I 1 Introduction
    数理解析研究所講究録 904 巻 1995 年 1-25 1 Introduction to vertex operator algebras I Chongying Dong1 Department of Mathematics, University of California, Santa Cruz, CA 95064 1 Introduction The theory of vertex (operator) algebras has developed rapidly in the last few years. These rich algebraic structures provide the proper formulation for the moonshine module construction for the Monster group ([BI-B2], [FLMI], [FLM3]) and also give a lot of new insight into the representation theory of the Virasoro algebra and affine Kac-Moody algebras (see for instance [DL3], [DMZ], [FZ], [W]). The modern notion of chiral algebra in conformal field theory [BPZ] in physics essentially corresponds to the mathematical notion of vertex operator algebra; see e.g. [MS]. This is the first part of three consecutive lectures by Huang, Li and myself. In this part we are mainly concerned with the definitions of vertex operator algebras, twisted modules and examples. The second part by Li is about the duality and local systems and the third part by Huang is devoted to the contragradient modules and geometric interpretations of vertex operator algebras. (We refer the reader to Li and Huang’s lecture notes for the related topics.) So many exciting topics are not covered in these three lectures. The book [FHL] is an excellent introduction to the subject. There are also existing papers [H1], [Ge] and [P] which review the axiomatic definition of vertex operator algebras, geometric interpretation of vertex operator algebras, the connection with conformal field theory, Borcherds algebras and the monster Lie algebra. Most work on vertex operator algebras has been concentrated on the concrete exam- ples of vertex operator algebras and the representation theory.
    [Show full text]