Driving Bands
Total Page:16
File Type:pdf, Size:1020Kb
These are the bands placed around projectiles to prevent the forward loss of gas around the projectile. They are usually made from copper, gilding metal and sometimes sintered iron. The modern day has intruded here also and they will now be encountered in plastic versions. Their use and introduction can be traced back to the time when cylindrical projectiles first appeared. The original round cannonball because of its requirement to be loaded from the muzzle had no method of sealing the bore. In fact had the ball been tight enough to seal the bore you wouldn't have been able to load the weapon at all. All this changed when the Cylindro-ogival projectile arrived on the scene along with the not-new breech loading weapons. (They had been tried many years before but failed through the inability of the gunners to adequately seal the breeches). A round cannonball needs no stabilizing. Because of its spherical shape it is inherently stable. Ask any cricketer, golfer or baseballer. On the other hand the Cylindro-ogival projectile is inherently unstable. It will not fly very well at all unless it is stabilized in some way. The two basic methods of stabilizing an elongated projectile are: • Fin stabilization and, • Spin stabilization. Both of these methods are in current use in the world today. To provide adequate stability for a projectile using fins there needs to be FIN STABILISATION. some sort of protection for the fins. The arrow of your ancient bowman would not survive in the bore of a cannon without some form of protection. In fact the Manuscript depicting the Vase Gun shows just this fact. The gun is shown firing what appears to be an arrow with its fins wrapped in some form of leather. The latest technique is to provide a discarding sabot which protects and carries the projectile up the bore and is then discarded at the muzzle. The drawbacks are obvious, they are expensive and more complicated to make. One great advantage is that the weapon can be made smooth bore as spin is not necessary. SPIN STABILISATION Providing spin to a cylindrical projectile introduces gyroscopic forces which keep the projectile flying point first. To provide this spin you must arrange some form of rifling in the bore of the weapon and then devise some method of transfering the spin from the rifling to the projectile. This adds considerably to the cost and complexity of the weapon and requires some device on the projectile for accepting the forces applied to create the spin. I.e. a driving band. Many steps were tried before the driving band of today was arrived at. The steps in roughly chronological order are: • Twisted projectiles. • Studded projectiles. • Lead coated projectiles. • Studded projectiles with gas checks. • Gas checks with supporting and driving bands. • Driving Bands. TWISTED PROJECTILES The two efforts at producing a smooth bored twisted projectile were by two different men. Mr. Josheph Whitworth and a Mr. Lancaster. They both came up with the idea to produce a projectile with several faces twisted along the length. The bore of the weapon was likewise twisted. The great problem arising from the use of these types of projectiles was the difference between a laboratory and the mass produced weapon at the front. In the laboratory where the conditions were pristine and each round was individually produced the system works well. At the front where the ammunition had been mass produced by unskilled labour and the weapon was also mass produced the tolerances were a little more generous giving rise to the projectiles jamming in the bore with distressing frequency. An example of a Whitworth hexagonal shrapnel shell. Photo courtesy of the Artillery museum, Woolwich. STUDDED AND RIBBED PROJECTILES It occurred to inventive minds that providing studs on the outside of the projectile engaging in the grooves of the rifling would impart spin to the projectile as it passed through the bore. Tolerances being what they were in those days there was still a gas loss forward past the studs and the rifling. An example of a studded projectile. Photo courtesy of the Artillery museum, Woowhich. An example of a ribbed projectile. Photo courtesy of the Artillery museum, Woolwich. Lead coated projectiles. If you coated a projectile in a sheath of lead the whole thing would act as a complete seal for the bore. The drawback is that the quantity of lead being driven through the bore leaves large amounts of lead fouling behind. But is certainly sealed the bore and showed the way forward to the solution of the problem of obturation. An Armstrong lead coated projectile. Gas check designs It is clearly evident from these designs that the designers had begun to get the hang of this obturation business. It needed just a little refining and they were there. Driving bands At last the solution is achieved, the humble driving band. A simple ring of soft metal press fitted to the body of a projectile that seals the bore, imparts spin and is relatively easy to provide. An example of a double driving band. Photo courtesy An example of a single wide driving band. Photo of the Imperial War Museum, London. courtesy of the Imperial War Museum, London. The functions of a driving band are as follows: To prevent the escape of propellant gasses past the projectile. To transfer the twist of the rifling to the projectile as spin. To a lesser extent to retain the projectile in the bore when high angles of elevation are applied. To centre the projectile in the bore. In addition to these main functions there are several considerations which must be borne in mind when selecting the type of band and the material thereof. 1. It should not wear the bore excessively. 2. It should compensate for the normal wear in a bore. 3. It should remain attached to the projectile throughout the internal and external ballistic phases. 4. After engraving has occurred the engraving process should not degrade the ballistic properties. 5. It should be cheap. 6. It should be easy to affix. The forces being applied to the driving band during the passage through the bore are such that the driving band must be prevented from moving around the body of the projectile. To ensure the security of the driving band during its passage up the bore and while in flight, ribs are cut or milled into the groove where the driving band is pressed. In the case of ribs chisel cuts have to be provided to prevent air being trapped underneath during the pressing operation. Grommets It was soon found that the band itself was quite susceptible to damage in storage and transport. Damage to the driving band negates the reasons for it being there in the first place. The answer was to provide a protective piece around the driving band. These are called variously grommets or grummets. Originally these were made from rope and canvas. Once again modern technology has crept in and they are now made from plastic. An example of a canvas grommet. Photo courtesy of the An example of a modern plastic grommet. Photo courtesy of the Australian Logistics Training Centre, Bandiana. Australian Logistics Training Centre, Bandiana, Victoria. BRITISH DRIVING BAND DESIGNS GUN TYPE No. 1 This type was known as the "Gas check" design. It was used on 6 inch, 12 inch, 13.5 inch and 15 inch guns. Theoretically the gas pressure under the lip forced it outwards into the rifling thus giving an improved seal. The raised portion was susceptible to damage in transport and handling, particularly in the conditions prevailing on the Western front. GUN TYPE No. 2 This type was used for 9.2 and 7.5 inch guns and was in the nature of an experimental driving band in that the gas check idea was modified so that only a raised portion was used to seal the bore. The shape gave rise to the name "Hump band" for this type. Because of its very solid nature this type was suitable for service conditions. GUN TYPE No. 3 This type was introduced for use with naval 6-inch high velocity projectiles. The band was made from Cupro-nickel. GUN TYPE No. 4 This type was known as the EOC band as the Elswick Ordnance Company made it. It was applied to 5.5 and 4 inch guns. GUN TYPE No. 5 This was a simplified Hump band being very easy to make and very robust. It was applied to naval 4.7 and 5.2 inch guns. GUN TYPE No.6 Originally introduced for use with BL 60 pr and QF 4.7 inch guns and designed as a strong and simple driving band suitable for field service. GUN TYPE No.7 This was a very simple band very much like the early Vavasseur bands. Like these early bands it was prone to fanning. ECONOMY BANDS An example of an economy driving band. Photo courtesy of the Artillery Museum, Woolwich. To economize on the use of copper the width of some bands was reduced and these bands were known as "Economy bands". To compensate for the smaller surface area and to provide a better seal the bands were made a little deeper. The accuracy with this type of band was slightly poorer and they were very susceptible to fanning. DOUBLE DRIVING BANDS With some high velocity equipments such as Anti-tank and Anti-aircraft a broad driving band is necessary to provide good quality sealing and a large surface area to support the high pressures and velocities encountered in these weapons.