Feeding and Oviposition Preferences of the Diamondback Moth Plutella Xylostella (Lepidoptera: Plutellidae) on Six Brassicaceae Host Plant Species

Total Page:16

File Type:pdf, Size:1020Kb

Feeding and Oviposition Preferences of the Diamondback Moth Plutella Xylostella (Lepidoptera: Plutellidae) on Six Brassicaceae Host Plant Species View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Brock University Digital Repository Feeding and oviposition preferences of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) on six Brassicaceae host plant species By Kiera Newman, B.Sc. Submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Biological Sciences, Brock University St. Catharines, Ontario ©2014 Table of Contents List of figures .................................................................................................................... 3 List of tables ...................................................................................................................... 5 Abstract ............................................................................................................................. 6 Acknowledgements ……………………………………………………………………… 7 CHAPTER 1: Introduction………………………………………………………..…… 8 1.1 Insect Dispersal …………….…….…….….……………………………………. 8 1.2 Overcoming Plant Defenses ……………………………………….. …………… 10 1.3 Host Plant Preference……………………………………………………………. 12 1.4 Population Isolation and Gene Flow ………………………………………. …… 17 1.5 Study Species- DBM (Plutella xylostella)………………………………………. 19 1.6 DBM Life History…………….…………………………………………….…… 21 1.7 DBM Host Plant Preferences……….…………………………………………… 22 1.8 Proposed Study and Questions………………………………………………….. 26 CHAPTER 2: Are wild or ornamental plants more attractive than crops to Plutella xylostella larvae?………………………………………………………………………… 29 2.1 Abstract ............ .................................................................................................... 29 2.2 Introduction ........................................................................................................... 30 2.3 Materials and Methods ........................................................................................... 32 2.4 Results .................................................................................................................... 36 2.5 Discussion .............................................................................................................. 38 2.6 Figures…………………………………………………………………………….. 42 2.7 Tables……………………………………………………………………………… 44 CHAPTER 3: Diamondback moths find novel host plant attractive: preference of DBM (Plutella xylostella) for Lepidium sativum ........................................................................ 46 3.1 Abstract…................................................................................................................ 46 3.2 Introduction…………….. ....................................................................................... 46 3.3 Materials and Methods ............................................................................................ 50 3.4 Results......................................................................................................………… 52 3.5 Discussion ............................................................................................................... 53 3.6 Figures …………………………………………………………………………… 58 3.7 Tables…………………………………………………………………………….. 60 CHAPTER 4: Discussion and Conclusion……………………………………………. 62 4.1 Host Plant Preference and Fitness Consequences………………………………… 63 4.2 Population Differences……………………………………………………...……. 65 4.3 Instar Differences………………………………………………………..……….. 66 4.4 Conclusion and Future Research Directions ……………………………….……. 67 References………………………………………………………………………..………. 69 2 List of Figures 1.1 Insect establishment in a novel or seasonal environment begins with movement of individuals from a source population. Factors such as insect specialization, host plant nutrition, community dynamics of other species present, and plant defenses, all affect an insect’s ability preference for host plants and their ability to feed. Oviposition and subsequent development of young must also occur. Some insects have several generations per season. At season’s end, insects will die off, overwinter, or migrate back to their source population.………………………………………………………………………… 10 1.2 Predicted worldwide distribution of DBM (DBM) based on a validated bioclimatic model. Areas shaded in red show regions of the world where the Ecoclimatic Index (EI) is positive and DBM can persist year-round; red shading demarcates the core distribution of DBM (regions where EI ≤ 15–20 are marginal for year-round DBM survival). Areas shaded in blue show regions of the world where the EI is zero but where the annual growth index (GI) is positive; in these regions DBM cannot persist year-round but it can become a seasonal pest following influxes of moths from elsewhere (Furlong et al. 2013, with permission)…………………………………………………………………... 21 1.3 a. Window created in leaf by 2nd instar DBM larva b. 4th instar DBM larva feeding on a broccoli leaf c. Adult DBM beside its pupal case on an ornamental kale leaf d. DBM egg (source: Kiera Newman)………………………………. 23 1.4 Parasitoid (Diadegma sp.) of a DBM larva (source: Kiera Newman)…… 27 2.1 Number of DBM larvae (both 3rd and 4th instars combined) from all populations (Alberta, Saskatchewan, Ontario Crop, Ontario Wild and Ontario Ornamental) that chose each plant species or made no choice (n=191). Letters denote significant differences between plant species, as determined by Tukey post hoc tests.…………………………………………………………………… 43 2.2 Percent mean relative weight gain (RWG) of 3rd and 4th instar DBM larvae after one hour of feeding on different plant species (garden cress, wintercress, black mustard, aubretia, broccoli, and ornamental kale) (n=182) from all populations (Alberta, Saskatchewan, Ontario Crop, Ontario Wild, Ontario Ornamental) combined. Letters denote differences between plant species. Error bars represent one standard error above and below mean.……….......................... 44 44 3.1 Mean number of eggs oviposited per cm2 on various plant species by DBM females from five populations (Alberta, Saskatchewan, Ontario Crop, Ontario Wild and Ontario Ornamental) over four nights (n=240). Letters denote significant differences between plant species. Error bars represent one standard error above and below the mean………………………………………………….. 59 3.2 The mean numbers of DBM eggs oviposited on the upper and lower surfaces of each plant species (n=40) from all populations (Alberta, Saskatchewan, Ontario Crop, Ontario Wild and Ontario Ornamental) combined. Letters denote 3 significant differences. Error bars represent one standard error above and below the mean………………………………...………………………………………… 60 4 List of Tables 2.1 Summary statistics from a generalized linear model (GLZM) analysis of DBM plant species preferences (garden cress, wintercress, black mustard, aubretia, broccoli and ornamental kale) (as indicated through percentage of larvae that chose each plant type) between populations (Alberta, Saskatchewan, Ontario Crop, Ontario Wild and Ontario Ornamental), and larval instars (3rd and 4th). Significance levels were set to α=0.05; < 0.05*, <0.01**, <0.001***……….…… 45 2.2 ANOVA summary statistics for DBM weight gain over one hour of feeding by all larvae (n=182) on six different Brassicaceae plant species (garden cress, wintercress, black mustard, aubretia, broccoli and ornamental kale) and from five different populations (Alberta, Saskatchewan, Ontario Crop, Ontario Wild, Ontario Ornamental). Significance levels were set to α=0.05; < 0.05*, <0.01**, <0.001***………………………………………………………………………….. 45 2.3 ANOVA results for DBM weight gain over one hour of feeding on six different Brassiceae plant species (garden cress, wintercress, black mustard, aubretia, broccoli and ornamental kale) in 3rd (n=94) and 4th (n=97) instar larvae for all populations combined (Alberta, Saskatchewan, Ontario Crop, Ontario Wild and Ontario Ornamental). Significance levels were set to α=0.025; < 0.025*, <0.001**, <0.001***………………………………………………………………. 46 3. 1 Generalized linear model (GLZM) summary statistics for the number of eggs laid on each of six different plant species (garden cress, wintercress, black mustard, aubretia, broccoli and ornamental kale) by DBM females from five populations (Alberta, Saskatchewan, Ontario Crop, Ontario Ornamental, Ontario Wild) combined. Significance levels were set to α<0.05*, <0.01**, and <0.001***………………………………………………………………………… 61 3.2 The average number of eggs (on upper and lower leaf surfaces together) oviposited by DBM adult females (n=40) on each plant species (garden cress, wintercress, black mustard, aubretia, broccoli and ornamental kale) for all populations combined (Alberta, Saskatchewan, Ontario Crop, Ontario Wild and Ontario Ornamental). Mean eggs per plant and mean eggs per cm2 are shown…... 61 3.3 Chi-square test summary statistics for DBM eggs laid on upper and lower surfaces of all plant species together (garden cress, wintercress, black mustard, aubretia, broccoli and ornamental kale) for all populations combined (Alberta, Saskatchewan, Ontario Crop, Ontario Wild and Ontario Ornamental). Significance levels were set to α<0.05*, <0.01**, and <0.001***………………... 62 5 Abstract Plutella xylostella (diamondback moth, DBM) is a globally distributed Lepidopteran that feeds and oviposits almost exclusively on plants in the Brassicaceae family. DBM disperses from the southern United States and Mexico into Canada in the spring and summer. Establishment of DBM in Ontario is partially dependent upon the quantity and quality of host plants available and the preference of DBM for different hosts. Host plants include many crops
Recommended publications
  • Analysis of the Evolutionary Relationship and Geographical Patterns of Genetically Varied Populations of Diamondback Moth, Plutella Xylostella (L.)
    Analysis of the evolutionary relationship and geographical patterns of genetically varied populations of diamondback moth, Plutella xylostella (L.) by Shijun You MSc., The University of British Columbia, 2010 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2017 © Shijun You, 2017 Abstract The diamondback moth (DBM), Plutella xylostella, is well known for its extensive adaptation and distribution, high level of genetic variation and polymorphism, and strong resistance to a broad range of synthetic insecticides. Although understanding of the P. xylostella biology and ecology has been considerably improved, knowledge on the genetic basis of these traits remains surprisingly limited. Based on data generated by different sets of molecular markers, we uncovered the history of evolutionary origin and regional dispersal, identified the patterns of genetic diversity and variation, characterized the demographic history, and revealed natural and human-aided factors that are potentially responsible for contemporary distribution of P. xylostella. These findings rewrite our understanding of this exceptional system, revealing that South America might be a potential origin of P. xylostella, and recently colonized across most parts of the world resulting possibly from intensified human activities. With the data from selected continents, we demonstrated signatures of localized selection associated with environmental adaptation and insecticide resistance of P. xylostella. This work brings us to a better understanding of the regional movement and genetic bases on rapid adaptation and development of agrochemical resistance, and provides a solid foundation for better monitoring and management of this worldwide herbivore and forecast of regional pest status of P.
    [Show full text]
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Is Diadegma Insulare Or Microplitis Plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella Xylostella ?
    War of the Wasps: Is Diadegma insulare or Microplitis plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella xylostella ? ADAMO YOUNG 108 Homestead Street, Ottawa Ontario K2E 7N6 Canada; email: [email protected] Young, Adamo. 2013. War of the wasps: is Diadegma insulare or Microplitis plutellae a more effective parasitoid of the Dia - mondback Moth, Plutella xylostella ? Canadian Field-Naturalist 127(3): 211–215. Parasitism levels by Diadegma insulare (Muesebeck) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Haliday) (Hymenoptera: Braconidae) at various densities of their host, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were assessed. Cages with densities of 10 hosts, 20 hosts, and 40 hosts were set up, with the cage volume (40 500 cm 3) and number of wasps (2 females) remaining constant. The host populations were also exposed to the wasps for two different exposure times: 1 day and 3 days. The study showed that D. insulare was a better parasitoid overall, achieving a level of parasitism equal to or higher than M. plutellae at all densities. Microplitis plutellae performed best at a lower host density (76% ± 9% of 10 hosts vs. 43% ± 3% of 40 hosts). Diadegma insulare performed similarly at all densities tested (75% ± 5% of 10 hosts, 83% ± 4% of 20 hosts, and 79% ± 6% of 40 hosts). This suggests that D. insulare may be the better parasitoid overall and should be applied in severe, large-scale infestations, while M. plutellae may be better for small-scale infestations. Key Words: Diamondback Moth; Plutella xylostella; Microplitis plutellae; Diadegma insulare; parasitoids; biological control Introduction ical control can provide better control than pesticides.
    [Show full text]
  • Population Cycles of Forest Lepidoptera: a Maternal Effect
    Journal of Animal a maternal Ecology 1994, Population cycles of forest Lepidoptera: 63, 79-92 effect hypothesis LEV R. GINZBURG and DALE E. TANEYHILL Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY 11794, USA Summary 1. Many species of forest Lepidoptera have cyclic population dynamics. Although there are numerous potential causes, including interactions with predators, para- sitoids, pathogens, and food-plant quality, strongly density-dependent interactions are often difficult to demonstrate. Both autocorrelation analysis and attractor- reconstruction methods have recently been applied to a number of species' time series. Results suggest that complex dynamics, i.e. cycles or deterministic chaos, may be more prevalent than once thought, and that higher-dimensioned models are necessary. 2. We develop a two-dimensional difference equation model that relates the average quality of individuals to patterns of abundance. The delayed density dependence is caused by transmission of quality through generations via maternal effects. We show that the maternal effect model can produce patterns of population fluctuations similar to those displayed by one class of host-parasitoid models. 3. We review empirical evidence for maternal and quality effects in dynamics of forest Lepidoptera. We fit the maternal effect and delayed logistic models to six species of forest moths for which delayed density dependence and maternal or quality effects have been found. The maternal effect model was a good predictor of the period of the oscillations for the species that we examined. We discuss why models of this type give better fits to moth cycles than do first order models with added delays.
    [Show full text]
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • Relative Impacts of Environmental Variation and Evolutionary History on the Nestedness and Modularity of Tree–Herbivo
    Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks Robinson, Kathryn M.; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R. Published in: Ecology and Evolution DOI: 10.1002/ece3.1559 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Robinson, K. M., Hauzy, C., Loeuille, N., & Albrectsen, B. R. (2015). Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks. Ecology and Evolution, 5(14), 2898-2915. https://doi.org/10.1002/ece3.1559 Download date: 05. Oct. 2021 Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree–herbivore networks Kathryn M. Robinson1,2,Celine Hauzy3, Nicolas Loeuille3 & Benedicte R. Albrectsen2,4 1Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umea, Sweden 2Department of Plant Physiology, Umea Plant Science Centre, Umea University, 901 87, Umea, Sweden 3Institute of Ecology and Environmental Sciences of Paris, UMR7618, UPMC-CNRS, 7 quai St Bernard, 75005, Paris, France 4Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871, Frederiksberg C, Denmark Keywords Abstract Antagonism, arthropod, aspen, bipartite networks, degree of specialization, Nestedness and modularity are measures of ecological networks whose causative modularity, nestedness, trophic strength. effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised Correspondence of aspen trees with differing evolutionary histories of defence against herbivores. Benedicte R.
    [Show full text]
  • To Stephanitis Takeyai (Hemiptera: Tingidae)
    PLANT-INSECT INTERACTIONS Resistance Mechanisms in Pieris Taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae) 1,2 1 3 SHAKUNTHALA NAIR, S. KRISTINE BRAMAN, AND D. A. KNAUFT Environ. Entomol. 41(5): 1153Ð1162 (2012); DOI: http://dx.doi.org/10.1603/EN11323 ABSTRACT This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don ÔTemple BellsÕ did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. philly- reifolia. Leaf penetrometer measurements indicated that signiÞcantly higher force was required to puncture P. phillyreifolia leaves, which also had higher Þber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed signiÞcant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters.
    [Show full text]
  • International Poplar Commission
    INTERNATIONAL POPLAR COMMISSION 25th Session Berlin, Germany, 13- 16 September 2016 Poplars and Other Fast-Growing Trees - Renewable Resources for Future Green Economies Publications Listed in Country Progress Reports September 2016 Forestry Policy and Resources Division Working Paper IPC/16 Forestry Department FAO, Rome, Italy Disclaimer The Publications listed in Country Progress Reports do not reflect any official position of FAO but are to provide early release of information on on-going International Poplar Commission initiatives and its member country activities and programmes to stimulate dialogue between Poplar and Willow stakeholders around the globe. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. Comments and feedback are welcome. For further information, please contact: Mr Walter Kollert Secretary International Poplar Commission Forestry Department Food and Agriculture Organization of the United Nations (FAO) Viale delle Terme di Caracalla I-00153 Rome Italy E-mail: [email protected] For quotation: FAO, 2016. Publications listed in Country Progress Reports. 25th Session of the International Poplar Commission, Berlin, Germany, 13-16 September 2016. International Poplar Commission Working Paper IPC/16. FAO, Rome.
    [Show full text]
  • Variation Among 532 Genomes Unveils the Origin and Evolutionary
    ARTICLE https://doi.org/10.1038/s41467-020-16178-9 OPEN Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore ✉ Minsheng You 1,2,20 , Fushi Ke1,2,20, Shijun You 1,2,3,20, Zhangyan Wu4,20, Qingfeng Liu 4,20, ✉ ✉ Weiyi He 1,2,20, Simon W. Baxter1,2,5, Zhiguang Yuchi 1,6, Liette Vasseur 1,2,7 , Geoff M. Gurr 1,2,8 , Christopher M. Ward 9, Hugo Cerda1,2,10, Guang Yang1,2, Lu Peng1,2, Yuanchun Jin4, Miao Xie1,2, Lijun Cai1,2, Carl J. Douglas1,2,3,21, Murray B. Isman 11, Mark S. Goettel1,2,12, Qisheng Song 1,2,13, Qinghai Fan1,2,14, ✉ Gefu Wang-Pruski1,2,15, David C. Lees16, Zhen Yue 4 , Jianlin Bai1,2, Tiansheng Liu1,2, Lianyun Lin1,5, 1234567890():,; Yunkai Zheng1,2, Zhaohua Zeng1,17, Sheng Lin1,2, Yue Wang1,2, Qian Zhao1,2, Xiaofeng Xia1,2, Wenbin Chen1,2, Lilin Chen1,2, Mingmin Zou1,2, Jinying Liao1,2, Qiang Gao4, Xiaodong Fang4, Ye Yin4, Huanming Yang4,17,19, Jian Wang4,18,19, Liwei Han1,2, Yingjun Lin1,2, Yanping Lu1,2 & Mousheng Zhuang1,2 The diamondback moth, Plutella xylostella is a cosmopolitan pest that has evolved resistance to all classes of insecticide, and costs the world economy an estimated US $4-5 billion annually. We analyse patterns of variation among 532 P. xylostella genomes, representing a worldwide sample of 114 populations. We find evidence that suggests South America is the geographical area of origin of this species, challenging earlier hypotheses of an Old-World origin.
    [Show full text]
  • The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Bud Worm and Armillaria Ostoyae on Grand Fir Seedlings
    AN ABSTRACT OF THE THESIS OF Catherine Gray Parks for the degree of Doctor of Philosophy in the Department of Forest Science, presented on April 28, 1993. Title: The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Budworm and Armillaria ostoyae on Grand Fir Seedlings. Abstract Approved: John D. Waistad This greenhouse study evaluates the influence of separately and simultaneously imposed water stress, western spruce budworm (Choristorneura occidentalis Freeman) defoliation, and inoculation with the root pathogen, Armillaria ostoyae (Romagn.) Herink, on the growth and biochemical features of Abies .grandis (Dougl.) Lindi. Seedling biomass, plant moisture status, bud phenology, and allocation patterns of phenolics, carbohydrates, and key nutrients (nitrogen, phosphorus, potassium and sulfur) are reported. Hypotheses are developed and testedon the impacts of water-stress, defoliation, and root inoculation, on westernspruce budworm growth and development, and Armillaria ostoyae-caused mortality and infection. Western spruce budworm larvae fedon water-stressed seedlings had higher survival rates, grew faster, and produced largerpupae than those fed on well- watered seedlings. There is no clear reason for the positive insectresponse, but changes in foliage nutrient patterns and phenolic chemistryare indicated. Insect caused defoliation has been earlier reported to enhance successful colonization of Armillaria spp. on deciduous trees in the forests of the northeastern United States. The positive response of the fungus was attributed to a weakened tree condition. Conversely, although this study conclusively found water-limited trees to have increased susceptibility to A. ostoyae, defoliation significantly lowered Armillaria-caused infection and mortality. The decline in infection success is attributed to defoliation-caused reduction in plant water stress and an alteration of root carbohydrate chemistry.
    [Show full text]
  • The Origins of Infestations of Diamondback Moth, Plutella Xylostella (L.), in Canola in Western Canada L.M. Dosdall1, P.G. Mason
    The management of diamondback moth and other crucifer pests The origins of infestations of diamondback moth, Plutella xylostella (L.), in canola in western Canada L.M. Dosdall1, P.G. Mason2, O. Olfert3, L. Kaminski3, and B.A. Keddie4 1Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5 2Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, Canada K1A 0C6 3Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2 4Dept. of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9 Corresponding author: [email protected] Abstract Recent evidence that a population of Plutella xylostella (L.) overwintered successfully in western Canada prompted studies to evaluate overwintering survival of diamondback moth under field conditions in Alberta and Saskatchewan. Successful overwintering was not demonstrated at either site for any life stage under a variety of tillage and organic matter treatments, using either laboratory-reared or field-acclimated specimens of diamondback moth. Diamondback moth infestations in western Canada evidently originate primarily from southern U.S.A. or Mexico when strong winds carry adults northward in spring. To provide early warning predictions of infestations, air parcel trajectories into western Canada were investigated for monitoring long-range movement of P. xylostella early in the season. Using wind fields generated by the Canadian Meteorological Centre’s Global Environmental Multiscale model, three-dimensional air parcel trajectories were calculated using time-forward (prognostic) and time-backward (diagnostic) modes for several sites in North America. The model predicted strong northerly airflow in May 2001 which coincided with the occurrence of massive infestations of diamondback moth in canola in western Canada.
    [Show full text]