An Overview of Titanium Deposits in Norway
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Finding the Optimal Seat Capacity for Train-Services Using Transport Models
TECHNICAL UNIVERSITY OF DENMARK June 2014 FINDING THE OPTIMAL SEAT CAPACITY FOR TRAIN-SERVICES USING TRANSPORT MODELS DEPARTMENT OF TRANSPORT María Díez Gutiérrez – s121456 Finding the optimal seat capacity for train services using transport models MSc Thesis – Transport Engineering ACKNOWLEDGEMENTS It is with gratitude to my supervisor Kim Bang Salling for making possible this thesis project and encouraging me during the process. I would like to express my appreciation to Trude Tørset whose enthusiasm for transport models has been inspiring to focus my research on the field. I thank her for following up my thesis from the earlier stages, providing me support and guidance. My sincere thanks to Jernbaneverket, in particular Per Jorulf Overvik and Patrick Ranheim, who helped me to specify the topic and to obtain the required data. I thank them for the useful observations along the learning process of this master thesis. I would like to express my gratitude to Stefano Manzo for the worthwhile comments and remarks on this project. I want to thank Olav Kåre Malmin who has helped me to understand better the technical aspects of the model. Thanks to NSB for providing me with necessary data and resources for the Jæren line analyses. Last but not least, I would like to express my love and gratitude to my family for their understanding, encouragement and support. I Finding the optimal seat capacity for train services using transport models MSc Thesis – Transport Engineering ABSTRACT This master thesis project aims to estimate the optimal capacity for the rush period in the Jæren line, particularly in the service between Stavanger and Egersund. -
Has Immiscibility Occurred in the Bjerkreim-Sokndal Layered Intrusion (S
Has immiscibility occurred in the Bjerkreim-Sokndal layered intrusion (S. Norway)? Jean-Clair DUCHESNE Department of Geology, University of Liège, Belgium ABSTRACT The Bjerkreim-Sokndal layered intrusion (Rogaland anorthosite province, South Norway) is made of a series of rocks of intermediate composition that result from fractional crystallization of a jotunite magma (Fe-Ti-rich diorite). The intermediate nature of the liquid line of descent makes possible the action of an immiscibility process that gives rise to conjugated Fe-rich and Si-rich melts. It is particularly plausible at the transition between gabbronorites and mangerite, where Fe-Ti-P-rich ultramafic layers are intercalated into norite and mangerite. The chemical compositions of a suite of rocks in a cross-section of the intrusion are here synthetized and compared to the recent experimental data of Charlier and Grove, 2012. It is shown that the ultramafic layers are do not derive from a Fe-rich immiscible melt. Moreover the reconstructed liquid line of descent of the intrusion by several methods does not enter into the two-immiscible melts domain. It is concluded that evidence of immiscibility in the evolution of the fractionation process is still lacking. KEYWORDS: AMCG, Jotunite, liquid line of descent, Fe-diorite INTRODUCTION Silicate liquid immiscibility has long been invoked as an operating mechanism in the evolution of mafic magmas that differentiate to extreme degrees of Fe-enrichment (McBirney, 1975; Philpotts, 1976; Roedder, 1979). In the Skaergaard layered intrusion, the process, first proposed by McBirney (1975), has received further support by the identification of melt inclusions in apatite (Jakobsen et al., 2005, 2011), late magmatic microstructures (Holness et al., 2011), precious metal occurrence (Nielsen et al., 2015) and compositional evolution (Nielsen et al., in press). -
Mussel Margaritifera Margaritifera (Linnaeus) (Bivalvia, Margaritiferidae) in Norway
Fauna norvegica 2008 Vol. 26/27: 3-14. ISSN: 1502-4873 Distribution, status and threats of the freshwater pearl mussel Margaritifera margaritifera (Linnaeus) (Bivalvia, Margaritiferidae) in Norway Dag Dolmen and Einar Kleiven Dolmen D and Kleiven E. 2008. Distribution, status and threats of the freshwater pearl mussel Margaritifera margaritifera (Linnaeus) (Bivalvia, Margaritiferidae) in Norway. Fauna norvegica 26/27: 3-14. The distribution of Margaritifera margaritifera (Linnaeus) in Norway is mainly along the coast and in the lowland. Based on a questionnaire sent to county governors’ offices and municipal administra- tions in Norway, about 430 former and existing localities have been recorded, of which about 300 are still-existing. However, the real number is probably more than twice as large. Central Norway has the highest number of documented sites. The northernmost locality is at Berlevåg (Finnmark) at 70°50’N lat., and the highest verified record is near Snåsa (Central Norway) at 472 m a.s.l. The great majority of localities are associated with Cambro-Silurian volcano-sedimentary rocks or situated below the postglacial marine limit, i.e. in areas not too poor in calcium. The species is an early immigrant, and a landlocked population in Central Norway has probably existed since 8900 14C-yr B.P. The pearl mussel has become extinct during the past few decades at as many as 30% of its localities, mostly due to urbanisation and pollution. There is a high correlation between the density of people in a county (or the proportion of cultivated land) and the “density” of extinct pearl mussel populations (r=0.91). -
Bjerkreim Phase 1 Report V2-0.Docx December 2019 Page I of Ix Bjerkreim Phase 1 Exploration Report
END OF PHASE REPORT, BJERKREIM PHASE 1 EXPLORATION, NORWAY Prepared for Report prepared by SRK Exploration Services Ltd ES7821 December 2019 Head Office 12 St Andrew’s Crescent UK: +44 (0) 2920 233 233 Cardiff Russia: +7 (0) 4955 454 413 CF10 3DD South Africa: +27 (0) 11 441 1111 United Kingdom Email: [email protected] Web: www.srkexploration.com Bjerkreim Phase 1 Exploration Report SRK Legal Entity: SRK Exploration Services Ltd SRK Registered Address 21 Gold Tops Newport NP20 4PG SRK Office Address: 12 St Andrew’s Crescent Cardiff CF10 3DD Date: 09/12/2019 Project Number: ES7821 SRK Project Manager: Jon Russill Principal Exploration Geologist Client Legal Entity: Norge Mining PLC Client Address: The Annex, The Gables, Potters Green, Hertfordshire, SG12 OJU United Kingdom COPYRIGHT AND DISCLAIMER Copyright (and any other applicable intellectual property rights) in this document and any accompanying data or models is reserved by SRK Exploration Services Limited ("SRK") and is protected by international copyright and other laws. The use of this document is strictly subject to terms licensed by SRK to its client as the recipient of this Report and unless otherwise agreed by SRK, this does not grant rights to any third party. This document may not be reproduced or circulated in the public domain (in whole or in part) or in any edited, abridged or otherwise amended form unless expressly agreed by SRK. This document may not be utilised or relied upon for any purpose other than that for which it is stated within and SRK shall not be liable for any loss or damage caused by such use or reliance. -
Information Sheet on Ramsar Wetlands (RIS) Categories Approved by Recommendation 4.7 of the Conference of the Contracting Parties
Information Sheet on Ramsar Wetlands (RIS) Categories approved by Recommendation 4.7 of the Conference of the Contracting Parties Note: It is important that you read the accompanying Explanatory Note and Guidelines document before completing this form. 1. Date this sheet was completed/updated: July 18th, 2002 2. Country: NORWAY 3. Name of wetland: JÆREN WETLAND SYSTEM o 18 new separate areas (units) in addition to 4 existing areas (units) (established as part of the Ramsar site in 1985) o Extention of unit - Grudavatn 4. Geographical coordinates: 1. Alvevatn: 58o 33'N - 5o 40'E 2. Bjårvatn: 58o 33'N - 5o 46'E 3. Harvalandsvatn: 58o 50'N - 5o 4'E 4. Lonavatn: 58o 47'N - 5o 42'E 5. Orrevatn: 58o 45'N - 5o 32'E (central and most important site) 6. Smokkevatn: 58o 43'N - 5o 39'E 7. Søylandsvatn: 58o 42'N - 5o 36'E 8. Øksnevadtjønn: 58o 47'N - 5o 41'E 9. Ogna - Brusand: 58o 42'N - 5o 32'E 10. Børaunen: 59o 01'N - 5o 40'E 11. Grannesbukta: 58o 56'N - 5o 42'E 12. Hagavågen: 58o 56'N - 5o 37'E 13. Kvassheim: 58o 33'N - 5o 41'E 14. Nærlandstangen-Obrestad: 58o 40'N - 5o 35'E 15. Strandnesvågen: 58o 54'N - 5o 37'E 16. Linemyr: 58o 43'N - 5o 38'E 17. Storamyr: 58o 57'N - 5o 36'E 18. Vigremyr: 58o 39'N - 5o 37'E Extension of Grudavatn unit: 1. Grudavatn: 58o 47'N - 5o 37'E Other existing areas (units): 2. Kolnes: 58o 49’N – 5o 33’E 3. -
An Overview of Titanium Deposits in Norway
NGU-BULL 436, 2000 - PAGE 27 An overview of titanium deposits in Norway ARE KORNELIUSSEN, SUZANNE A. McENROE, LARS PETTER NILSSON, HENRIK SCHIELLERUP, HÅVARD GAUTNEB, GURLI B. MEYER & LEIF ROGER STØRSETH Korneliussen, A., McEnroe, S. A., Nilsson, L.P., Schiellerup, H., Gautneb, H., Meyer, G.B. & Størseth, L.R. 2000: An overview of titanium deposits in Norway. Norges geologiske undersøkelse Bulletin 436, 27-38 Titanium deposits in Norway are of three major types: igneous, metasomatic and metamorphic. The igneous deposits are composed of ilmenite, magnetite and apatite in various proportions and occur in geological provinces of different ages, and some have a metamorphic overprint. The other major Ti ore-type is the rutile-bearing eclogites in western Norway that formed during the Caledonian high-pressure metamorphism of predominantly Proterozoic basic igneous rocks. The third Ti ore-type is the Proterozoic rutile-bearing, scapolitised and albitised rocks in the Bamble region of South Norway. Norwegian Ti mineral resources are large. The Egersund province in southernmost Norway is by far the most significant. This province includes the Tellnes ilmenite deposit which is in operation, as well as large volumes of other low-grade ilmenite ores. The annual ilmenite production at Tellnes, ~550,000 t. ilmenite, is 6-7 % of the total mine production of Ti minerals in the world, and Tellnes alone has approximately 12 % of the world’s resources of ilmenite. Mineralogy is the overall factor influencing the economic significance of Ti deposits, defining the quality of the Ti mineral product that can be produced. Grainsize, mineral intergrowths and mineral chemistry are a reflection of the geological environment and later conditions of the ore-forming process. -
Physical and Chemical Processes in the Bjerkreim-Sokndal Magma Chamber
Physical and Chemical Processes in the Bjerkreim-Sokndal Magma Chamber Federico Chiodoni Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen 2010 Dissertation date: 19 March Contents Preface 1 Statement of authorship 2 Introduction 3 Background for the research 4 Processes in the Bjerkreim-Sokndal Magma chamber 10 Post cumulus deformation 27 Conclusions 28 CHAPTER 1 41 The Sokndal lobe of the Bjerkreim-Sokndal Intrusion, Rogaland Anorthosite Province, SW Norway: I. Field relationships and evolution. CHAPTER 2 101 The Sokndal lobe of the Bjerkreim-Sokndal Intrusion, Rogaland Anorthosite Province, SW Norway: II. Cryptic layering. CHAPTER 3 157 Origin of ilmenite-rich cumulates at the base of Megacyclic unit III in the Bjerkreim-Sokndal Layered Intrusion, SW Norway. CHAPTER 4 209 Poles apart: A discussion of “Geochemistry of cumulates from the Bjerkreim-Sokndal Intrusion (S. Norway). Part I: Constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent” by J.C. Duchesne & B. Charlier (Lithos 83, 2005, 229-254). Preface This dissertation entitled “Physical and chemical processes in the Bjerkreim-Sokndal magma chamber” has been submitted by Federico Chiodoni in partial fulfilment of the requirements for the degree of philosophiae doctor (PhD) at the Department of Earth Science, University of Bergen (UiB), Norway. The dissertation is the result of a research project “Physical and chemical processes in a large magma chamber: The Bjerkreim-Sokndal Intrusion” funded by the Norwegian Research Council (NFR) for the period 2005-2007. The work was carried out at the Department of Earth Science at the University of Bergen and included a total of 18 weeks of geological mapping and sample collection in the county of Rogaland, SW Norway, during the summer months of 2005, 2006 and 2007. -
J.-C. Duchesne: List of Publications
J.-C. Duchesne: List of publications 123. Duchesne J.C., Liégeois, J.P., Bolle O., Vander Auwera, J., Bruguier O., Matukov, D.I., Sergeev, S.A., 2013. The fast evolution of a crustal hot zone at the end of a transpressional regime: the Saint-Tropez peninsula granites and related dykes (Maures Massif, SE France). Lithos, 162-163, 195-220. 122. Charlier B, Namur O, Malpas S, de Marneffe C, Duchesne J-C, Vander Auwera J, Bolle O (2010) Origin of the giant Allard Lake ilmenite ore deposit (Canada) by fractional crystallization, multiple magma pulses and mixing. Lithos 117: 119-134. 121. Vander Auwera, J., Bolle, O., Bingen, B., Liégeois, J.-P., Bogaerts, M., Duchesne, J.C., De Waele, B., Longhi, J., 2011. Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root, Earth Science Reviews, doi: 10.1016/j.earscirev.2011.04.005 120. J.-C. Duchesne, G. Bologne, 2010. Short note: Synthetic ilmenite as a blank to XRF trace element determination. Geologica Belgica, 14 (1-2): 103:106. 119. B. Charlier, J.-C. Duchesne, J. Vander Auwera, J.-Y. Storme, R. Maquil, J. Longhi, 2010. Polybaric fractional crystallization of high-alumina basalt parental magmas in the Egersund-Ogna massif-type anorthosite (Rogaland, SW Norway) constrained by plagioclase and high-alumina orthopyroxene megacrysts. Journal of Petrology, 51 (12) 2547-2570. 118. JC. Duchesne, H. Martin, B. Baginski, J. Wiszniewska, J. Vander Auwera, 2010. The origin of ferroan-potassic A-type granitoids: the case of the hornblende–biotite granite suite of the Mesoproterozoic Mazury Complex, northeastern Poland. -
Bjerkreim Reunion
Figure 1 Believed to be portrait of Svale Staleson Hytland, also known i n Chicago by the Americanized names of Samuel Larson and Samuel Lawson . Original in possession of Reidar Efteland, Klepp, Norway. Given to him by Lovise Luthersdtr. Hytland, who was Svale's grand-niece. Bjerkreim Reunion by Gary T. Johnson On August 17, 2000, at a farm known as "Hytland" in the mountainous township of Bjerkreim in the county of Rogaland, Norway, a family from the near-by town of Klepp and a family from Evanston, Illinois, stood together on an old dirt road . Until that day, they had never met, but they shared a common bond . In 1853, in that same place, Svale Staleson Hytland had said goodbye to his older brother, Sigbjorn, and headed down the country road that led away from Hytland to a new life in Chicago . He left the port of Stavanger on about March 16, 1853 . As far as we know, Svale never came back to Hytland and none of his many descendants ever returned until that day when Svale's great-greatgrandson, Gary Johnson, and his wife Susan, and two of their children, Timothy and Anna, stood at Hytland with Sigbjorn's greatgrandson, Reidar Efteland, and his wife, Oddbjorg Alice . It was a letter that brought them together . Gary had an interest in family history and in 1991 his first effort had been to discover the background of one of his most unknown family branches, that of Svale Staleson . He put a short book together for the family in the U.S . -
2 Intraregional Diversity. Approaching Changes in Political Topographies in South-Western Norway Through Burials with Brooches, AD 200–1000
Mari Arentz Østmo 2 Intraregional Diversity. Approaching Changes in Political Topographies in South-western Norway through Burials with Brooches, AD 200–1000 This chapter addresses socio-political structure and change through the examination of spatial and temporal differences in the deposition of brooches in burial contexts and aspects of burial practices. Diachronic sub-regions within Rogaland and parts of southern Hordaland are inferred, enabling a further address of the trajectories within sub-regions and how they interrelate in ongo- ing socio-political processes. The paradox of observed concurrent processes of homogenisation and upsurges of local or regional particularities is addressed through the theoretical framework of globalisation. Within the study area, the sub-regions of Jæren and the Outer coast/Karmsund appear most defined throughout the period AD 200–1000. Here, quite different trajectories are observed, indicating a parallel development of different practices and sub-regional identities. 2.1 Introduction Throughout the Iron Age, dress accessories included brooches, clasps, and pins that held garments together while simultaneously adding decorative and communi- cative elements to the dress. While the functional aspects of brooches are persis- tent, their form and ornamentation vary greatly within the first millennium AD; the typologies of brooches thus constitute a major contribution to the development of Iron Age chronology (Klæsøe 1999:89; Kristoffersen 2000:67; Lillehammer 1996; Røstad 2016a). As such, the brooches deposited in burials provide an exceptional opportunity to address both spatial and temporal variations in burial practices, and furthermore in the social groups that performed those rituals. Regionality, defined as the spatial dimension of cultural differences (Gammeltoft and Sindbæk 2008:7), is here approached on a microscale, focusing on intra-regional diversity in the selective and context-specific use of a particular part of material cul- ture, namely the brooches. -
Trondheim Natural Radiocarbon Measurements Iv Reidar Nydal, Knut Lovseth, Kari E
[RADIOCAxrow, Vor.. 6, 1964, P, 280-2901 TRONDHEIM NATURAL RADIOCARBON MEASUREMENTS IV REIDAR NYDAL, KNUT LOVSETH, KARI E. SKULLERUD, and MARIANNE HOLM Radiological Dating Laboratory, Norwegian Institute of Technology, Trondheim, Norway INTRODUCTION This date list covers mainly the datings done in 1962 and 1963 and is therefore a continuation of our last date list (Trondheim III). Counter design-The major number of the samples were measured in a counter with a background of 3.50 counts/min and a recent standard net count of 14.20 counts/min. Some of the samples were measured in the small counter described earlier (Nydal, 1962). This counter has, however, been used mainly in experiments during the past few years. Pretreatment and purification-In pretreatment of samples and purification of C02, we have mainly followed our previous procedure (Trondheim III). Calculation-All dates are calculated in both B.P. and A.D., B.C. scale. In the B.P. scale all dates are calculated from the year 1950, taken as "present". The C14 half-life used is 5568 yr; its standard deviation ± 30 yr is not included in the standard deviation (la) of the dating results. The NBS recent standard is 95% of the C14 activity in the oxalic acid, and has been applied since 1960. Most of the samples are measured for isotopic fractionation, and a correc- tion in the age is applied for deviations more than 17cc from the observed mean value in a large number of measurements. The limit of error in the fractiona- tion analysis is ca. ± 1%c, and there are possibilities for a maximum error of 30 yr in the age of the samples. -
Stratigraphy and Sedimentology of Middle to Upper Pleistocene Sediments in the New Grødeland Borehole at Jæren, SW Norway
Stratigraphy and sedimentology of Middle to Upper Pleistocene sediments in the new Grødeland borehole at Jæren, SW Norway JURAJ JANOCKO, JON Y. LANDVIK, EILIV LARSEN & HANS PETTER SEJRUP Janocko, J., Landvik, J. Y., Larsen, E. & Sejrup, H. P.: Stratigraphy and sedimentology of Middle to Upper Pleistocene sediments in the new Grødeland borehole at Jæren, SW Norway. Norsk Geologisk Tidsskrift, Vol. 77, pp. 87-100. Oslo 1997. ISSN 0029-196X. The new Grødeland borehole penetrates 124.5 m of Pleistocene sediments at the coast of Jæren. Amino-acid analysis suggests that the succession is of Saalian to Weichselian age. Six major units dominated by tills, glaciomarine and marine deposits were recovered: Unit l rests on crystalline bedrock and comprises 42 m of subglacial till. Unit 2 comprises silty and sandy sediments deposited in a glaciomarine environment, grading into normal marine and back to glaciomarine conditions before deposition of the overlying till (unit 3). Unit 3 is 32 m thick subglacial till. Unit 4 was deposited in a shallow glaciomarine environment. The succession is capped by the uppermost subglacial till (unit 5) of assumed Early Weichselian age, and a Holocene beach deposit. The stratigraphy is compared with the classic results fr om the Grødeland coring carried out at this site in i874. Jura} Janocko, University of Tromsø, Department of Geology, IBG, N -9037 Tromsø, Norway; Jon Y. Landvik, The University Courses on Svalbard (UNJS), PO Box 156, N-9170 Langyearbyen, Norway; Eiliv Larsen, Geological Survey of Norway, PO Box 3006, N-3006 Trondheim, Norway; Hans Petter Sejrup, University of Bergen, Department of Geology, A/legt.