Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Skill of Subseasonal Forecasts in Europe: Effect of Bias 10.1029/2017JD027923 Correction and Downscaling Using Key Points: Surface Observations • We provide a station based verification of downscaled and S. Monhart1,2,3 , C. Spirig2 , J. Bhend2 , K. Bogner1 , C. Schär3 , and M. A. Liniger2 bias-corrected subseasonal temperature and precipitation 1Mountain Hydrology and Mass Movements, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, predictions for entire Europe 2 fi 3 • Promising skill is found for weekly Birmensdorf, Switzerland, Federal Of ce of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland, Institute for mean temperature up to 19-24 days Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland lead time, but limited to lead days 5-11 for precipitation • Seasonal and spatial variations in the Abstract Subseasonal predictions bridge the gap between medium-range weather forecasts and skill of the forecasts are discussed in seasonal climate predictions. This time horizon is of crucial importance for many planning purposes, the context of subseasonal to seasonal predictions including energy production and agriculture. The verification of such predictions is normally done for areal averages of upper-air parameters. Only few studies exist that verify the forecasts for surface parameters with observational stations, although this is crucial for real-world applications, which often require such fi fi Correspondence to: predictions at speci c surface locations. With this study we provide an extensive station-based veri cation of S. Monhart, subseasonal forecasts against 1,637 ground based observational time series across Europe. Twenty years of
[email protected] temperature and precipitation reforecasts of the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System are used to analyze the period of April 1995 to March 2014.