RNASEK Is Required for Internalization of Diverse Acid-Dependent Viruses

Total Page:16

File Type:pdf, Size:1020Kb

RNASEK Is Required for Internalization of Diverse Acid-Dependent Viruses RNASEK is required for internalization of diverse acid-dependent viruses Brent A. Hacketta, Ari Yasunagaa, Debasis Pandaa, Michael A. Tartella, Kaycie C. Hopkinsa, Scott E. Hensleyb, and Sara Cherrya,1 aDepartment of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and bVaccine Center, Wistar Institute, Philadelphia, PA 19104 Edited by Robert A. Lamb, Northwestern University, Evanston, IL, and approved May 15, 2015 (received for review December 16, 2014) Viruses must gain entry into cells to establish infection. In general, The molecular mechanisms involved in these uptake mecha- viruses enter either at the plasma membrane or from intracellular nisms are complex and rely on key molecules and organelles that endosomal compartments. Viruses that use endosomal pathways are essential for cellular viability, as these uptake mechanisms are dependent on the cellular factors that control this process; bring nutrients and other metabolites into the cytosol for cellular however, these genes have proven to be essential for endogenous growth and survival. Indeed, these processes and proteins in- cargo uptake, and thus are of limited value for therapeutic inter- volved are highly conserved from yeast to humans (14, 15). vention. The identification of genes that are selectively required Depending on the virus entry requirements, some viruses fuse for viral uptake would make appealing drug targets, as their in- within early endosomal vesicles, whereas others traffic to more hibition would block an early step in the life cycle of diverse viruses. acidic compartments or macropinosomes for entry. Because At this time, we lack pan-antiviral therapeutics, in part because many viruses are dependent on these endosomal trafficking of our lack of knowledge of such cellular factors. RNAi screening pathways for entry, much effort has been made in identifying the has begun to reveal previously unknown genes that play roles in specific cellular genes required for viral entry (16). Therapeutics viral infection. We identified dRNASEK in two genome-wide RNAi targeting entry are appealing because it is the first step in the screens performed in Drosophila cells against West Nile and Rift infection cycle, and many viruses use common pathways; thus, Valley Fever viruses. Here we found that ribonuclease kappa inhibition may be broadly antiviral, rather than active against (RNASEK) is essential for the infection of human cells by divergent only a specific virus. Furthermore, many viruses have high mu- MICROBIOLOGY and unrelated positive- and negative-strand-enveloped viruses from tation rates and rapidly evolve resistance to therapeutics tar- the Flaviviridae, Togaviridae, Bunyaviridae, and Orthomyxoviridae geting virally encoded genes. Conversely, therapeutics against families that all enter cells from endosomal compartments. In con- host encoded targets would likely be more difficult for the virus trast, RNASEK was dispensable for viruses, including parainfluenza to evade. virus 5 and Coxsackie B virus, that enter at the plasma membrane. Recent advances in functional genomic technologies have fa- RNASEK is dispensable for attachment but is required for uptake cilitated the use of unbiased genome-wide RNAi screens to of these acid-dependent viruses. Furthermore, this requirement ap- identify cellular genes required for viral infection (17). Such pears specific, as general endocytic uptake of transferrin is unaf- approaches allow for the discovery of otherwise unknown genes fected in RNASEK-depleted cells. Therefore, RNASEK is a potential that play essential roles in infection. We recently performed such ’ host cell Achilles heel for viral infection. screens in insect cells against two disparate insect-borne human pathogens: the flavivirus West Nile virus (WNV) and the arbovirus | entry | endocytosis | clathrin-mediated endocytosis | bunyavirus RVFV (18, 19). These are both arthropod-borne macropinocytosis human pathogens for which there are no vaccines or therapeu- tics. Furthermore, these viruses are quite divergent: WNV is a iral pathogens are quite diverse in their replication strate- flavivirus that is a globally important cause of encephalitis (20), Vgies; however, all viruses must enter cells to initiate their replication cycles. The first step involves binding of virus parti- Significance cles to the cell surface. Such interactions can involve attachment factors, which have low affinity but concentrate viruses on the Many viruses, including those of global concern, are dependent surface of cells, and receptors that intricately interact with viral on internalization for their entry. We found that ribonuclease envelope glycoproteins, which, in addition to binding, promote kappa (RNASEK) is required for infection of every virus we other aspects of infection such as internalization. Although a tested that enters cells through an acid-dependent pathway, plethora of receptors and pathways can be used, most viruses including dengue, West Nile, Sindbis, Rift Valley Fever, and in- take advantage of the cellular endocytic machinery and pene- fluenza viruses. Mechanistically, we found that RNASEK has no trate from within the cytosol (reviewed in refs. 1–3). Clathrin- effect on virus binding to cells but, rather, is required for their mediated endocytosis, macropinocytosis, and caveolin-mediated uptake. RNASEK was required for diverse viruses that are de- endocytosis are the best-studied forms of uptake used by viruses. pendent on clathrin-mediated endocytosis for entry, but we Clathrin-mediated endocytosis is the most common mechanism found that RNASEK was dispensable for general endocytic used by small viruses, as clathrin-coated vesicles have a diameter – uptake. Therefore, RNASEK appears to play a unique role in of 60 200 nm and can be enlarged to fit even larger particles (4, viral uptake and may be a therapeutically viable target to 5). This pathway is constitutive on most cells, and some viruses inhibit major human viral pathogens. use preexisting clathrin-coated pits for entry (e.g., dengue virus), whereas others induce the formation of these structures (e.g., Author contributions: B.A.H. and S.C. designed research; B.A.H., A.Y., D.P., M.A.T., and influenza virus) (6, 7). Macropinocytosis is an actin-dependent K.C.H. performed research; S.E.H. contributed new reagents/analytic tools; B.A.H. and S.C. endocytic process for the nonselective uptake of nutrients in analyzed data; and B.A.H. and S.C. wrote the paper. response to receptor engagement. It is the predominant pathway The authors declare no conflict of interest. for many larger viruses, including vaccinia virus, but is also used This article is a PNAS Direct Submission. by others, including influenza virus under some conditions (8– 1To whom correspondence should be addressed. Email: [email protected]. 10). It also remains unclear which pathways are used by some This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. viruses, including Rift Valley Fever virus (RVFV) (11–13). 1073/pnas.1424098112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1424098112 PNAS Early Edition | 1of6 Downloaded by guest on September 27, 2021 and RVFV is a bunyavirus that causes significant morbidity and RNASEK Promotes Flavivirus Infection in Human Cells. RNASEK is a mortality in livestock and humans in Africa (21). In our screens, highly conserved protein with 51% homology between Drosophila there were only three genes that promoted infection by both viruses: and humans (25). Therefore, we tested whether these flaviviruses dRAB5, dSTX7, and dRNASEK (CG40127). The functions of require hRNASEK for infection in human cells. We obtained two RAB5 and STX7 have been described, but little is known about independent siRNAs against hRNASEK and found that they ef- ribonuclease kappa (RNASEK). Both RAB5 and STX7 are in- ficiently deplete hRNASEK in human osteosarcoma cells (U2OS), volved in endosomal transport and have roles in viral entry (22, 23). as measured by RT-qPCR (Fig. 1D). We challenged these cells Both WNV and RVFV are enveloped RNA viruses that require an with WNV (KUN) or DENV2 (NGC) and monitored infection by acidic compartment for entry (12, 13, 24). RNASEK is a single- RT-qPCR or automated microscopy. We found that depletion of copy, 137-aa protein conserved from insects to humans (25–27) hRNASEK significantly attenuates infection of these flaviviruses in with an unknown function. We set out to determine the role of human cells (Fig. 1 E and F and Fig. S2 A and B). Again, we ob- RNASEK in viral infection and found that RNASEK is required served no change in cell number or growth properties of hRNA- for internalization of a diverse panel of viruses of medical concern. SEK-depleted cells (Fig. S2C). We also tested a different human cell line, HEK293T cells, and found that depletion of hRNASEK Results is efficient in these cells and attenuates WNV (KUN) infection RNASEK Promotes Flaviviral Infection in Insect Cells. Because we had (Fig. S3A). Our initial studies monitored infection of WNV at a identified dRNASEK as promoting infection in our genome- late point postinfection, so we next tested whether depletion of wide RNAi screens, we set out to verify this outside of a hRNASEK affects infection at early points. We depleted screening format with independent RNAi reagents. First, we hRNASEK in U2OS cells and monitored infection by WNV verified that we efficiently depleted dRNASEK, as measured by (KUN) 8 hours post infection (hpi), and
Recommended publications
  • The Viruses of Vervet Monkeys and of Baboons in South Africa
    THE VIRUSES OF VERVET MONKEYS AND OF BABOONS IN SOUTH AFRICA Hubert Henri Malherbe A Thesis Submitted to the Faculty of Medicine University of the Witwatersrand, Johannesburg for the Degree of Doctor of Medicine Johannesburg 1974 11 ABSTRACT In this thesis are presented briefly the results of studies extending over the period 1955 to 1974. The use of vervet monkeys in South Africa for the production and testing of poliomyelitis vaccine made acquaintance with their viruses inevitable; and the subsequent introduction of the baboon as a laboratory animal of major importance also necessitates a knowledge of its viral flora. Since 1934 when Sabin and Wright described the B Virus which was recovered from a fatal human infection contracted as the result of a macaque monkey bite, numerous viral agents have been isolated from monkeys and baboons. In the United States of America, Dr. Robert N. Hull initiated the classification of simian viruses in an SV (for Simian Virus) series according to cytopathic effects as seen in unstained infected tissue cultures. In South Africa, viruses recovered from monkeys and baboons were designated numerically in an SA (for Simian Agent) series on the basis of cytopathic changes seen in stained preparations of infected cells. Integration of these two series is in progress. Simian viruses in South Africa have been recovered mainly through the inoculation of tissue cultures with material obtained by means of throat and rectal swabs, and also through the unmasking of latent agents present in kidney cells prepared as tissue cultures. Some evidence concerning viral activity has been derived from serological tests.
    [Show full text]
  • RNA-Dependent RNA Polymerase Consensus Sequence of the L-A Double-Stranded RNA Virus: Definition of Essential Domains
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 2185-2189, March 1992 Biochemistry RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: Definition of essential domains JUAN CARLOS RIBAS AND REED B. WICKNER Section on the Genetics of Simple Eukaryotes, Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 207, National Institutes of Health, Bethesda, MD 20892 Communicated by Herbert Tabor, November 27, 1991 (received for review October 2, 1991) ABSTRACT The L-A double-stranded RNA virus of Sac- lacking M1 (reviewed in refs. 10 and 18). M1 depends on L-A charomyces cerevisiac makes a gag-pol fusion protein by a -1 for its coat and replication proteins (19). MAK10 is one of ribosomal frameshift. The pol amino acid sequence includes three chromosomal genes needed for L-A virus propagation consensus patterns typical of the RNA-dependent RNA poly- within yeast cells (20). In a maklO host, L-A proteins merases (EC 2.7.7.48) of (+) strand and double-stranded RNA expressed from a cDNA clone of L-A support the replication viruses of animals and plants. We have carried out "alanine- of the M1 satellite virus but (for unknown reasons) do not scanning mutagenesis" of the region of L-A including the two support propagation of the L-A virus itself (21). Thus, while most conserved polymerase motifs, SG...T...NT..N (. = any L-A requires the MAK10 product itself, M1 requires MAK10 amino acid) and GDD. By constructing and analyzing 46 only because it requires the L-A-encoded proteins.
    [Show full text]
  • The Bunyaviridae Family, Has a Segmented RNA Genome with Negative Polarity
    Ludwig Institute for Cancer Research, Stockholm Branch and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden Uukuniemi virus-like particles: a model system for bunyaviral assembly Anna K Överby Stockholm 2007 Anna K Överby Previously published papers were reproduced with permission from the publishers. Published and printed by Larserics digital print AB Box 20082, SE-161 02 Bromma, Sweden © Anna K Överby, 2007 ISBN 978-91-7357-238-5 To my wonderful parents Ge mej kraft att förändra det jag kan Tålamod att acceptera det jag inte kan förändra Och vishet att se skillnaden Carolines klokbok Anna K Överby Skapande består av en massa försök Populärvetenskaplig sammanfattning Populärvetenskaplig sammanfattning Alla levande organismer vi ser omkring oss är uppbyggda av celler. Det finns i stort sett två olika sorter, eukaryota (t.ex. djur och växtceller) och prokaryota (t.ex. bakterieceller) celler. Virus är inga celler utan små parasiter som lever inuti andra celler, både eukaryota och bakterieceller. Det finns en mängd olika virus som har grupperats in i familjer. Virus inom samma familj delar egenskaper såsom storlek och arvsegenskaper. Olika virus har genom åren specialiserat sig på att infektera och leva i olika celler och organismer. Vissa virus är så specialiserade att de bara kan infektera en speciell art. Poliovirus kan t.ex. endast infektera människor och apor. Man kan då utrota viruset genom att vaccinera hela jordens befolkning. Andra virus såsom Influensavirus kan infektera många olika arter t.ex. människa, fågel och gris. Vissa arter utvecklar ingen sjukdom och sprider bara viruset vidare medan andra orsakar akut sjukdom.
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Cell-Free Fusion of Bacteria-Containing Phagosomes with Endocytic Compartments
    Cell-free fusion of bacteria-containing phagosomes with endocytic compartments Ulrike Becken, Andreas Jeschke, Katharina Veltman1, and Albert Haas2 Cell Biology Institute, University of Bonn, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany Edited by Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany, and accepted by the Editorial Board October 4, 2010 (received for review June 2, 2010) Uptake of microorganisms by professional phagocytic cells leads to duced fusion of SCPs with lysosomes compared to phagosomes formation of a new subcellular compartment, the phagosome, containing inert particles (10–12), others did not (13). Fusogeni- which matures by sequential fusion with early and late endocytic city of SCPs with other endocytic organelles in macrophages has compartments, resulting in oxidative and nonoxidative killing of been investigated little (10). the enclosed microbe. Few tools are available to study membrane To truly understand the (dys)function of phagosome matura- fusion between phagocytic and late endocytic compartments in tion at a molecular level, the fusion of endocytic with microbe- general and with pathogen-containing phagosomes in particular. containing phagocytic organelles ought to be investigated in We have developed and applied a fluorescence microscopy assay reconstituted systems, yet most published assays used bead- to study fusion of microbe-containing phagosomes with different- containing but not microbe-containing phagosomes (3, 5) and aged endocytic compartments in vitro. This revealed that fusion were limited to fusion of early phagosomes with early endocytic of phagosomes containing nonpathogenic Escherichia coli with organelles (14, 15). Fusion of lysosomes with microbe-containing lysosomes requires Rab7 and SNARE proteins but not organelle phagosomes has been reconstituted only in permeabilized macro- acidification.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Characterization of the Rubella Virus Nonstructural Protease Domain and Its Cleavage Site
    JOURNAL OF VIROLOGY, July 1996, p. 4707–4713 Vol. 70, No. 7 0022-538X/96/$04.0010 Copyright q 1996, American Society for Microbiology Characterization of the Rubella Virus Nonstructural Protease Domain and Its Cleavage Site 1 2 2 1 JUN-PING CHEN, JAMES H. STRAUSS, ELLEN G. STRAUSS, AND TERYL K. FREY * Department of Biology, Georgia State University, Atlanta, Georgia 30303,1 and Division of Biology, California Institute of Technology, Pasadena, California 911252 Received 27 October 1995/Accepted 3 April 1996 The region of the rubella virus nonstructural open reading frame that contains the papain-like cysteine protease domain and its cleavage site was expressed with a Sindbis virus vector. Cys-1151 has previously been shown to be required for the activity of the protease (L. D. Marr, C.-Y. Wang, and T. K. Frey, Virology 198:586–592, 1994). Here we show that His-1272 is also necessary for protease activity, consistent with the active site of the enzyme being composed of a catalytic dyad consisting of Cys-1151 and His-1272. By means of radiochemical amino acid sequencing, the site in the polyprotein cleaved by the nonstructural protease was found to follow Gly-1300 in the sequence Gly-1299–Gly-1300–Gly-1301. Mutagenesis studies demonstrated that change of Gly-1300 to alanine or valine abrogated cleavage. In contrast, Gly-1299 and Gly-1301 could be changed to alanine with retention of cleavage, but a change to valine abrogated cleavage. Coexpression of a construct that contains a cleavage site mutation (to serve as a protease) together with a construct that contains a protease mutation (to serve as a substrate) failed to reveal trans cleavage.
    [Show full text]
  • Validation of the Easyscreen Flavivirus Dengue Alphavirus Detection Kit
    RESEARCH ARTICLE Validation of the easyscreen flavivirus dengue alphavirus detection kit based on 3base amplification technology and its application to the 2016/17 Vanuatu dengue outbreak 1 1 1 2 2 Crystal Garae , Kalkoa Kalo , George Junior Pakoa , Rohan Baker , Phill IsaacsID , 2 Douglas Spencer MillarID * a1111111111 1 Vila Central Hospital, Port Vila, Vanuatu, 2 Genetic Signatures, Sydney, Australia a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Background OPEN ACCESS The family flaviviridae and alphaviridae contain a diverse group of pathogens that cause sig- Citation: Garae C, Kalo K, Pakoa GJ, Baker R, nificant morbidity and mortality worldwide. Diagnosis of the virus responsible for disease is Isaacs P, Millar DS (2020) Validation of the easyscreen flavivirus dengue alphavirus detection essential to ensure patients receive appropriate clinical management. Very few real-time kit based on 3base amplification technology and its RT-PCR based assays are able to detect the presence of all members of these families application to the 2016/17 Vanuatu dengue using a single primer and probe set. We have developed a novel chemistry, 3base, which outbreak. PLoS ONE 15(1): e0227550. https://doi. org/10.1371/journal.pone.0227550 simplifies the viral nucleic acids allowing the design of RT-PCR assays capable of pan-fam- ily identification. Editor: Abdallah M. Samy, Faculty of Science, Ain Shams University (ASU), EGYPT Methodology/Principal finding Received: April 11, 2019 Synthetic constructs, viral nucleic acids, intact viral particles and characterised reference Accepted: December 16, 2019 materials were used to determine the specificity and sensitivity of the assays. Synthetic con- Published: January 17, 2020 structs demonstrated the sensitivities of the pan-flavivirus detection component were in the Copyright: © 2020 Garae et al.
    [Show full text]
  • Sindbis Virus Infection in Resident Birds, Migratory Birds, and Humans, Finland Satu Kurkela,*† Osmo Rätti,‡ Eili Huhtamo,* Nathalie Y
    Sindbis Virus Infection in Resident Birds, Migratory Birds, and Humans, Finland Satu Kurkela,*† Osmo Rätti,‡ Eili Huhtamo,* Nathalie Y. Uzcátegui,* J. Pekka Nuorti,§ Juha Laakkonen,*¶ Tytti Manni,* Pekka Helle,# Antti Vaheri,*† and Olli Vapalahti*†** Sindbis virus (SINV), a mosquito-borne virus that (the Americas). SINV seropositivity in humans has been causes rash and arthritis, has been causing outbreaks in reported in various areas, and antibodies to SINV have also humans every seventh year in northern Europe. To gain a been found from various bird (3–5) and mammal (6,7) spe- better understanding of SINV epidemiology in Finland, we cies. The virus has been isolated from several mosquito searched for SINV antibodies in 621 resident grouse, whose species, frogs (8), reed warblers (9), bats (10), ticks (11), population declines have coincided with human SINV out- and humans (12–14). breaks, and in 836 migratory birds. We used hemagglutina- tion-inhibition and neutralization tests for the bird samples Despite the wide distribution of SINV, symptomatic and enzyme immunoassays and hemagglutination-inhibition infections in humans have been reported in only a few for the human samples. SINV antibodies were fi rst found in geographically restricted areas, such as northern Europe, 3 birds (red-backed shrike, robin, song thrush) during their and occasionally in South Africa (12), Australia (15–18), spring migration to northern Europe. Of the grouse, 27.4% and China (13). In the early 1980s in Finland, serologic were seropositive in 2003 (1 year after a human outbreak), evidence associated SINV with rash and arthritis, known but only 1.4% were seropositive in 2004.
    [Show full text]
  • UVRAG Is Required for Virus Entry Through Combinatorial Interaction with the Class C-Vps Complex and Snares
    UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs Sara Dolatshahi Pirooza, Shanshan Hea, Tian Zhanga, Xiaowei Zhanga, Zhen Zhaoa, Soohwan Oha, Douglas O’Connella, Payam Khalilzadeha, Samad Amini-Bavil-Olyaeea, Michael Farzanb, and Chengyu Lianga,1 aDepartment of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and bDepartment of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved January 15, 2014 (received for review November 4, 2013) Enveloped viruses exploit the endomembrane system to enter host (R)-SNAREs embedded in the other (3). Specifically, syntaxin 7 cells. Through a cascade of membrane-trafficking events, virus-bearing (STX7; Qa), Vti1b (Qb), and STX8 (Qc) on the LE, when paired vesicles fuse with acidic endosomes and/or lysosomes mediated by with VAMP7 (R), mediate the LE fusion with the lysosome, but SNAREs triggering viral fusion. However, the molecular mechanisms when paired with VAMP8 (R), regulate homotypic fusion of the underlying this process remain elusive. Here, we found that UV- LEs (4). The upstream process regulating LE-associated SNARE radiation resistance-associated gene (UVRAG), an autophagic tumor pairing relies on the class C vacuolar protein sorting (Vps) complex suppressor, is required for the entry of the prototypic negative- (hereafter referred to as C-Vps), composed of Vps11, Vps16, strand RNA virus, including influenza A virus and vesicular stoma- Vps18, and Vps33 as core subunits (5, 6). A recent study indicated titis virus, by a mechanism independent of IFN and autophagy.
    [Show full text]
  • Bornavirus Immunopathogenesis in Rodents: Models for Human Neurological Diseases
    Journal of NeuroVirology (1999) 5, 604 ± 612 ã 1999 Journal of NeuroVirology, Inc. http://www.jneurovirology.com Bornavirus immunopathogenesis in rodents: models for human neurological diseases Thomas Briese1, Mady Hornig1 and W Ian Lipkin*,1 1Laboratory for the Study of Emerging Diseases, Department of Neurology, 3101 Gillespie Neuroscience Research Facility, University of California, Irvine, California, CA 92697-4292, USA Although the question of human BDV infection remains to be resolved, burgeoning interest in this unique pathogen has provided tools for exploring the pharmacology and neurochemistry of neuropsychiatric disorders poten- tially linked to BDV infection. Two animal models have been established based on BDV infection of adult or neonatal Lewis rats. Analyis of these models is already yielding insights into mechanisms by which neurotropic agents and/or immune factors may impact developing or mature CNS circuitry to effect complex disturbances in movement and behavior. Keywords: Borna disease virus; neurotropism; humoral and cellular immune response; Th1 ±Th2 shift; apoptosis; dopamine; cytokines Introduction Borna disease virus (BDV), the prototype of a new disorders and schizophrenia (Amsterdam et al, family, Bornaviridae, within the nonsegmented 1985; Bode et al, 1988, 1992, 1993; Fu et al, 1993; negative-strand RNA viruses, infects the central Kishi et al, 1995; Waltrip II et al, 1995), others have nervous system (CNS) of warmblooded animals to not succeeded in replicating these ®ndings (Iwata et cause behavioral disturbances reminiscent of au- al, 1998; Kubo et al, 1997; Lieb et al, 1997; Richt et tism, schizophrenia, and mood disorders (Lipkin et al, 1997). Here we review two rodent models of al, 1995).
    [Show full text]