Hemiptera: Cicadellidae) of a Phytoplasma (16Srix Group) Associated with Huanglongbing Symptoms in Citrus Groves Author(S): R

Total Page:16

File Type:pdf, Size:1020Kb

Hemiptera: Cicadellidae) of a Phytoplasma (16Srix Group) Associated with Huanglongbing Symptoms in Citrus Groves Author(S): R Weedy Hosts and Prevalence of Potential Leafhopper Vectors (Hemiptera: Cicadellidae) of a Phytoplasma (16SrIX group) Associated with Huanglongbing Symptoms in Citrus Groves Author(s): R. N. Marques, D. C. Teixeira, P. T. Yamamoto, and J.R.S. Lopes Source: Journal of Economic Entomology, 105(2):329-337. 2012. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1603/EC11254 URL: http://www.bioone.org/doi/full/10.1603/EC11254 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ARTHROPODS IN RELATION TO PLANT DISEASE Weedy Hosts and Prevalence of Potential Leafhopper Vectors (Hemiptera: Cicadellidae) of a Phytoplasma (16SrIX group) Associated With Huanglongbing Symptoms in Citrus Groves 1,2 3 1 1 R. N. MARQUES, D. C. TEIXEIRA, P. T. YAMAMOTO, AND J.R.S. LOPES J. Econ. Entomol. 105(2): 329Ð337 (2012); DOI: http://dx.doi.org/10.1603/EC11254 ABSTRACT Huanglongbing (HLB) is a severe citrus (Citrus spp.) disease associated with the bacteria genus Candidatus Liberibacter, detected in Brazil in 2004. Another bacterium was found in association with HLB symptoms and characterized as a phytoplasma belonging to the 16SrIX group. The objectives of this study were to identify potential leafhopper vectors of the HLB-associated phytoplasma and their host plants. Leafhoppers were sampled every other week for 12 mo with sticky yellow cards placed at two heights (0.3 and 1.5 m) in the citrus tree canopy and by using a sweep net in the ground vegetation of two sweet orange, Citrus sinensis (L.) Osbeck, groves infected by the HLB-phytoplasma in Sa˜o Paulo state. Faunistic analyses indicated one Agalliinae (Agallia albidula Uhler) and three Deltocephalinae [Balclutha hebe (Kirkaldy), Planicephalus flavicosta (Stål), and Scaphytopius (Convelinus) marginelineatus (Stål)] species, as the most abundant and frequent leaf- hoppers (Hemiptera: Cicadellidae). Visual observations indicated an association of leafhopper species with some weeds and the inßuence of weed species composition on leafhopper abundance in low-lying vegetation. S. marginelineatus and P. flavicosta were more frequent on Sida rhombifolia L. and Althernantera tenella Colla, respectively, whereas A. albidula was observed more often on Conyza bonariensis (L.) Cronq. and B. hebe only occurred on grasses. DNA samples of Þeld-collected S. marginelineatus were positive by polymerase chain reaction and sequencing tests for the presence of the HLB-phytoplasma group, indicating it as a potential vector. The association of leafhoppers with their hosts may be used in deciding which management strategies to adopt against weeds and diseases in citrus orchards. KEY WORDS weed, plant disease, phloem-limited bacteria, sap-sucking insect Many pests and diseases can inßict signiÞcant damage genic agents transmitted by insects (mostly leafhop- to the Brazilian citriculture, including Huanglongbing pers but also planthoppers and psyllids), causing Ϸ700 (HLB), one of the most destructive diseases of citrus diseases in plants, many of which are lethal (Wein- (Citrus spp.). Until recently, this disease was associ- traub and Beanland 2006, Bertaccini 2007). ated only with the bacteria Candidatus Liberibacter Until now, Hemiptera is the only order identiÞed as asiaticus and Ca. L. americanus, both transmitted by having phytoplasma vectors and presenting several the Asian citrus psyllid, Diaphorina citri Kuwayama, characteristics that make its members efÞcient vectors and with Ca. L. africanus, transmitted by the psyllid of these plant pathogens. Adults and nymphs generally Trioza erytreae (Del Guercio) (Bove´ 2006, Yamamoto have similar feeding habits; consequently, both stages et al. 2006, Gottwald 2010). However, in 2008 a new can acquire and transmit phytoplasmas. Some agent was identiÞed in orange trees with HLB symp- hemipteran groups feed speciÞcally and selectively in toms that were negative for the presence of Ca. Li- the phloem of their host plants, allowing acquisition beribacter spp. It was a phytoplasma with a 99% sim- and inoculation of phytoplasmas that inhabit this plant ilarity with Pigeon pea witchesÕ broom phytoplasma of tissue. In addition, the phytoplasmas have a persistent the 16Sr IX group (Teixeira et al. 2008). The phyto- and propagative relationship with insects, similar to plasmas are prokaryotes with no cell wall and size other symbiotic prokaryotes found in hemipterans variation between 200 and 800 nm, important patho- (Weintraub and Beanland 2006, Weintraub 2007). There are more studies on the identiÞcation and 1 Escola Superior de Agricultura “Luiz de Queiroz”/Universidade molecular characterization of phytoplasmas than on de Sa˜o Paulo, Departamento de Entomologia e Acarologia, Av. Pa´dua the determination of vectors for this pathogen group Dias 11, Piracicaba, SP, Brazil 13418900. (Weintraub and Beanland 2006). Because many phy- 2 Corresponding author, e-mail: [email protected]. toplasma vectors are still unknown, as it is the case of 3 Fundo de Defesa da Citricultura, Fundecitrus, Departamento Cientõ´Þco, Av. Adhemar Pereira de Barros 201, Araraquara, SP, Brazil, the phytoplasma associated with HLB, the surveying 14807040. of leafhopper species present in commercial crops is 0022-0493/12/0329Ð0337$04.00/0 ᭧ 2012 Entomological Society of America 330 JOURNAL OF ECONOMIC ENTOMOLOGY Vol. 105, no. 2 fundamental for knowing the potential of some spe- Sticky yellow cards (both sides, measuring 8.5 by 11 cies to transmit these pathogens. Ongoing studies sug- cm) were used in the two study areas to evaluate gest that the diversity of leafhoppers in Brazil guar- leafhopper activity. These traps were set out at 20 antees many options of potential vector species points within each plot, with each point consisting of (Yamamoto and Gravena 2000, Lopes and Oliveira one citrus plant with two traps fastened to the tree 2004, Giustolin et al. 2009, Miranda et al. 2009b, side-branches at heights of 0.3 and 1.5 m. These two Ringenberg et al. 2010). heights were chosen to investigate leafhopper activity Other important information, such as alternative in the canopy of the orange trees or moving within the host plants for the leafhoppers, are necessary for the orchard (1.5 m in height) and also on the ground implementation of management strategies. However, vegetation (0.3 m). Captured leafhoppers were re- these same plants can be hosts to phytoplasmas be- moved from the sticky cards by using a solvent (ker- cause various taxonomic plant groups are infected by osene) to dissolve the glue and were mounted on these pathogens (Montano et al. 2007, Eckstein 2010). insect pins. In the search for information on potential vectors Insect identiÞcation was made under a stereoscopic of the HLB-associated phytoplasma (phytoplasma- microscope, comparing the morphological character- HLB) and their host plants, the aim of the current istics with those of leafhopper specimens already iden- study was to identify the leafhopper species present in tiÞed from a reference collection at the Entomology citrus groves affected by this pathogen; associate the Museum of the Department of Entomology and Ac- presence of weeds with the populations of these in- arology, ESALQ/University of Sa˜o Paulo (USP). Sev- sects, as well as the importance of these plants in the eral specimens of each morphospecies collected in the area; and to evaluate the occurrence of leafhoppers survey were sent to Dr. Keti Zanol (Department of species carrying the pathogen. Zoology, Federal University of Parana´, Parana´, Brazil), a specialist in Deltocephalinae, for taxonomic identi- Þcation. Voucher specimens of each species were de- posited at the Entomology Museum of ESALQ/USP. Materials and Methods Based on the number of leafhoppers collected from Survey of Leafhoppers. The survey of leafhoppers sticky traps in each plot for the May 2008ÐMay 2009 was made in the Nova Granada municipality, northern period, a faunistic analysis was made to determine Sa˜o Paulo state, Brazil. This area was selected by the those species that had the highest indices of con- presence of phytoplasma infected plants of the 16SrIX stancy, frequency, abundance, and dominance (Sil- group, associated with HLB symptoms and conÞrmed veira Neto et al. 1995). by polymerase chain reaction (PCR) and sequencing. Collection and Identification of Weeds in the Plots. Two areas of sweet oranges were sampled [Citrus A botanical survey of weeds was made in the study sinensis (L.) Osbeck], one area composed of ÔValeˆnciaÕ plots. A 1- by 1-m (1-m2) square was thrown Þve times plants grafted onto 14-yr-old rangpur lime root- randomly between the orange tree rows and Þve times stock
Recommended publications
  • Managing Aboveground Pests: Arthropod Vectors of Citrus Pathogens: Part I February 13, 2019 Lecture Overview
    Managing aboveground pests: Arthropod vectors of citrus pathogens: Part I February 13, 2019 Lecture Overview Part I: • Vector-borne disease concepts • Introduction to Disease Vectors • Taxonomy • Biology • Vector-borne diseases of citrus • Viral Pathogens Part II: • Vector-borne diseases of citrus • Bacterial Pathogens • Case studies: • Citrus Variegated Chlorosis and Citrus greening disease Plant disease epidemics • Can result in large loss of crop yields or decimate entire plant species (e.g. Dutch elm disease) • Approximately 30-40% of damage/loss due to plant diseases Pathogen due to direct or indirect effects of (Vector) transmission and facilitation of pathogens by insects • Three elements needed for disease to occur (‘disease Susceptible Conducive triangle’) host environment • When a pathogen requires a vector to be spread, the vector must be plentiful and active for an epidemic to occur Disease Triangle • Not shown: time (latent period) for disease development Plant disease epidemics Host/Pathogen Relationships • Environmental and physiological factors contribute to the development of disease • Resistance: ability of a host to prevent infection and disease • Virulence: ability of a pathogen to produce disease • Many plant pathogens need to be transmitted by a vector • A pathogen’s host range may be determined by the host range of the vector - it can only infect plants that the insect vector feeds upon Vector/Host Relationships • Generally, the closer the association between vector and host, the greater the suitability of the vector
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]
  • Potential Vectors of Xylella Fastidiosa: a Study of Leafhoppers and Treehoppers in Citrus Agroecosystems Affected by Citrus Variegated Chlorosis G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Difusión de la Creación Intelectual DOI: 10.1111/eea.12491 Potential vectors of Xylella fastidiosa: a study of leafhoppers and treehoppers in citrus agroecosystems affected by Citrus Variegated Chlorosis G. Dellape1,2*, S. Paradell1,L.Semorile3 &L.Delfederico3 1Division Entomologıa, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata B1900FWA, Argentina, 2Consejo Nacional de Investigaciones Cientıficas y Tecnicas (CONICET), Buenos Aires, Argentina, and 3Laboratorio de Microbiologıa Molecular, Universidad Nacional de Quilmes, Roque Saenz Pena~ 352, Bernal 1876, Argentina Accepted: 28 April 2016 Key words: Auchenorrhyncha, Hemiptera, Cicadellidae, Membracidae, sweet orange, tangerine, PCR, real-time PCR, molecular methods, seasonal fluctuation, Argentina Abstract This study investigated the predominant leafhopper and treehopper (Hemiptera, Auchenorrhyncha) species in Citrus Variegated Chlorosis (CVC)-affected citrus agroecosystems in Argentina, their sea- sonal fluctuation, and their potential role as vectors of Xylella fastidiosa Wells et al., using molecular methods for detection. More than 6 000 Auchenorrhyncha were collected from three citrus agro- ecosystems over a period of 3 years using yellow sticky traps and entomological nets. Cicadellidae and Membracidae were the most abundant families. Of the 43 species identified, five were predomi- nant in citrus orchards, and three were predominant in weeds surrounding citrus plants. All predom- inant species and another four non-predominant species tested positive for X. fastidiosa in PCR and real-time PCR assays. In a transmission assay, Dechacona missionum (Berg), Tapajosa rubromarginata (Signoret), and Cyphonia clavigera (Fabricius) transmitted X.
    [Show full text]
  • Auchenorrhyncha Monitoring and Proposal of Management Measures for Potential Pests on Peach Orchards in Beira Interior Region
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Auchenorrhyncha monitoring and proposal of management measures for potential pests on peach orchards in Beira Interior region Patrícia Monteiro Nascimento Mestrado em Biologia Humana e Ambiente Dissertação orientada por: Prof. Doutora Maria Teresa Rebelo (FCUL) 2020 Agradecimentos/ Acknowledgments ▪ à Professora Teresa Rebelo pela orientação, constante disponibilidade e boa disposição, por esclarecer as minhas dúvidas e por todas as sugestões, conselhos e revisões da tese; ▪ à Mestre Carina Neto por toda a ajuda na identificação dos insectos, pelos conselhos dados e por esclarecer as minhas dúvidas; ▪ a Joaquim Martins Duarte & Filhos, Lda por ter permitido a colocação das placas nos seus pomares para a amostragem e construção do presente trabalho; ▪ à Engenheira Anabela Barateiro pela recolha e envio de amostras, disponibilização de informação dos pomares e dados meteorológicos da região; ▪ ao Professor José Pereira Coutinho pelo envio de amostras e disponibilização de fotografias dos pomares e informação; ▪ à Unidade de Microscopia da FCUL que faz parte da Plataforma Portuguesa de Bioimaging (PPBI-POCI-01-0145-FEDER-022122) por ter disponibilizado o equipamento necessário para a aquisição de imagens dos insectos; ▪ à minha mãe, por toda a paciência, carinho, compreensão e apoio incondicional; ▪ às minhas amigas Inês Alves, Margarida Castelão e Catarina Ramos pela partilha da fase académica, pela companhia e pelas visitas, e à minha amiga Joana Cotrim por todo o apoio, paciência e companhia ao longo desta etapa. i Abstract The Auchenorrhyncha suborder comprises several species considered to be pests of economically important crops whether as a result of the direct damage caused by their feeding process or through some species ability to act as vectors for plant pathogens such as viruses and phytoplasmas.
    [Show full text]
  • 11 Albarracin:11 Albarracin
    Mayd i ca 53 (2008): 289-296 CICADELLIDAE (HEMIPTERA: AUCHENORRHYNCHA) ASSOCIATED WITH MAIZE CROPS IN NORTHWESTERN ARGENTINA, INFLUENCE OF THE SOWING DATE AND PHENOLOGY OF THEIR ABUNDANCE AND DIVERSITY E. Luft Albarracin1,*, S. Paradell2, E.G. Virla1 1 PROIMI – Biotecnologia, Av. Belgrano y Pje. Caseros (T4001MVB) San Miguel de Tucumán, Argentina 2 División Entomología, Facultad de Ciencias Naturales y Museo (UNLP), Paseo del Bosque s/N°, (B1900FWA) La Plata, Buenos Aires, Argentina Re ceived April 20, 2009 ABSTRACT - The diversity of Cicadellidae (Hemiptera: subfamily, followed by Cicadellinae, Agallinae and Auchenorrhyncha) associated with the maize crop in Tu- Typhlocybinae. NAULT and KNOKE (1981) mentioned cumán province (Argentina) was studied. Samplings in the genera Dalbulus, Graminella, Euscelidus, two different sown dates, optimal and late, took place Stirellus, and Exitianus as major maize disease vec- during the 2004-2005 and 2005-2006 growing seasons. tors. The cicadellids were sampled from the coleoptile emer- In Argentina there are five maize diseases vec- gence to the vegetative stage V10. Thirty five species, be- longing to six subfamilies, were identified, of which fif- tored by Auchenorrhyncha: “Maize Mosaic Virus” teen species were new records to Tucumán province, and (MMV), “Mal de Rio Cuarto Virus” (MRCV) “Maize nine were registered for the first time inhabiting maize Rayado Fino Virus” (MRFV), “Maize Bushy Stunt Mi- agro-ecosystems. The most abundant and frequent coplasm” (MBSM) and “Corn Stunt Spiroplasm” species was Dalbulus maidis (DeLong & Wolcott), fol- (CSS); last three are persistently transmitted by the lowed by Agalliana ensigera Oman and Chlorotettix corn leafhopper, Dalbulus maidis, an important fraterculus (Berg), which were present in all 44 samples.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Data Sheet on Spiroplasma Citri
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Spiroplasma citri The vectors of Spiroplasma citri are individually included in EU Directive 77/93. Since their importance only arises in relation to S. citri, they are covered in this data sheet. IDENTITY • Spiroplasma citri Name: Spiroplasma citri Saglio et al. Taxonomic position: Bacteria: Tenericutes: Mollicutes Common names: Stubborn, little leaf (English) Stubborn (French) Bayer computer code: SPIRCI EU Annex designation: II/A2 • Circulifer tenellus Name: Circulifer tenellus (Baker) Synonyms: Neoaliturus tenellus (Baker) Eutettix tenellus Baker Taxonomic position: Insecta: Hemiptera: Homoptera: Cicadellidae Common names: Beet leafhopper (English) Cicadelle de la betterave (French) Saltahojas de la remolacha (Spanish) Notes on taxonomy and nomenclature: Oman (1970) argues for the retention of Circulifer and Neoaliturus as separate genera; in his concept both tenellus and haematoceps are placed in Circulifer. Nast (1972) treats the two genera as Neoaliturus notwithstanding Oman's (1970) arguments for the retention of the two genera. He includes 17 species in the Palaearctic region of which 14 are recorded from the Mediterranean Basin. The two species, tenellus and haematoceps, are both included in Circulifer by della Giustina (1989), who reports that tenellus is confirmed in Corsica. Bayer computer code: CIRCTE EU Annex designation: II/A2 • Neoaliturus haematoceps Name: Neoaliturus haematoceps (Mulsant & Rey) Synonyms: Circulifer haematoceps (Mulsant & Rey) Jassus haematoceps Mulsant & Rey Taxonomic position: Insecta: Hemiptera: Homoptera: Cicadellidae Bayer computer code: NEOAHA EU Annex designation: II/A2 (under the name Circulifer haematoceps) HOSTS • Spiroplasma citri The principal economic hosts of S. citri are susceptible Citrus spp.
    [Show full text]
  • Proceedings of the United States National Museum
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued |^:l!Nv>V. s)*MS ^y '^^ SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 107 Washington : 1957 No. 3386 THE LEAFHOPPER TRIBE ALEBRINI (HOMOPTERA: CICADELLIDAE) By David A. Young, Jr.^ The last taxonomic treatment of the species of the tribe Alebrini, by McAtee in 1926, inckided 2 genera and 26 species, 9 of which McAtee had not seen. The alebrine genera were treated by the present writer in 1952, but it was noted then that material was too limited to permit formulation of sound generic concepts and that some of the genera were heterogeneous. Although much more material has been available for the present study, the large number of species represented by only a few specimens suggests that additional collecting will bring many more species to light, and that the present classifica- tion ultimately will be considered as an early, preliminary one. Ninety-six species and subspecies in 25 genera are treated. The large number of genera in proportion to the number of species, when viewed in the light of knowledge of genera in other faunal regions in other cicadellid tribes, leads again to the conclusion that the forms studied are only a fragment of the complete fauna. However, the small proportion of species to genera is not likely to persist when more collecting is done, as iJlustrated by the fact that three of the five ' Department of Entomology, North Carolina State College, Raleigh, N. C; formerly with Entomology Research Branch, Agricultural Research Service, U. S. Department of Agriculture. 127 128 PROCEEDINGS OF THE NATIONAL MUSEUM vol.
    [Show full text]
  • Homologies of the Head of Membracoidea Based on Nymphal Morphology with Notes on Other Groups of Auchenorrhyncha (Hemiptera)
    Eur. J. Entomol. 107: 597–613, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1571 ISSN 1210-5759 (print), 1802-8829 (online) Homologies of the head of Membracoidea based on nymphal morphology with notes on other groups of Auchenorrhyncha (Hemiptera) DMITRY A. DMITRIEV Illinois Natural History Survey, Institute of Natural Resource Sustainability at the University of Illinois at Urbana-Champaign, Champaign, Illinois, USA; e-mail: [email protected] Key words. Hemiptera, Membracoidea, Cicadellidae, Cicadoidea, Cercopoidea, Fulgoroidea, head, morphology, ground plan Abstract. The ground plan and comparative morphology of the nymphal head of Membracoidea are presented with particular emphasis on the position of the clypeus, frons, epistomal suture, and ecdysial line. Differences in interpretation of the head structures in Auchenorrhyncha are discussed. Membracoidea head may vary more extensively than heads in any other group of insects. It is often modified by the development of an anterior carina, which apparently was gained and lost multiple times within Membracoidea. The main modifications of the head of Membracoidea and comparison of those changes with the head of other superfamilies of Auchenorrhyncha are described. INTRODUCTION MATERIAL AND METHODS The general morphology of the insect head is relatively Dried and pinned specimens were studied under an Olympus well studied (Ferris, 1942, 1943, 1944; Cook, 1944; SZX12 microscope with SZX-DA drawing tube attachment. DuPorte, 1946; Snodgrass, 1947; Matsuda, 1965; Detailed study of internal structures and boundaries of sclerites Kukalová-Peck, 1985, 1987, 1991, 1992, 2008). There is based on examination of exuviae and specimens cleared in are also a few papers in which the hemipteran head is 5% KOH.
    [Show full text]
  • Pest Risk Analysis (PRA) of Coconut in Bangladesh
    Government of the People’s Republic of Bangladesh Office of the Project Director Strengthening Phytosanitary Capacity in Bangladesh Project Plant Quarantine Wing Department of Agricultural Extension Khamarbari, Farmgate, Dhaka-1205 Pest Risk Analysis (PRA) of Coconut in Bangladesh May 2017 Government of the People’s Republic of Bangladesh Ministry of Agriculture Office of the Project Director Strengthening Phytosanitary Capacity in Bangladesh Project Plant Quarantine Wing Department of Agricultural Extension Khamarbari, Farmgate, Dhaka-1205 Pest Risk Analysis (PRA) of Sesame in Bangladesh DTCL Development Technical Consultants Pvt. Ltd (DTCL) JB House, Plot-62, Road-14/1, Block-G, Niketon Gulshan -1, Dhaka-1212, Bangladesh Tel: 88-02-9856438, 9856439 Fax: 88-02-9840973 E-mail: [email protected] Website: www.dtcltd.org MAY 2017 REPORT ON PEST RISK ANALYSIS (PRA) OF SESAME IN BANGLADESH Panel of Authors Prof. Dr. Md. Razzab Ali Team Leader Prof. Dr. Mahbuba Jahan Entomologist Prof. Dr. M. Salahuddin M. Chowdhury Plant pathologist Md. Lutfor Rahman Agronomist Dr. Bazlul Ameen Ahmad Mustafi Economist DTCL Management Kbd. Md. Habibur Rahman Chief Coordinator, Study Team Md. Mahabub Alam Coordinator, Study Team Reviewed by Md. Ahsan Ullah Consultant (PRA) Submitted to Strengthening Phytosanitary Capacity in Bangladesh (SPCB) Project Plant Quarantine Wing, Department of Agricultural Extension Khamarbari, Farmgate, Dhaka Submitted by Development Technical Consultants Pvt. Ltd. (DTCL) DTCL JB House, Plot-62, Road-14/1, Block-G, Niketon Gulsan-1, Dhaka-1212, Bangladesh. Tel: 88-02-9856438, 9856439, Fax: 88-02-9840973 E-mail: [email protected] , Website: www.dtcltd.org FORWARD The Strengthening Phytosanitary Capacity in Bangladesh (SPCB) Project under Plant Quarantine Wing (PQW), Department of Agricultural Extension (DAE), Ministry of Agriculture conducted the study for the “Pest Risk Analysis (PRA) of Sesame in Bangladesh” according to the provision of contract agreement signed between SPCB-DAE and Development Technical Consultants Pvt.
    [Show full text]