Seizure Disorder and Medical Certification of Commercial Motor Vehicle Driver Safety Evidence Report and Systematic Review

Total Page:16

File Type:pdf, Size:1020Kb

Seizure Disorder and Medical Certification of Commercial Motor Vehicle Driver Safety Evidence Report and Systematic Review Seizure Disorder and Medical Certification of Commercial Motor Vehicle Driver Safety Evidence Report and Systematic Review Prepared for the Federal Motor Carrier Safety Administration Contract: DTMC75-13-R-00025 March 2019 Authors: Katherine Fiedler, Ph.D. Claire Cropper Joanne Liem Chris Cotterman Daniel Paoletti Table of Contents Executive Summary ...............................................................................................................................4 Introduction .........................................................................................................................................4 Research Questions ............................................................................................................................5 Search Methodology ..........................................................................................................................5 Findings ...............................................................................................................................................6 Research Question 1 .......................................................................................................................6 Research Question 2 .......................................................................................................................6 Research Question 3 .......................................................................................................................7 Research Question 4 .......................................................................................................................7 Research Question 5 .......................................................................................................................7 Research Question 6 .......................................................................................................................7 Preface ......................................................................................................................................................9 Introduction .........................................................................................................................................9 Purpose of Report .............................................................................................................................11 Report Organization ........................................................................................................................12 Report Funding and Role of Funders ............................................................................................12 Background ...........................................................................................................................................13 What is Epilepsy? .............................................................................................................................13 What is a Seizure? .............................................................................................................................14 Seizure Triggers ................................................................................................................................15 Epilepsy Treatment ..........................................................................................................................16 Research Methodology and Evidence Base ......................................................................................17 Sources Searched ..............................................................................................................................17 Search Terms Used ...........................................................................................................................18 Table 1: Keywords ........................................................................................................................18 Table 2: Search Terms Used ........................................................................................................20 Inclusion/Exclusion Criteria ...........................................................................................................22 Evidence Summary ..............................................................................................................................25 Research Question 1 .........................................................................................................................26 Evidence Base ................................................................................................................................26 Summaries of Included Studies ..................................................................................................27 Quality of Included Studies ........................................................................................................30 Findings ..........................................................................................................................................31 Research Question 2 .........................................................................................................................34 Evidence Base ................................................................................................................................34 Summaries of Included Studies ..................................................................................................35 Quality of Included Studies ........................................................................................................50 2 Findings ..........................................................................................................................................53 Research Question 3 .........................................................................................................................57 Evidence Base ................................................................................................................................57 Research Question 4 .........................................................................................................................58 Evidence Base ................................................................................................................................58 Summaries of Included Studies ..................................................................................................59 Quality of Included Studies ........................................................................................................59 Findings ..........................................................................................................................................59 Research Question 5 .........................................................................................................................61 Evidence Base ................................................................................................................................61 Research Question 6 .........................................................................................................................62 Evidence Base ................................................................................................................................62 Summaries of Included Studies ..................................................................................................63 Quality of Included Studies ........................................................................................................67 Findings ..........................................................................................................................................68 Recommendations to FMCSA ..........................................................................................................72 Amount of Evidence ........................................................................................................................72 Appendices...........................................................................................................................................73 Works Cited (Included Studies) .....................................................................................................73 3 Executive Summary Introduction Driving a large commercial motor vehicle is dangerous work. In 2016, the Federal Motor Carrier Safety Administration (FMCSA) found that “4,440 large trucks and buses were involved in fatal crashes, a 2-percent increase from 2015”.1 In 2017, the Bureau of Labor Statistics (BLS) reported that truck drivers and delivery workers had the highest number of workplace fatalities (840), and that this “represented the highest value for heavy and tractor- trailer truck drivers” since reporting on those job types began in 2003.2 FMCSA’s primary mission is to reduce the number of crashes, injuries, and fatalities suffered by commercial motor vehicle (CMV) operators. FMCSA’s Medical Programs Division supports this mission by working to ensure that CMV drivers involved in interstate commerce are physically qualified and able to safely perform their work. As part of the effort to improve safety, the FMCSA periodically commissions systematic reviews of the scientific literature related to a variety of topics relevant to safe CMV operations. The results of these studies, combined with input from the FMCSA’s Medical Expert Panel, are used to inform agency decision-making and policy updates. This report considers the impact of seizure disorders
Recommended publications
  • Therapeutic Class Brand Name P a Status Generic
    P A Therapeutic Class Brand Name Status Generic Name Strength Form Absorbable Sulfonamides AZULFIDINE SULFASALAZINE 250MG/5ML ORAL SUSP Absorbable Sulfonamides AZULFIDINE SULFASALAZINE 500MG TABLET Absorbable Sulfonamides AZULFIDINE SULFASALAZINE 500MG TABLET DR Absorbable Sulfonamides BACTRIM DS SULFAMETHOXAZOLE/TRIMETHO 800-160MG TABLET Absorbable Sulfonamides GANTRISIN SULFISOXAZOLE 500MG TABLET Absorbable Sulfonamides GANTRISIN SULFISOXAZOLE ACETYL 500MG/5ML ORAL SUSP Absorbable Sulfonamides GANTRISIN SULFISOXAZOLE ACETYL 500MG/5ML SYRUP Absorbable Sulfonamides SEPTRA SULFAMETHOXAZOLE/TRIMETHO 200-40MG/5 ORAL SUSP Absorbable Sulfonamides SEPTRA SULFAMETHOXAZOLE/TRIMETHO 400-80MG TABLET Absorbable Sulfonamides SULFADIAZINE SULFADIAZINE 500MG TABLET ACE Inhibitor/Calcium Channel Blocker Combination LOTREL AMLODIPINE BESYLATE/BENAZ 10-20MG CAPSULE ACE Inhibitor/Calcium Channel Blocker Combination LOTREL AMLODIPINE BESYLATE/BENAZ 2.5-10MG CAPSULE ACE Inhibitor/Calcium Channel Blocker Combination LOTREL AMLODIPINE BESYLATE/BENAZ 5-10MG CAPSULE ACE Inhibitor/Calcium Channel Blocker Combination LOTREL AMLODIPINE BESYLATE/BENAZ 5-20MG CAPSULE P A Therapeutic Class Brand Name Status Generic Name Strength Form ACE Inhibitor/Calcium Channel Blocker Combination LOTREL AMLODIPINE BESYLATE/BENAZ 5-40MG CAPSULE ACE Inhibitor/Calcium Channel Blocker Combination LOTREL AMLODIPINE BESYLATE/BENAZ 10-40MG CAPSULE Acne Agents, Systemic ACCUTANE ISOTRETINOIN 10MG CAPSULE Acne Agents, Systemic ACCUTANE ISOTRETINOIN 20MG CAPSULE Acne Agents, Systemic ACCUTANE
    [Show full text]
  • How to Use Anti-Epileptic Drugs Wisely ?
    When to start and how to select antiepileptic drugs (AEDs) Dr. Chusak Limotai, MD., M.Sc., CSCN(C) Talk overview • When to start treatment ? • Which drug ? • Monotherapy • Combining AEDs (Rational polytherapy) • Old AEDs versus new AEDs • Drug level monitoring • When to discontinue AEDs ? When to start treatment ? • Correct diagnosis • Generally start after the second unprovoked seizure – First unprovoked seizure: A seizure or flurry of seizures or occurring within 24 hrs in the person > 1 month old of age – Epilepsy: 2 or more epileptic seizures occur unprovoked by any immediately identifiable cause ILAE 2014 • A person is considered to have epilepsy if they meet any of the following conditions. 1) At least two unprovoked (or reflex) seizures occurring greater than 24 hours apart. 2) One unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years. 3) Diagnosis of an epilepsy syndrome – Epilepsy is considered to be resolved for individuals who had an age- dependent epilepsy syndrome but are now past the applicable age or those who have remained seizure-free for the last 10 years, with no seizure medicines for the last 5 years. Fisher RS et al. A practical clinical definition of epilepsy, Epilepsia 2014; 55:475-482 Cumulative risk of recurrence after a first unprovoked seizure 67% at 1 yr 78% at 3 yrs 44 % at 3 yrs 60% at 6 mo 32% at 3 yrs 17% at 3 yrs Hart YM et.al; The Lancet 1990 Indications to consider antiepileptic drug treatment after the first seizure Pohlmann-Eden B et.al BMJ 2006 Seneviratne U Postgrad Med J 2009 Factors associated with increased/lower risk • Increased risk: • Lower risk: – Adolescence onset – seizure occurred within – associated neurological 3 mo after acute insult deficits e.g.
    [Show full text]
  • Mechanisms of Action of Antiepileptic Drugs
    Review Mechanisms of action of antiepileptic drugs Epilepsy affects up to 1% of the general population and causes substantial disability. The management of seizures in patients with epilepsy relies heavily on antiepileptic drugs (AEDs). Phenobarbital, phenytoin, carbamazepine and valproic acid have been the primary medications used to treat epilepsy for several decades. Since 1993 several AEDs have been approved by the US FDA for use in epilepsy. The choice of the AED is based primarily on the seizure type, spectrum of clinical activity, side effect profile and patient characteristics such as age, comorbidities and concurrent medical treatments. Those AEDs with broad- spectrum activity are often found to exert an action at more than one molecular target. This article will review the proposed mechanisms of action of marketed AEDs in the US and discuss the future of AEDs in development. 1 KEYWORDS: AEDs anticonvulsant drugs antiepileptic drugs epilepsy Aaron M Cook mechanism of action seizures & Meriem K Bensalem-Owen† The therapeutic armamentarium for the treat- patients with refractory seizures. The aim of this 1UK HealthCare, 800 Rose St. H-109, ment of seizures has broadened significantly article is to discuss the past, present and future of Lexington, KY 40536-0293, USA †Author for correspondence: over the past decade [1]. Many of the newer AED pharmacology and mechanisms of action. College of Medicine, Department of anti epileptic drugs (AEDs) have clinical advan- Neurology, University of Kentucky, 800 Rose Street, Room L-455, tages over older, so-called ‘first-generation’ First-generation AEDs Lexington, KY 40536, USA AEDs in that they are more predictable in their Broadly, the mechanisms of action of AEDs can Tel.: +1 859 323 0229 Fax: +1 859 323 5943 dose–response profile and typically are associ- be categorized by their effects on the neuronal [email protected] ated with less drug–drug interactions.
    [Show full text]
  • Chapter 25 Mechanisms of Action of Antiepileptic Drugs
    Chapter 25 Mechanisms of action of antiepileptic drugs GRAEME J. SILLS Department of Molecular and Clinical Pharmacology, University of Liverpool _________________________________________________________________________ Introduction The serendipitous discovery of the anticonvulsant properties of phenobarbital in 1912 marked the foundation of the modern pharmacotherapy of epilepsy. The subsequent 70 years saw the introduction of phenytoin, ethosuximide, carbamazepine, sodium valproate and a range of benzodiazepines. Collectively, these compounds have come to be regarded as the ‘established’ antiepileptic drugs (AEDs). A concerted period of development of drugs for epilepsy throughout the 1980s and 1990s has resulted (to date) in 16 new agents being licensed as add-on treatment for difficult-to-control adult and/or paediatric epilepsy, with some becoming available as monotherapy for newly diagnosed patients. Together, these have become known as the ‘modern’ AEDs. Throughout this period of unprecedented drug development, there have also been considerable advances in our understanding of how antiepileptic agents exert their effects at the cellular level. AEDs are neither preventive nor curative and are employed solely as a means of controlling symptoms (i.e. suppression of seizures). Recurrent seizure activity is the manifestation of an intermittent and excessive hyperexcitability of the nervous system and, while the pharmacological minutiae of currently marketed AEDs remain to be completely unravelled, these agents essentially redress the balance between neuronal excitation and inhibition. Three major classes of mechanism are recognised: modulation of voltage-gated ion channels; enhancement of gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission; and attenuation of glutamate-mediated excitatory neurotransmission. The principal pharmacological targets of currently available AEDs are highlighted in Table 1 and discussed further below.
    [Show full text]
  • Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on Β-Alanine and Isatin
    Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin by Robert Philip Colaguori A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Pharmaceutical Sciences University of Toronto © Copyright by Robert Philip Colaguori, 2016 ii Design, Synthesis, and Evaluation of Antiepileptic Compounds Based on β-Alanine and Isatin Robert Philip Colaguori Master of Science Department of Pharmaceutical Sciences University of Toronto 2016 Abstract Epilepsy is the fourth-most common neurological disorder in the world. Approximately 70% of cases can be controlled with therapeutics, however 30% remain pharmacoresistant. There is no cure for the disorder, and patients affected are subsequently medicated for life. Thus, there is a need to develop compounds that can treat not only the symptoms, but also delay/prevent progression. Previous work resulted in the discovery of NC-2505, a substituted β-alanine with activity against chemically induced seizures. Several N- and α-substituted derivatives of this compound were synthesized and evaluated in the kindling model and 4-AP model of epilepsy. In the kindling model, RC1-080 and RC1-102 were able to decrease the mean seizure score from 5 to 3 in aged mice. RC1-085 decreased the interevent interval by a factor of 2 in the 4-AP model. Future studies are focused on the synthesis of further compounds to gain insight on structure necessary for activity. iii Acknowledgments First and foremost, I would like to thank my supervisor Dr. Donald Weaver for allowing me to join the lab as a graduate student and perform the work ultimately resulting in this thesis.
    [Show full text]
  • Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva
    REVIEW ARTICLE Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva Philip N. Patsalos, FRCPath, PhD*† and Dave J. Berry, FRCPath, PhD† INTRODUCTION Abstract: Blood (serum/plasma) antiepileptic drug (AED) therapeu- Measuring antiepileptic drugs (AEDs) in serum or tic drug monitoring (TDM) has proven to be an invaluable surrogate plasma as an aid to personalizing drug therapy is now a well- marker for individualizing and optimizing the drug management of established practice in the treatment of epilepsy, and guidelines patients with epilepsy. Since 1989, there has been an exponential are published that indicate the particular features of epilepsy and increase in AEDs with 23 currently licensed for clinical use, and the properties of AEDs that make the practice so beneficial.1 recently, there has been renewed and extensive interest in the use of The goal of AED therapeutic drug monitoring (TDM) is to saliva as an alternative matrix for AED TDM. The advantages of saliva ’ fl optimize a patient s clinical outcome by supporting the man- include the fact that for many AEDs it re ects the free (pharmacolog- agement of their medication regimen with the assistance of ically active) concentration in serum; it is readily sampled, can be measured drug concentrations/levels. The reason why TDM sampled repetitively, and sampling is noninvasive; does not require the has emerged as an important adjunct to treatment with the expertise of a phlebotomist; and is preferred by many patients, AEDs arises from the fact that for an individual patient
    [Show full text]
  • Experience with Rufinamide in a Pediatric Population: a Single
    Original Articles Experience With Rufinamide in a Pediatric Population: A Single Center’s Experience Martina Vendrame, MD, PhD*1, Tobias Loddenkemper, MD*†1, Vasu D. Gooty, MD*†, Masanori Takeoka, MD*†, Alexander Rotenberg, MD, PhD*†, Ann M. Bergin, MD*†, Yaman Z. Eksioglu, MD*†, Annapurna Poduri, MD*†, Frank H. Duffy, MD*†, Mark Libenson, MD*†, Blaise F. Bourgeois, MD*†, and Sanjeev V. Kothare, MD*† Rufinamide is a new antiepileptic drug recently ap- with rapid and almost complete oral absorption, low plasma proved as adjunctive treatment for generalized seizures protein-binding, high renal excretion, and low propensity to in Lennox-Gastaut syndrome. We undertook a retro- drug-drug interactions [1,2]. Although these properties spective analysis of 77 patients with refractory epilepsy make rufinamide a potentially useful drug in the treatment and receiving rufinamide to evaluate the drug’s effi- of intractable epilepsy in children, rufinamide is currently cacy, tolerability, safety, and dosing schedules. It ap- only approved for the adjunctive treatment of generalized peared efficacious in diverse epilepsy syndromes, with seizures in Lennox-Gastaut syndrome. the highest responder rate in focal cryptogenic epilep- In this study, we retrospectively analyzed the use of rufi- sies (81.1% of patients with >50% response rate), and namide in children with diverse epilepsy syndromes in a ter- in diverse seizure types, with the highest responder tiary pediatric epilepsy center. We describe the safety, rate in tonic/atonic and partial seizures (48.6% and tolerability, efficacy, and dosing of rufinamide, to identify 46.7% of patients with >50% response rate, respec- the advantages or difficulties of its use across a diverse tively).
    [Show full text]
  • Genetics-Of-Epilepsy.Pdf
    logy & N ro eu u r e o N p h f Bamikole, et al., J Neurol Neurophysiol 2019, 10:3 y o s l i o a n l o r g u y o J Journal of Neurology & Neurophysiology ISSN: 2155-9562 Review Open Access Genetics of Epilepsy Oluwayemi Joshua Bamikole *, Miles-Dei Benedict Olufeagba, Samuel Temitope Soge, Noah Olamide Bukoye, Taiwo Habeeb Olajide, Subulade Abigail Ademola, Olukemi Kehinde Amodu Institute of Child Health, University of Ibadan. Nigeria *Corresponding author: Oluwayemi Joshua Bamikole, Institute of Child Health, University of Ibadan, Nigeria, Tel: +2347068505498; E-mail: [email protected] Received date: February 06, 2019; Accepted date: March 27, 2019; Published date: August 09, 2019 Copyright: © 2019 Oluwayemi Joshua Bamikole. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Genetics is a branch of the human biology that provides insights into basic and vital processes which arise from birth till death, development to apoptosis (cell death), and in disease aetiology and therapies, or better methods in use of available treatments to solve human health conditions because genes function in all biological process. Epilepsy is a seizure that occurs without identifiable justification with a great chance of further seizures which is almost the same to the global recurrence risk of 60% after two unjustified seizures, happening over a ten years’ span. Fifty million people globally present with epilepsy ranging from about 20 to 70 cases per 100,000 in a year and Over 85% of the epilepsy cases are present in underdeveloped and even developing countries with low or middle income.
    [Show full text]
  • Therapeutic Class Overview Anticonvulsants
    Therapeutic Class Overview Anticonvulsants INTRODUCTION • Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least ○ 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. • Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control○ and Prevention [CDC] 2018, Epilepsy Foundation Greater Chicago 2020). Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face ○ . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of ○ consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” .
    [Show full text]
  • High-Throughput Brain Activity Mapping and Machine Learning As a Foundation for Systems Neuropharmacology
    High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology Lin, Xudong; Duan, Xin; Jacobs, Claire; Ullmann, Jeremy; Chan, Chung-Yuen; Chen, Siya; Cheng, Shuk-Han; Zhao, Wen-Ning; Poduri, Annapurna; Wang, Xin; Haggarty, Stephen J.; Shi, Peng Published in: Nature Communications Published: 03/12/2018 Document Version: Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record License: CC BY Publication record in CityU Scholars: Go to record Published version (DOI): 10.1038/s41467-018-07289-5 Publication details: Lin, X., Duan, X., Jacobs, C., Ullmann, J., Chan, C-Y., Chen, S., Cheng, S-H., Zhao, W-N., Poduri, A., Wang, X., Haggarty, S. J., & Shi, P. (2018). High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nature Communications, 9, [5142]. https://doi.org/10.1038/s41467-018-07289- 5 Citing this paper Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details. General rights Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.
    [Show full text]
  • "2-Oxo-1-Pyrrolidine Derivative and Its Pharmaceutical Uses"
    (19) & (11) EP 1 452 524 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 207/27 (2006.01) A61K 31/4015 (2006.01) 14.10.2009 Bulletin 2009/42 A61P 25/08 (2006.01) (21) Application number: 04007878.4 (22) Date of filing: 21.02.2001 (54) "2-oxo-1-pyrrolidine derivative and its pharmaceutical uses" "2-Oxo-1-Pyrrolidinderivate und ihre pharmazeutische Verwendung" "Dérivé de 2-oxo-1-pyrrolidine et ses applications pharmaceutique" (84) Designated Contracting States: • Talaga, Patrice AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 1170 Watermael-Boitsfort (BE) MC NL PT SE TR (74) Representative: UCB (30) Priority: 23.02.2000 GB 0004297 Intellectual Property c/o UCB S.A. (43) Date of publication of application: Intellectual Property Department 01.09.2004 Bulletin 2004/36 Allée de la Recherche 60 1070 Brussels (BE) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (56) References cited: 01925354.1 / 1 265 862 WO-A-99/13911 GB-A- 1 309 692 (73) Proprietor: UCB Pharma, S.A. • PROUS: "LEVETIRACETAM" DRUGS OF THE 1170 Brussels (BE) FUTURE, BARCELONA, ES, vol. 19, no. 2, 1994, pages 111-113, XP000908882 ISSN: 0377-8282 (72) Inventors: • FISCHER W ET AL: "Die Wirksamkeit von • Differding, Edmond Piracetam, Meclofenoxat und Vinpocetin in 1348 Ottignies-Louvain-La-Neuve (BE) verschiedenen Krampfmodellen bei der Maus" • Kenda, Benoît PHARMAZIE, VEB VERLAG VOLK UND 5080 Emines (BE) GESUNDHEIT. BERLIN, DD, vol. 46, no.
    [Show full text]
  • Recommendation from the New Drugs Committee
    Scottish Medicines Consortium Re-submission rufinamide, 100mg, 200mg and 400mg tablets (Inovelon®) No.(416/07) Eisai Limited 10 October 2008 The Scottish Medicines Consortium (SMC) has completed its assessment of the above product and advises NHS Boards and Area Drug and Therapeutic Committees (ADTCs) on its use in NHS Scotland. The advice is summarised as follows: ADVICE: following a re-submission rufinamide (Inovelon®) is accepted for restricted use within NHS Scotland as adjunctive therapy in the treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients four years and older. Adjunctive rufinamide significantly reduced the frequency of total seizures and tonic-atonic seizures and significantly improved seizure severity when compared to placebo in patients with LGS. Rufinamide is restricted to use in patients who have failed treatment with or are intolerant of alternative traditional antiepileptic drugs. Overleaf is the detailed advice on this product. Chairman Scottish Medicines Consortium Published 10 November, 2008 1 Indication Adjunctive therapy in the treatment of seizures associated with Lennox-Gastaut syndrome in patients four years and older. Dosing information The daily dose should be divided into two equal doses taken morning and evening. Children ≥ 4 years and <30kg not receiving valproate: Initially 200mg daily. Dose may be increased according to clinical response and tolerability by 200mg/day, every two days, up to a maximum recommended dose of 1000mg/day. Children ≥ 4 years and <30kg also receiving valproate: Initially 200mg daily. After a minimum of 2 days the dose may be increased according to clinical response and tolerability by 200mg/day, to the maximum recommended dose of 400mg/day.
    [Show full text]