Light, the Universe and Everything – 12 Herculean Tasks for Quantum Cowboys and Black Diamond Skiers
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’S Latest Target: Skin Cancer
Excellence in education, research and service FEBRUARY 2010 VOL. 2, ISSUE 1 Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’s Latest Target: Skin Cancer By Bryce Hairston Kennard The hard streets of Buenaventura, Colombia, didn’t provide Raul Cuero with the usual range of toys available to children from more prosperous families—but there were plenty of lizards, cockroaches and insects. Humble as those amusements were, they ignited a lifelong interest in biology and NEW DISCOVERIES Dr. Theresa Fossum (left) and Dr. Matthew Miller review images in the cardiac nature that led to extensive research with Martian soil, plant catheterization laboratory at the new TIPS facility in College Station. organisms and cancer. If you have heard of Cuero recently, it is likely in connection with developing a breakthrough discovery in the labs at Prairie View A&M University that could lead to the prevention of skin cancer in humans and animals. Aided by funding from NASA, the professor of microbiology Building TIPS for Texas in the College of Agriculture and Human Sciences is seeking a patent for a natural compound that blocks cancer-inducing How Terry Fossum Advanced Texas A&M’s Leadership in Biotech Innovation ultra-violet radiation. He describes the discovery as a way to help researchers and scientists “elucidate an important scientific By Melissa Chessher quest about the way organisms were able to survive at the beginning of earth, when there was a great UV presence in the Terry Fossum’s journey to create the Texas A&M Institute for Preclinical Studies began in 1997 during a atmosphere. -
Frontiers of Quantum and Mesoscopic Thermodynamics 29 July - 3 August 2013, Prague, Czech Republic
Frontiers of Quantum and Mesoscopic Thermodynamics 29 July - 3 August 2013, Prague, Czech Republic Under the auspicies of Ing. Milosˇ Zeman President of the Czech Republic Milan Stˇ echˇ President of the Senate of the Parliament of the Czech Republic Prof. Ing. Jirˇ´ı Drahos,ˇ DrSc., dr. h. c. President of the Academy of Sciences of the Czech Republic Dominik Cardinal Duka OP Archbishop of Prague Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Academy of Sciences of the Czech Republic • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • Department of Physics, Texas A&M University, USA • Institut de Physique Theorique,´ CEA/CNRS Saclay, France Topics • Foundations of quantum physics • Non-equilibrium statistical physics • Quantum thermodynamics • Quantum measurement, entanglement and coherence • Dissipation, dephasing, noise and decoherence • Quantum optics • Macroscopic quantum behavior, e.g., cold atoms, Bose-Einstein condensates • Physics of quantum computing and quantum information • Mesoscopic, nano-electromechanical and nano-optical systems • Biological systems, molecular motors • Cosmology, gravitation and astrophysics Scientific Committee Chair: Theo M. Nieuwenhuizen (University of Amsterdam) Co-Chair: Vaclav´ Spiˇ ckaˇ (Institute of Physics, Acad. Sci. CR, Prague) Raymond Dean Astumian (University of Maine, Orono) Roger Balian (IPhT, Saclay) Gordon Baym (University of Illinois at Urbana -
Douglas Dean Osheroff Papers
http://oac.cdlib.org/findaid/ark:/13030/c8v40ww2 No online items Guide to the Douglas Dean Osheroff Papers Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California November 2013 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Guide to the Douglas Dean SC1181 1 Osheroff Papers Overview Call Number: SC1181 Creator: Osheroff, Douglas D. Title: Douglas Dean Osheroff papers Dates: 1969-2003 Physical Description: 5 Linear feet Summary: Laboratory notebooks. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access The materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94305-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/spc/using-collections/permission-publish. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Cite As [identification of item], Douglas D. -
Chairman of the Opening Session
The Universe had (probably) an origin: on singularity theorems & quantum fluctuations Emilio Elizalde ICE/CSIC & IEEC Campus UAB, Barcelona Cosmology and the Quantum Vacuum III, Benasque, Sep 4-10, 2016 Some facts (a few rather surprising...) • Adam Riess, NP 2011, at Starmus (Tenerife), about Hubble: • “Hubble obtained the distances and redshifts of distant nebulae…” • “Hubble discovered that the Universe was expanding…” • No mention to Vesto Slipher, an extraordinary astronomer • Brian Schmidt, NP 2011, at Starmus (Tenerife) & Lisa Randall, Harvard U, in Barcelona, about Einstein: SHOES- • “Einstein was the first to think about the possibility of a ‘dark energy’…” Supernovae • No mention to Fritz Zwicky, another extraordinary astronomer • Fritz Zwicky discovered dark matter in the early 1930s while studying how galaxies move within the Coma Cluster • He was also the first to postulate and use nebulae as gravitational lenses (1937) • How easily* brilliant astronomers get dismissed • How easily* scientific myths arise *in few decades How did the “Big Bang” get its name ? http://www.bbc.co.uk/science/space/universe/scientists/fred_hoyle • Sir Fred Hoyle (1915–2001) English astronomer noted primarily for the theory of stellar nucleosynthesis (1946,54 groundbreaking papers) • Work on Britain's radar project with Hermann Bondi and Thomas Gold • William Fowler NP’83: “The concept of nucleosynthesis in stars was first established by Hoyle in 1946” • He found the idea universe had a beginning to be pseudoscience, also arguments for a creator, “…for it's an irrational process, and can't be described in scientific terms”; “…belief in the first page of Genesis” • Hoyle-Gold-Bondi 1948 steady state theory, “creation or C-field” • BBC radio's Third Programme broadcast on 28 Mar 1949: “… for this to happen you would need such a Big Bang!” Thus: Big Bang = Impossible blow!! But now: Big Bang ≈ Inflation ! • Same underlying physics as in steady state theory, “creation or C-field” • Richard C. -
What Is the Universe Made Of? How Old Is the Universe?
What is the Universe made of? How old is it? Charles H. Lineweaver University of New South Wales ABSTRACT For the past 15 years most astronomers have assumed that 95% of the Universe was in some mysterious form of cold dark matter. They also assumed that the cosmo- logical constant, ΩΛ, was Einstein’s biggest blunder and could be ignored. However, recent measurements of the cosmic microwave background combined with other cos- mological observations strongly suggest that 75% of the Universe is made of cosmo- logical constant (vacuum energy), while only 20% is made of non-baryonic cold dark matter. Normal baryonic matter, the stuff most physicists study, makes up about 5% of the Universe. If these results are correct, an unknown 75% of the Universe has been identified. Estimates of the age of the Universe depend upon what it is made of. Thus, our new inventory gives us a new age for the Universe: 13.4 ± 1.6 Gyr. “The history of cosmology shows us that in every age devout people believe that they have at last discovered the true nature of the Universe.” (E. Harrison in Cosmology: The Science of the Universe 1981) 1 Progress A few decades ago cosmology was laughed at for being the only science with no data. Cosmology was theory-rich but data-poor. It attracted armchair enthusiasts spouting speculations without data to test them. It was the only science where the errors could be kept in the exponents – where you could set the speed of light c =1, not for dimensionless convenience, but because the observations were so poor that it didn’t matter. -
2015 Annual Report
2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Delayed-Choice Gedanken Experiments and Their Realizations
REVIEWS OF MODERN PHYSICS, VOLUME 88, JANUARY–MARCH 2016 Delayed-choice gedanken experiments and their realizations Xiao-song Ma* Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria, Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut 06520, USA, and National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China † Johannes Kofler Max Planck Institute of Quantum Optics (MPQ), Hans-Kopfermann-Straße 1, 85748 Garching, Germany ‡ Anton Zeilinger Vienna Center of Quantum Science and Technology (VCQ), University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria and Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria (published 3 March 2016) The wave-particle duality dates back to Einstein’s explanation of the photoelectric effect through quanta of light and de Broglie’s hypothesis of matter waves. Quantum mechanics uses an abstract description for the behavior of physical systems such as photons, electrons, or atoms. Whether quantum predictions for single systems in an interferometric experiment allow an intuitive under- standing in terms of the particle or wave picture depends on the specific configuration which is being used. In principle, this leaves open the possibility that quantum systems always behave either definitely as a particle or definitely as a wave in every experimental run by a priori adapting to the specific experimental situation. This is precisely what is tried to be excluded by delayed-choice experiments, in which the observer chooses to reveal the particle or wave character of a quantum system—or even a continuous transformation between the two—at a late stage of the experiment. -
Tinkering with Time the NEW TIME TRAVELERS: a JOURNEY to the on Our FRONTIERS of PHYSICS by DAVID TOOMEY Bookshelf W
BOOKS & ARTS Tinkering with time THE NEW TIME TRAVELERS: A JOURNEY TO THE On our FRONTIERS OF PHYSICS BY DAVID TOOMEY bookshelf W. W. Norton & Co.: 2007. 320 pp. $25.95 Years ago, David Toomey picked up H. G. Wells’ moving clocks tick slowly, making time travel The Time Machine and couldn’t put it down. to the future possible. We now know a number The Mathematics of He was most interested in the drawing-room of solutions to Einstein’s equations of general Egypt, Mesopotamia, discussion between the time traveller and his relativity (1915) that are sufficiently twisted to China, India, and Islam: friends in which time as a fourth dimension was allow time travel to the past: Kurt Gödel’s 1949 A Sourcebook discussed, but wanted to know more about just rotating universe; the Morris–Thorne–Yurtsever edited by Victor J. Katz how that time machine might work. Toomey was wormhole (1988); the Tipler–van Stockum infinite therefore delighted to learn that that drawing- rotating cylinder, moving cosmic strings (myself), Princeton Univ. Press: room conversation continues today — this time the rotating black-hole interior (Brandon Carter), 2007. 685 pp. $75 among physicists. a Roman ring of wormholes (Matt Visser), the We’re aware that Toomey captures well the personalities Everett–Alcubierre warp drive, my and Li–Xin Li’s the ancient cultures of the ‘new time travelers’ — those physicists self-creating universe; Amos Ori’s torus; and were mathematically interested in whether time travel to the past is others. The book discusses all of these. advanced. Now possible — from Stephen Hawking’s sense of But can a time machine really be constructed? translations of early texts humour to Kip Thorne’s penchant for placing Hawking, like one of the time traveller’s sceptical from five key regions are scientific bets. -
ACCRETION INTO and EMISSION from BLACK HOLES Thesis By
ACCRETION INTO AND EMISSION FROM BLACK HOLES Thesis by Don Nelson Page In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1976 (Submitted May 20, 1976) -ii- ACKNOHLEDG:-IENTS For everything involved during my pursuit of a Ph. D. , I praise and thank my Lord Jesus Christ, in whom "all things were created, both in the heavens and on earth, visible and invisible, whether thrones or dominions or rulers or authorities--all things have been created through Him and for Him. And He is before all things, and in Him all things hold together" (Colossians 1: 16-17) . But He is not only the Creator and Sustainer of the universe, including the physi cal laws which rule and their dominion the spacetime manifold and its matter fields ; He is also my personal Savior, who was "wounded for our transgressions , ... bruised for our iniquities, .. and the Lord has lald on Him the iniquity of us all" (Isaiah 53:5-6). As the Apostle Paul expressed it shortly after Isaiah ' s prophecy had come true at least five hundred years after being written, "God demonstrates His own love tmvard us , in that while we were yet sinners, Christ died for us" (Romans 5 : 8) . Christ Himself said, " I have come that they may have life, and have it to the full" (John 10:10) . Indeed Christ has given me life to the full while I have been at Caltech, and I wish to acknowledge some of the main blessings He has granted: First I thank my advisors , KipS. -
Robert Richardson (1937-2013) Discoverer of Superfluidity in Helium-3
COMMENT OBITUARY Robert Richardson (1937-2013) Discoverer of superfluidity in helium-3. obert Richardson, along with physicist his PhD, he and his young family moved we compressed liquid helium-3 until it David Lee and myself, discovered that to Ithaca, New York, where he became a began to solidify, causing the mixture helium-3, a rare but stable isotope of postdoctoral researcher for David Lee in of liquid and solid to cool. We initially Rhelium, becomes a superfluid when cooled to the low-temperature group at Cornell Univer- (mistakenly) believed that we had pro- a minuscule fraction of a degree above abso- sity. Richardson joined the Cornell faculty in duced magnetic order in the solid helium-3, lute zero. Until that discovery, in the early at about 0.002 Kelvins. In fact, 1970s, the superfluidity effect — in which we had observed a new physical state: a liquid flows without friction — had been superfluidity in liquid helium-3. The seen only in helium-4, whose atoms are three of us shared the 1996 Nobel Prize bosons. No one had been able to produce in Physics for this discovery. the phenomenon with fermions, whose Richardson won or shared many nuclei have spin properties different from awards and honours apart from the Nobel those seen in bosons. prize, including the Sir Francis Simon The discovery astounded the physics Memorial Prize in 1976 and the Oliver E. CORNELL UNIVERSITY PHOTOGRAPHY community, which had all but given up Buckley Condensed Matter Prize in 1981. trying to produce the phenomenon in That year, he was also made a fellow of the helium-3. -
Works of Love
reader.ad section 9/21/05 12:38 PM Page 2 AMAZING LIGHT: Visions for Discovery AN INTERNATIONAL SYMPOSIUM IN HONOR OF THE 90TH BIRTHDAY YEAR OF CHARLES TOWNES October 6-8, 2005 — University of California, Berkeley Amazing Light Symposium and Gala Celebration c/o Metanexus Institute 3624 Market Street, Suite 301, Philadelphia, PA 19104 215.789.2200, [email protected] www.foundationalquestions.net/townes Saturday, October 8, 2005 We explore. What path to explore is important, as well as what we notice along the path. And there are always unturned stones along even well-trod paths. Discovery awaits those who spot and take the trouble to turn the stones. -- Charles H. Townes Table of Contents Table of Contents.............................................................................................................. 3 Welcome Letter................................................................................................................. 5 Conference Supporters and Organizers ............................................................................ 7 Sponsors.......................................................................................................................... 13 Program Agenda ............................................................................................................. 29 Amazing Light Young Scholars Competition................................................................. 37 Amazing Light Laser Challenge Website Competition.................................................. 41 Foundational