Biology and Application of Alphaviruses in Gene Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Application of Alphaviruses in Gene Therapy Gene Therapy (2005) 12, S92–S97 & 2005 Nature Publishing Group All rights reserved 0969-7128/05 $30.00 www.nature.com/gt CONFERENCE PAPER Biology and application of alphaviruses in gene therapy K Lundstrom Regulon Inc./BioXtal, Epalinges, Switzerland The broad host cell range and high expression levels of lenges against lethal viruses and tumors in rodent and transgenes are features that have made alphaviruses primate models. Intratumoral injections of alphavirus vectors attractive for gene expression studies and gene therapy expressing reporter and immunostimulatory genes have led applications. Particularly, Semliki Forest virus vectors have to significant tumor regression in mouse models. Modifica- been applied for large-scale production of recombinant tions of the viral envelope structure have generated targeted membrane proteins for drug screening purposes and Sindbis virus vectors. Astonishingly, conventional Sindbis structural biology studies. The high preference of expression vectors have demonstrated tumor-specific targeting in animal in neuronal cells has led to many applications of alphavirus models due to the high density of laminin receptors on vectors in neuroscience. Studies on localization and trans- cancer cells. Moreover, encaspulation of Semliki Forest virus port of recombinant proteins as well as electrophysiological vectors in liposomes has provided a means of achieving recording have become feasible in primary cultures of tumor targeting and protection against the host immune neurons and hippocampal slice cultures. Alphaviruses have response. Much attention has also been given to the frequently been used as vaccine vectors for expression engineering of novel mutant alphavirus vectors with proper- of antigens against viruses and tumors. Administration ties such as reduced cytotoxicity, prolonged duration of of recombinant viral particles, DNA plasmids or in vitro transgene expression and improved survival of host cells. transcribed RNA has resulted in protection against chal- Gene Therapy (2005) 12, S92–S97. doi:10.1038/sj.gt.3302620 Keywords: alphavirus; gene expression; gene delivery, neuron-specific expression; tumor targeting; cancer therapy Introduction taneously, the envelope proteins are processed through the Golgi apparatus and the endoplasmic reticulum to The family of Togaviruses are single-stranded RNA the plasma membrane, where they surround nucleocap- viruses with an envelope structure. The genus Alphavir- sids and finally mature virus particles are released by idae, alphaviruses, has 26 members, all with a genome budding. of approximately 12 kb and are commonly residing in Expression systems have been engineered for several many species such as mosquitoes, birds and rodents and alphaviruses. The most commonly used alphavirus other mammals.1 Some of the members of alphaviruses vectors are based on Semliki Forest virus (SFV)3 (Figure are mild pathogens in humans and some epidemics with 2), Sindbis virus4 and Venezuelan equine encephalitis flu-like symptoms have been described in central Africa.2 virus (VEE).5 In principle, three types of vector systems The life cycle of alphaviruses includes infection through have been engineered. I. Replication-deficient viral particles: recognition of cell surface receptors such as heparin In this approach, an expression vector carrying the sulfate and laminin receptors and uptake of viral nonstructural genes and the gene of interest and a helper particles through either fusion with the cell membrane vector with the structural genes are subjected to in vitro or endocytosis (Figure 1). After the release of the RNA preparation followed by cotransfection into baby positive-strand RNA genome in the cytoplasm, immedi- hamster kidney (BHK) cells where recombinant virus ate translation of the viral nonstructural proteins (nsP1-4) particles are assembled. The generated particles are occurs leading to the formation of the replicase complex capable of one round of infection, but the lack of any responsible for highly efficient RNA replication. A full- structural genes prevents any further virus production. length minus strand copy is made as a template and the As the half-life of the RNA and the replicase complex replication generates approximately 200 000 new plus (replicon) are limited, the transgene expression is strand copies per cell. Also copies of a subgenomic RNA transient. II. Replication-competent viral particles: These containing the structural genes (capsid, envelope pro- vectors contain the full-length alphavirus genome and an teins) are generated. Assembly of RNA and capsid additional subgenomic promoter upstream of the trans- protein into nucleocapsids occurs in the cytoplasm gene of interest. The produced recombinant particles are followed by transport to the plasma membrane. Simul- infectious and able to produce progeny virus in host cells. III. DNA-based vectors: To allow direct application of Correspondence: Dr K Lundstrom, Regulon Inc.,/BioXtal, Chemin des plasmid DNA the SP6 RNA polymerase promoter has Croisettes 22, CH-1066 Epalinges, Switzerland. been replaced by a CMV promoter. In this case, transient Alphaviruses in gene therapy K Lundstrom S93 transfection of plasmid DNA will result in high expres- advantages are the rapid production of high titer (109– sion levels of the transgene of interest. It is also possible 1010 infectious particles/ml) particles that require no to cotransfect a DNA-based helper vector and to obtain further concentration or purification. Moreover, the recombinant particles.6 However, the titers are signifi- broad cell host range and high transgene expression cantly lower than for RNA-based particles. levels are positive features. The induction of apoptosis Most applications of alphavirus vectors have so far can also be seen as a plus for applications in cancer been for replication-deficient particles. The obvious therapy. Among the disadvantages of alphaviruses is the short-term transgene expression, which lasts in vivo for 5–7 days. Another concern is the strong cytotoxicity upon Alphavirus Life-cycle host cells, resulting in a dramatic shutdown on endo- -strand RNA template genous gene expression, which can seriously affect BHK-21 cells signal-transduction events and gene expression kinetics. +strand RNA replication In this review, the applications of alphavirus vectors Packaging signal for recombinant protein expression, localization and infection functional studies in neurons and gene therapy approaches including intratumoral injections and sys- temic delivery are described (Table 1). Moreover, the targeting of alphaviruses to tumor tissue specifically as nucleocapsid an important improvement of efficacy and safety are generation discussed. Finally, the development of novel vectors with mature virus particles lower cytotoxicity properties and improved and ex- tended expression profiles is described. virus budding Gene expression Figure 1 Schematic presentation of the life cycle of alphaviruses. Infection Recombinant protein expression has in general been of BHK-21 (baby hamster kidney) cells with alphaviruses lead to an early onset of production of nonstructural proteins nsP1–4, which will form relatively successful for soluble proteins in different the replicase complex responsible for RNA replication. Expression of expression systems such as bacteria, yeast, insect and alphaviral structural proteins results in nucleocapsid formation followed mammalian cells. However, to obtain high yields of by maturation of virus progeny by budding. integral transmembrane proteins in their native form has Replication-deficient SFV system SP6 DNA In vitro transcription SFV RNA foreign Expression Vector SFV 26S MCS Packaging signal SFV nonstructural genes + SP6 SFV 26S SFV SFV 26S SFV 26S Electroporation Helper foreign Vector SFV structural genes Capsid, p62, E1 BHK-21 cells Recombinant SFV particles Expression of recombinant protein Infection of host cells Figure 2 Schematic presentation of generation of replication-deficient SFV particles. In vitro transcribed RNAs from the expression and helper vectors are transfected into BHK-21 cells, where recombinant SFV particles are generated. Due to the presence of the packaging signal only in the expression vector the generated particles contain only the nonstructural genes and the gene of interest and are therefore replication-deficient. BHK-21, baby hamster kidney cells; E1, SFV envelope E1 protein; p62, precursor protein p62 for SFV E2 and E3 envelope proteins; SFV26S, SFV subgenomic promoter; SP6, SP6 RNA polymerase promoter. Gene Therapy Alphaviruses in gene therapy K Lundstrom S94 been extremely difficult. In this context, SFV vectors have SIN and SFV vectors injected into hippocampal slices been employed for overexpression of a large number of cultured in vivo.12 SFV-based expression indicated that G protein-coupled receptors (GPCRs) and several ligand- more than 90% of the GFP-positive cells were of neuronal gated ion channels.7 The high expression levels, in the origin.13 Transduction of primary neurons and hippo- range of 20–200 pmol receptor per milligram protein, campal slice cultures has allowed studies on protein suggesting receptor densities of up to 10 million transport and localization as well as functional activity, receptors per cell, has made the SFV system applicable typically by electrophysiological recordings.14 for drug screening programs. Additionally, the broad Moreover, alphavirus vectors have been applied for host range has allowed studies on receptor pharmacol- in vivo
Recommended publications
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Characterization of the Rubella Virus Nonstructural Protease Domain and Its Cleavage Site
    JOURNAL OF VIROLOGY, July 1996, p. 4707–4713 Vol. 70, No. 7 0022-538X/96/$04.0010 Copyright q 1996, American Society for Microbiology Characterization of the Rubella Virus Nonstructural Protease Domain and Its Cleavage Site 1 2 2 1 JUN-PING CHEN, JAMES H. STRAUSS, ELLEN G. STRAUSS, AND TERYL K. FREY * Department of Biology, Georgia State University, Atlanta, Georgia 30303,1 and Division of Biology, California Institute of Technology, Pasadena, California 911252 Received 27 October 1995/Accepted 3 April 1996 The region of the rubella virus nonstructural open reading frame that contains the papain-like cysteine protease domain and its cleavage site was expressed with a Sindbis virus vector. Cys-1151 has previously been shown to be required for the activity of the protease (L. D. Marr, C.-Y. Wang, and T. K. Frey, Virology 198:586–592, 1994). Here we show that His-1272 is also necessary for protease activity, consistent with the active site of the enzyme being composed of a catalytic dyad consisting of Cys-1151 and His-1272. By means of radiochemical amino acid sequencing, the site in the polyprotein cleaved by the nonstructural protease was found to follow Gly-1300 in the sequence Gly-1299–Gly-1300–Gly-1301. Mutagenesis studies demonstrated that change of Gly-1300 to alanine or valine abrogated cleavage. In contrast, Gly-1299 and Gly-1301 could be changed to alanine with retention of cleavage, but a change to valine abrogated cleavage. Coexpression of a construct that contains a cleavage site mutation (to serve as a protease) together with a construct that contains a protease mutation (to serve as a substrate) failed to reveal trans cleavage.
    [Show full text]
  • Validation of the Easyscreen Flavivirus Dengue Alphavirus Detection Kit
    RESEARCH ARTICLE Validation of the easyscreen flavivirus dengue alphavirus detection kit based on 3base amplification technology and its application to the 2016/17 Vanuatu dengue outbreak 1 1 1 2 2 Crystal Garae , Kalkoa Kalo , George Junior Pakoa , Rohan Baker , Phill IsaacsID , 2 Douglas Spencer MillarID * a1111111111 1 Vila Central Hospital, Port Vila, Vanuatu, 2 Genetic Signatures, Sydney, Australia a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Background OPEN ACCESS The family flaviviridae and alphaviridae contain a diverse group of pathogens that cause sig- Citation: Garae C, Kalo K, Pakoa GJ, Baker R, nificant morbidity and mortality worldwide. Diagnosis of the virus responsible for disease is Isaacs P, Millar DS (2020) Validation of the easyscreen flavivirus dengue alphavirus detection essential to ensure patients receive appropriate clinical management. Very few real-time kit based on 3base amplification technology and its RT-PCR based assays are able to detect the presence of all members of these families application to the 2016/17 Vanuatu dengue using a single primer and probe set. We have developed a novel chemistry, 3base, which outbreak. PLoS ONE 15(1): e0227550. https://doi. org/10.1371/journal.pone.0227550 simplifies the viral nucleic acids allowing the design of RT-PCR assays capable of pan-fam- ily identification. Editor: Abdallah M. Samy, Faculty of Science, Ain Shams University (ASU), EGYPT Methodology/Principal finding Received: April 11, 2019 Synthetic constructs, viral nucleic acids, intact viral particles and characterised reference Accepted: December 16, 2019 materials were used to determine the specificity and sensitivity of the assays. Synthetic con- Published: January 17, 2020 structs demonstrated the sensitivities of the pan-flavivirus detection component were in the Copyright: © 2020 Garae et al.
    [Show full text]
  • Bornavirus Immunopathogenesis in Rodents: Models for Human Neurological Diseases
    Journal of NeuroVirology (1999) 5, 604 ± 612 ã 1999 Journal of NeuroVirology, Inc. http://www.jneurovirology.com Bornavirus immunopathogenesis in rodents: models for human neurological diseases Thomas Briese1, Mady Hornig1 and W Ian Lipkin*,1 1Laboratory for the Study of Emerging Diseases, Department of Neurology, 3101 Gillespie Neuroscience Research Facility, University of California, Irvine, California, CA 92697-4292, USA Although the question of human BDV infection remains to be resolved, burgeoning interest in this unique pathogen has provided tools for exploring the pharmacology and neurochemistry of neuropsychiatric disorders poten- tially linked to BDV infection. Two animal models have been established based on BDV infection of adult or neonatal Lewis rats. Analyis of these models is already yielding insights into mechanisms by which neurotropic agents and/or immune factors may impact developing or mature CNS circuitry to effect complex disturbances in movement and behavior. Keywords: Borna disease virus; neurotropism; humoral and cellular immune response; Th1 ±Th2 shift; apoptosis; dopamine; cytokines Introduction Borna disease virus (BDV), the prototype of a new disorders and schizophrenia (Amsterdam et al, family, Bornaviridae, within the nonsegmented 1985; Bode et al, 1988, 1992, 1993; Fu et al, 1993; negative-strand RNA viruses, infects the central Kishi et al, 1995; Waltrip II et al, 1995), others have nervous system (CNS) of warmblooded animals to not succeeded in replicating these ®ndings (Iwata et cause behavioral disturbances reminiscent of au- al, 1998; Kubo et al, 1997; Lieb et al, 1997; Richt et tism, schizophrenia, and mood disorders (Lipkin et al, 1997). Here we review two rodent models of al, 1995).
    [Show full text]
  • Alphavirus Vectors for Therapy of Neurological Disorders Kenneth Lundstrom* Pantherapeutics, Rue Des Remparts 4, CH1095 Lutry, Switzerland
    ell Res C ea m rc te h S & f o T h l Journal of Lundstrom, J Stem Cell Res Ther 2012, S4 e a r n a r p u DOI: 10.4172/2157-7633.S4-002 y o J ISSN: 2157-7633 Stem Cell Research & Therapy Review Article Open Access Alphavirus Vectors for Therapy of Neurological Disorders Kenneth Lundstrom* PanTherapeutics, Rue des Remparts 4, CH1095 Lutry, Switzerland Abstract Alphavirus vectors engineered for gene delivery and expression of heterologous proteins have been considered as valuable tools for research on neurological disorders. They possess a highly efficient susceptibility for neuronal cells and can provide extreme levels of heterologous gene expression. However, they generally generate short-term transient expression, which might limit their therapeutic use in many neurological disorders often requiring long-term even life-long presence of therapeutic agents. Recent development in gene silencing applying both RNA interference and microRNA approaches will certainly expand the application range. Moreover, alphaviruses provide interesting models for neurological diseases such as demyelinating and spinal motor diseases. Keywords: Alphaviruses; Gene delivery; Neuronal expression; Gene injections into the caudate nucleus showed strong neuronal expression silencing. throughout the 6 month study. No expression was observed in astrocytes and oligodendroglial cells. SV40-based delivery caused no Introduction evidence of inflammation or tissue damage. Both viral and non-viral vectors have provided interesting novel Despite these encouraging results obtained with both non-viral approaches in research on neurological disorders with a great potential and viral vectors described above alternative gene delivery methods for future therapeutic applications too [1,2].
    [Show full text]
  • Producing Vaccines Against Enveloped Viruses in Plants: Making the Impossible, Difficult
    Review Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult Hadrien Peyret , John F. C. Steele † , Jae-Wan Jung, Eva C. Thuenemann , Yulia Meshcheriakova and George P. Lomonossoff * Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK; [email protected] (H.P.); [email protected] (J.F.C.S.); [email protected] (J.-W.J.); [email protected] (E.C.T.); [email protected] (Y.M.) * Correspondence: [email protected] † Current address: Piramal Healthcare UK Ltd., Piramal Pharma Solutions, Northumberland NE61 3YA, UK. Abstract: The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material. Citation: Peyret, H.; Steele, J.F.C.; Jung, J.-W.; Thuenemann, E.C.; Keywords: alphavirus; Bunyavirales; coronavirus; Flaviviridae; hepatitis B virus; human immunode- Meshcheriakova, Y.; Lomonossoff, ficiency virus; Influenza virus; newcastle disease virus; plant molecular farming; plant-produced G.P.
    [Show full text]
  • Risk Groups: Viruses (C) 1988, American Biological Safety Association
    Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/
    [Show full text]
  • The Togavirus RNA Replication Complex
    The Togavirus RNA Replication Complex Pekka Kujala Institute of Biotechnology Department of Biosciences, Division of Biochemistry and Viikki Graduate School in Biosciences University of Helsinki, Finland ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in the auditorium 1041 at Viikki Biocenter (Viikinkaari 5, Helsinki) on June 21st, 2000, at 12 o’clock noon. Helsinki 2000 Supervised by: Professor Leevi Kääriäinen Institute of Biotechnology University of Helsinki Reviewed by: Professor Carl-Henrik von Bonsdorff Department of Virology, Haartman Institute University of Helsinki and Docent Vesa Olkkonen Department of Biochemistry National Public Health Institute Helsinki Opponent: Docent Anu Jalanko Department of Human Molecular Genetics National Public Health Institute Helsinki ISBN 951-45-9443-6 Helsinki 2000 To the memory of my father THE TOGAVIRUS RNA REPLICATION COMPLEX ABBREVIATIONS ORIGINAL PUBLICATIONS ABSTRACT 1 INTRODUCTION 2 1. Togaviruses 2 1.1 Alphaviruses 2 1.1.1. Semliki Forest virus 3 1.1.2. SFV virion structure 4 1.2. Rubiviruses 4 1.2.1. Rubella virus 4 1.2.2. RUB virion structure 5 2. Replication cycle of togaviruses 5 2.1. The alphavirus replication cycle 7 2.1.1. Alphavirus entry 7 2.1.2. Alphavirus replication and translation of the nonstructural polyprotein 7 2.1.3. Translation of alphavirus structural proteins and virus maturation 8 2.1.4. SFV in cell culture 9 2.2. The rubella virus replication cycle 11 2.2.1. RUB entry and translation of the nonstructural polyprotein 11 2.2.2. Translation of RUB structural proteins and virus maturation 11 2.2.3.
    [Show full text]
  • Rapid, Specific Detection of Alphaviruses from Tissue Cultures Using a Replicon-Defective Reporter Gene Assay
    Rapid, Specific Detection of Alphaviruses from Tissue Cultures Using a Replicon-Defective Reporter Gene Assay Jiangjiao Li1., Wuyang Zhu1., Huanqin Wang1, Jiandong Li2, Quanfu Zhang2, Ying He1, Jia Li1, Juanjuan Fu1, Dexin Li2, Guodong Liang1* 1 Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC), Beijing, China, 2 State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Department of Viral Hemorrhagic Fever (IVDC, China CDC), Beijing, China Abstract We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPDnsp4 and pVaXJ-GLucDnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system.
    [Show full text]
  • Medical Aspects of Biological Warfare
    Alphavirus Encephalitides Chapter 20 ALPHAVIRUS ENCEPHALITIDES SHELLEY P. HONNOLD, DVM, PhD*; ERIC C. MOSSEL, PhD†; LESLEY C. DUPUY, PhD‡; ELAINE M. MORAZZANI, PhD§; SHANNON S. MARTIN, PhD¥; MARY KATE HART, PhD¶; GEORGE V. LUDWIG, PhD**; MICHAEL D. PARKER, PhD††; JONATHAN F. SMITH, PhD‡‡; DOUGLAS S. REED, PhD§§; and PAMELA J. GLASS, PhD¥¥ INTRODUCTION HISTORY AND SIGNIFICANCE ANTIGENICITY AND EPIDEMIOLOGY Antigenic and Genetic Relationships Epidemiology and Ecology STRUCTURE AND REPLICATION OF ALPHAVIRUSES Virion Structure PATHOGENESIS CLINICAL DISEASE AND DIAGNOSIS Venezuelan Equine Encephalitis Eastern Equine Encephalitis Western Equine Encephalitis Differential Diagnosis of Alphavirus Encephalitis Medical Management and Prevention IMMUNOPROPHYLAXIS Relevant Immune Effector Mechanisms Passive Immunization Active Immunization THERAPEUTICS SUMMARY 479 244-949 DLA DS.indb 479 6/4/18 11:58 AM Medical Aspects of Biological Warfare *Lieutenant Colonel, Veterinary Corps, US Army; Director, Research Support and Chief, Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702; formerly, Biodefense Research Pathologist, Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland †Major, Medical Service Corps, US Army Reserve; Microbiologist, Division of Virology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702; formerly, Science and Technology Advisor, Detachment
    [Show full text]
  • Genetic and Epidemiological Characterization of Stretch Lagoon Orbivirus, a Novel Orbivirus Isolated from Culex and Aedes Mosquitoes in Northern Australia
    Journal of General Virology (2009), 90, 1433–1439 DOI 10.1099/vir.0.010074-0 Genetic and epidemiological characterization of Stretch Lagoon orbivirus, a novel orbivirus isolated from Culex and Aedes mosquitoes in northern Australia Chris Cowled,1 Gustavo Palacios,2 Lorna Melville,3 Richard Weir,3 Susan Walsh,3 Steven Davis,3 Aneta Gubala,1 W. Ian Lipkin,2 Thomas Briese2 and David Boyle1 Correspondence 1CSIRO Livestock Industries, Australian Animal Health Laboratory, East Geelong, VIC 3220, Chris Cowled Australia [email protected] 2Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA 3Northern Territory Department of Primary Industries, Fisheries and Mines, Berrimah Veterinary Laboratories, Berrimah, Northern Territory 0801, Australia Stretch Lagoon orbivirus (SLOV) was isolated in 2002 from pooled Culex annulirostris mosquitoes collected at Stretch Lagoon, near the Wolfe Creek national park in the Kimberley region of Western Australia. Conventional serological tests were unable to identify the isolate, and electron microscopy indicated a virus of the genus Orbivirus, family Reoviridae. Here, a cDNA subtraction method was used to obtain approximately one-third of the viral genome, and further sequencing was performed to complete the sequences of segment 1 (viral polymerase) and segment 2 (conserved inner-core protein). Phylogenetic analysis showed that SLOV should be considered a new species within the genus Orbivirus. A real-time RT-PCR test was designed to study the epidemiology of SLOV in the field. Six additional isolates of SLOV were identified, Received 4 January 2009 including isolates from four additional locations and two additional mosquito species. Horses, Accepted 8 March 2009 donkeys and goats were implicated as potential vertebrate hosts in a serological survey.
    [Show full text]
  • Alphavirus-Induced Membrane Rearrangements During Replication, Assembly, and Budding
    pathogens Review Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding Zeinab Elmasri 1,2, Benjamin L. Nasal 2 and Joyce Jose 1,2,* 1 Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 2 Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-814-863-8806 Abstract: Alphaviruses are arthropod-borne viruses mainly transmitted by hematophagous insects that cause moderate to fatal disease in humans and other animals. Currently, there are no approved vaccines or antivirals to mitigate alphavirus infections. In this review, we summarize the current knowledge of alphavirus-induced structures and their functions in infected cells. Throughout their lifecycle, alphaviruses induce several structural modifications, including replication spherules, type I and type II cytopathic vacuoles, and filopodial extensions. Type I cytopathic vacuoles are replication-induced structures containing replication spherules that are sites of RNA replication on the endosomal and lysosomal limiting membrane. Type II cytopathic vacuoles are assembly induced structures that originate from the Golgi apparatus. Filopodial extensions are induced at the plasma membrane and are involved in budding and cell-to-cell transport of virions. This review provides an overview of the viral and host factors involved in the biogenesis and function of these virus-induced structures. Understanding virus–host interactions in infected cells will lead to the identification of Citation: Elmasri, Z.; Nasal, B.L.; new targets for antiviral discovery. Jose, J. Alphavirus-Induced Membrane Rearrangements during Keywords: Togaviridae; alphavirus; spherule; replication; cytopathic vacuole; nucleocapsid core; Replication, Assembly, and Budding.
    [Show full text]