Hydrological Extremes: Improving Simulations of Flood and Drought In
Total Page:16
File Type:pdf, Size:1020Kb
Hydrological extremes Improving simulations of flood and drought in large river basins Utrecht Studies in Earth Sciences Local editors Prof. Dr. Steven M. de Jong Dr. Marjan Rossen Prof. Dr. Cor Langereis Drs. Jan-Willem de Blok ISSN 2211-4335 Utrecht Studies in Earth Sciences 072 Hydrological extremes Improving simulations of flood and drought in large river basins Niko Wanders Utrecht 2015 Department Physical Geography Faculty of Geosciences - Utrecht University Promotors: Prof. Dr. S. M. de Jong Prof. Dr. Ir. M. F. P. Bierkens Prof. Dr. A. P. J. de Roo Copromotor: Dr. D. Karssenberg Examination committee Prof. Dr. E. F. Wood, Princeton University Prof. Dr. L. M. Tallaksen, University of Oslo Prof. Dr. W. Wagner, Vienna University of Technology Prof. Dr. Ir. R. Uijlenhoet, Wageningen University Dr. R. A. M. de Jeu, VU University Amsterdam This research was funded by a grant from the User Support Program Space Research of NWO (contract number NWO GO-AO/30). ISBN 978-90-6266-383-5 Copyright © Niko Wanders c/o Faculty of Geosciences, Utrecht University, 2015. Cover illustration: A compilation of the study areas that were part of the different chapters in this thesis. Every chapter is represented in a part of the cover illustration. Cover design: Niko Wanders Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt door middel van druk, fotokopie of op welke andere wijze dan ook zonder voorafgaande schriftelijke toestemming van de uitgevers. All rights reserved. No part of this publication may be reproduced in any form, by print or photo print, microfilm or any other means, without written permission by the publishers. Printed in the Netherlands by WPS, Zutphen. Hydrological extremes Improving simulations of flood and drought in large river basins Hydrologische extremen Verbeteringen in overstromings- en droogtesimulaties van grote rivieren (met een samenvatting in het Nederlands) PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rec- tor magnificus, prof. dr. G. J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 24 april 2015 des middags te 2.30 uur door Niko Wanders geboren op 29 november 1986 te Leiden Promotoren: Prof. dr. S. M. de Jong Prof.dr.ir.M.F.P.Bierkens Prof. dr. A. P. J. de Roo Copromotor: Dr. D. Karssenberg Don’t worry be happy Bobby McFerrin Contents List of Abbreviations xi List of Symbols xv 1 Introduction 1 1.1Background................................ 1 1.2 Simulation, reanalysis, monitoring, forecasting and projection of ex- tremes................................... 2 1.3Observations................................ 4 1.4 Vagueness in terminology ......................... 6 1.5 Uncertainty in simulations of hydrological extremes .......... 6 1.5.1 Meteorologicalforcing...................... 7 1.5.2 Initial conditions ......................... 8 1.5.3 Boundary conditions ....................... 8 1.5.4 Parameterization......................... 9 1.5.5 Modelstructure.......................... 9 1.6 Objectives and approach ......................... 9 1.7Innovationandrelevance......................... 13 I Ground-based and satellite observations to reduce un- certainty in hydrological simulations 15 2 Observation uncertainty of satellite soil moisture products 17 2.1Introduction................................ 17 2.2MaterialandMethods.......................... 20 i 2.2.1 Satellite data ........................... 20 2.2.2 In-situ soil moisture measurement and meteorological data . 23 2.2.3 SWAPmodelset-up....................... 24 2.2.4 Evaluation of model performance and sensitivity analysis . 25 2.3Results................................... 31 2.3.1 SWAP model validation with in-situ observations ....... 31 2.3.2 Remotely sensed soil moisture inter-comparison over Spain . 34 2.3.3 Satellite error characterization .................. 39 2.4Conclusions................................ 41 3 Correction of real-time satellite precipitation 43 3.1Introduction................................ 43 3.2MaterialandMethods.......................... 46 3.2.1 Studyarea............................. 46 3.2.2 Land-surfacemodel........................ 46 3.2.3 Remotely sensed precipitation .................. 47 3.2.4 Remotely sensed soil moisture and land surface temperature . 47 3.2.5 ParticleFilterbasedfiltering................... 49 3.2.6 Sensitivityanalysis........................ 52 3.2.7 Scenarios............................. 53 3.2.8 Evaluation............................. 54 3.3Results................................... 55 3.3.1 Sensitivity to precipitation .................... 55 3.3.2 Syntheticexperiment....................... 58 3.3.3 Realexperiments......................... 60 3.3.4 Performance of different assimilation scenarios ......... 61 ii 3.3.5 Seasonal impact of assimilation ................. 63 3.3.6 Spatial impact of assimilation .................. 63 3.4Discussion................................. 64 3.4.1 Impactofeventthreshold.................... 64 3.4.2 Soilmoistureobservations.................... 65 3.4.3 Temperatureobservations.................... 69 3.4.4 Model and ground-based precipitation ............. 69 3.5Conclusion................................. 71 4 Calibration of a global hydrological model 73 4.1Introduction................................ 73 4.2MaterialandMethods.......................... 75 4.2.1 Model description ......................... 75 4.2.2 Forcingdata............................ 76 4.2.3 Dischargedata.......................... 76 4.2.4 Data assimilation framework ................... 77 4.2.5 ImplementationofEnsembleKalmanFilter.......... 78 4.2.6 Reanalysisproduct........................ 80 4.3Results................................... 81 4.3.1 Parameterestimation....................... 81 4.3.2 Performanceinselectedriverbasins............... 82 4.3.3 Globaldischargeperformance.................. 83 4.3.4 Precipitation correction . ................... 85 4.3.5 Theterrestrialwatercycle.................... 86 4.4DiscussionandConclusion........................ 87 4.4.1 Model calibration ......................... 88 iii 4.4.2 Fluxesestimates......................... 88 4.4.3 Reanalysisproduct........................ 90 5 The benefits of satellite soil moisture in parameter identification 91 5.1Introduction................................ 92 5.2MaterialandMethods.......................... 93 5.2.1 Studyarea............................. 93 5.2.2 Hydrologicalmodel........................ 94 5.2.3 Data................................ 98 5.3 Cross-variograms of errors in remotely sensed soil moisture products . 99 5.3.1 Data assimilation ......................... 100 5.3.2 Scenarios............................. 103 5.4Results................................... 106 5.4.1 Calibration on synthetic dataset and sensitivity analysis . 106 5.4.2 Parameteridentification..................... 108 5.4.3 Dischargesimulation....................... 110 5.4.4 Soilmoisturesimulation..................... 113 5.5DiscussionandConclusion........................ 114 6 Remotely sensed soil moisture for improving flood forecasting 119 6.1Introduction................................ 120 6.2MaterialandMethods.......................... 122 6.2.1 Studyarea............................. 122 6.2.2 EuropeanFloodAwarenessSystem............... 122 6.2.3 Data................................ 125 6.2.4 Data assimilation ......................... 126 6.2.5 Assimilation and ensemble hindcasting . .......... 127 iv 6.2.6 Scenarios............................. 130 6.2.7 Evaluation............................. 130 6.3Results................................... 132 6.3.1 Reanalysis............................. 132 6.3.2 Hindcastingperformance..................... 134 6.3.3 Flood hindcasting skill ...................... 137 6.3.4 Hindcasting performance with limited assimilation ....... 138 6.4Conclusions................................ 140 II Assessment of drought definitions 143 7 Comparison of frequently used drought indicators 145 7.1Introduction................................ 146 7.2MaterialandMethods.......................... 147 7.2.1 Hydrologicalmodel........................ 147 7.2.2 Droughtindicators........................ 148 7.3 Drought indicator calculation ...................... 149 7.3.1 EffectiveDroughtIndex..................... 149 7.3.2 Standardized Precipitation Index ................ 149 7.3.3 PalmerDroughtSeverityIndex................. 149 7.3.4 Thethresholdmethod...................... 150 7.3.5 TotalStorageDeficitIndex.................... 150 7.3.6 Groundwater Resource Index . ............... 151 7.3.7 Sensitivityanalysis........................ 151 7.4Results................................... 151 7.4.1 Sensitivityanalysisofhydrologicalmodel............ 151 v 7.4.2 Analysis of spatial patterns in drought indicators ....... 152 7.4.3 Interchangeability of drought indicators ............. 152 7.4.4 Intrachangeability of drought indicators ............. 154 7.5DiscussionandConclusions....................... 156 8 Hydrological drought under a changing hydrological regime 159 8.1Introduction................................ 160 8.2MaterialandMethods.......................... 161 8.2.1 Modelsimulationofstreamflow................. 161 8.2.2 Droughtcalculation........................ 164 8.2.3 Variablethresholdapproach................... 165 8.2.4 Trendanalysis........................... 166 8.2.5 K¨oppen–Geiger climate classification .............. 167 8.3Results................................... 168 8.3.1